1
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
2
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
3
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
4
|
Badodi S, Pomella N, Zhang X, Rosser G, Whittingham J, Niklison-Chirou MV, Lim YM, Brandner S, Morrison G, Pollard SM, Bennett CD, Clifford SC, Peet A, Basson MA, Marino S. Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nat Commun 2021; 12:2148. [PMID: 33846320 PMCID: PMC8042111 DOI: 10.1038/s41467-021-22379-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Deregulation of chromatin modifiers plays an essential role in the pathogenesis of medulloblastoma, the most common paediatric malignant brain tumour. Here, we identify a BMI1-dependent sensitivity to deregulation of inositol metabolism in a proportion of medulloblastoma. We demonstrate mTOR pathway activation and metabolic adaptation specifically in medulloblastoma of the molecular subgroup G4 characterised by a BMI1High;CHD7Low signature and show this can be counteracted by IP6 treatment. Finally, we demonstrate that IP6 synergises with cisplatin to enhance its cytotoxicity in vitro and extends survival in a pre-clinical BMI1High;CHD7Low xenograft model.
Collapse
Affiliation(s)
- Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John Whittingham
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Yau Mun Lim
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sebastian Brandner
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Gillian Morrison
- Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Christopher D Bennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women and Children's Hospital, Birmingham, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women and Children's Hospital, Birmingham, UK
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Tamayo-Orrego L, Charron F. Recent advances in SHH medulloblastoma progression: tumor suppressor mechanisms and the tumor microenvironment. F1000Res 2019; 8. [PMID: 31700613 PMCID: PMC6820827 DOI: 10.12688/f1000research.20013.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Medulloblastoma, the most common of the malignant pediatric brain tumors, is a group of four molecularly and clinically distinct cancers with different cells of origin. One of these medulloblastoma groups displays activation of Sonic hedgehog (SHH) signaling and originates from granule cell precursors of the developing cerebellum. Ongoing basic and clinical research efforts are tailored to discover targeted and safer therapies, which rely on the identification of the basic mechanisms regulating tumor initiation, progression, and metastasis. In SHH medulloblastoma, the mechanisms regulating neural progenitor transformation and progression to advanced tumors have been studied in some detail. The present review discusses recent advances on medulloblastoma progression derived from studies using mouse models of SHH medulloblastoma. We focus on mechanisms that regulate progression from precancerous lesions to medulloblastoma, describing novel roles played by tumor suppressor mechanisms and the tumor microenvironment.
Collapse
Affiliation(s)
- Lukas Tamayo-Orrego
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Grupo Neuroaprendizaje, Autonomous University of Manizales, Manizales, Colombia
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Quebec, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Yi J, Wu J. Epigenetic regulation in medulloblastoma. Mol Cell Neurosci 2017; 87:65-76. [PMID: 29269116 DOI: 10.1016/j.mcn.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor. The heterogeneous tumors are classified into four subgroups based on transcription profiles. Recent developments in genome-wide sequencing techniques have rapidly advanced the understanding of these tumors. The high percentages of somatic alterations of genes encoding chromatin regulators in all subgroups suggest that epigenetic deregulation is a major driver of medulloblastoma. In this report, we review the current understanding of epigenetic regulation in medulloblastoma with a focus on the functional studies of chromatin regulators in the initiation and progression of specific subgroups of medulloblastoma. We also discuss the potential usage of epigenetic inhibitors for medulloblastoma treatment.
Collapse
Affiliation(s)
- Jiaqing Yi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Jiang Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
7
|
Badodi S, Dubuc A, Zhang X, Rosser G, Da Cunha Jaeger M, Kameda-Smith MM, Morrissy AS, Guilhamon P, Suetterlin P, Li XN, Guglielmi L, Merve A, Farooq H, Lupien M, Singh SK, Basson MA, Taylor MD, Marino S. Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Rep 2017; 21:2772-2784. [PMID: 29212025 PMCID: PMC5732319 DOI: 10.1016/j.celrep.2017.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
We describe molecular convergence between BMI1 and CHD7 in the initiation of medulloblastoma. Identified in a functional genomic screen in mouse models, a BMI1High;CHD7Low expression signature within medulloblastoma characterizes patients with poor overall survival. We show that BMI1-mediated repression of the ERK1/2 pathway leads to increased proliferation and tumor burden in primary human MB cells and in a xenograft model, respectively. We provide evidence that repression of the ERK inhibitor DUSP4 by BMI1 is dependent on a more accessible chromatin configuration in G4 MB cells with low CHD7 expression. These findings extend current knowledge of the role of BMI1 and CHD7 in medulloblastoma pathogenesis, and they raise the possibility that pharmacological targeting of BMI1 or ERK may be particularly indicated in a subgroup of MB with low expression levels of CHD7.
Collapse
Affiliation(s)
- Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Adrian Dubuc
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Mariane Da Cunha Jaeger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Michelle M Kameda-Smith
- Pediatric Neurosurgery, Department of Surgery, McMaster Children's Hospital and McMaster Stem Cell & Cancer Research Institute, MDCL 5027, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Anca Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Philipp Suetterlin
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Xiao-Nan Li
- Texas Children's Cancer Centre, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin Street, MC-3-3320, Houston, TX 77479, USA
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Ashirwad Merve
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Hamza Farooq
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Sheila K Singh
- Pediatric Neurosurgery, Department of Surgery, McMaster Children's Hospital and McMaster Stem Cell & Cancer Research Institute, MDCL 5027, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
8
|
Lee SJ, Litan A, Li Z, Graves B, Lindsey S, Barwe SP, Langhans SA. Na,K-ATPase β1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer 2015; 14:159. [PMID: 26286140 PMCID: PMC4544806 DOI: 10.1186/s12943-015-0430-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Background The Sonic hedgehog (Shh) signaling pathway plays an important role in cerebellar development, and mutations leading to hyperactive Shh signaling have been associated with certain forms of medulloblastoma, a common form of pediatric brain cancer. While the fundamentals of this pathway are known, the molecular targets contributing to Shh-mediated proliferation and transformation are still poorly understood. Na,K-ATPase is a ubiquitous enzyme that maintains intracellular ion homeostasis and functions as a signaling scaffold and a cell adhesion molecule. Changes in Na,K-ATPase function and subunit expression have been reported in several cancers and loss of the β1-subunit has been associated with a poorly differentiated phenotype in carcinoma but its role in medulloblastoma progression is not known. Methods Human medulloblastoma cell lines and primary cultures of cerebellar granule cell precursors (CGP) were used to determine whether Shh regulates Na,K-ATPase expression. Smo/Smo medulloblastoma were used to assess the Na,K-ATPase levels in vivo. Na,K-ATPase β1-subunit was knocked down in DAOY cells to test its role in medulloblastoma cell proliferation and tumorigenicity. Results Na,K-ATPase β1-subunit levels increased with differentiation in normal CGP cells. Activation of Shh signaling resulted in reduced β1-subunit mRNA and protein levels and was mimicked by overexpression of Gli1and Bmi1, both members of the Shh signaling cascade; overexpression of Bmi1 reduced β1-subunit promoter activity. In human medulloblastoma cells, low β1-subunit levels were associated with increased cell proliferation and in vivo tumorigenesis. Conclusions Na,K-ATPase β1-subunit is a target of the Shh signaling pathway and loss of β1-subunit expression may contribute to tumor development and progression not only in carcinoma but also in medulloblastoma, a tumor of neuronal origin.
Collapse
Affiliation(s)
- Seung Joon Lee
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Alisa Litan
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Zhiqin Li
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Bruce Graves
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Stephan Lindsey
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Sonali P Barwe
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Sigrid A Langhans
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA.
| |
Collapse
|
9
|
Tinti M, Dissanayake K, Synowsky S, Albergante L, MacKintosh C. Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers. Open Biol 2014; 4:140029. [PMID: 24806839 PMCID: PMC4042849 DOI: 10.1098/rsob.140029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/09/2014] [Indexed: 12/12/2022] Open
Abstract
The complexity of signalling pathways was boosted at the origin of the vertebrates, when two rounds of whole genome duplication (2R-WGD) occurred. Those genes and proteins that have survived from the 2R-WGD-termed 2R-ohnologues-belong to families of two to four members, and are enriched in signalling components relevant to cancer. Here, we find that while only approximately 30% of human transcript-coding genes are 2R-ohnologues, they carry 42-60% of the gene mutations in 30 different cancer types. Across a subset of cancer datasets, including melanoma, breast, lung adenocarcinoma, liver and medulloblastoma, we identified 673 2R-ohnologue families in which one gene carries mutations at multiple positions, while sister genes in the same family are relatively mutation free. Strikingly, in 315 of the 322 2R-ohnologue families displaying such a skew in multiple cancers, the same gene carries the heaviest mutation load in each cancer, and usually the second-ranked gene is also the same in each cancer. Our findings inspire the hypothesis that in certain cancers, heterogeneous combinations of genetic changes impair parts of the 2R-WGD signalling networks and force information flow through a limited set of oncogenic pathways in which specific non-mutated 2R-ohnologues serve as effectors. The non-mutated 2R-ohnologues are therefore potential therapeutic targets. These include proteins linked to growth factor signalling, neurotransmission and ion channels.
Collapse
Affiliation(s)
- Michele Tinti
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kumara Dissanayake
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Silvia Synowsky
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Luca Albergante
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Carol MacKintosh
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
10
|
Merve A, Dubuc AM, Zhang X, Remke M, Baxter PA, Li XN, Taylor MD, Marino S. Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion. Acta Neuropathol Commun 2014; 2:10. [PMID: 24460684 PMCID: PMC3928978 DOI: 10.1186/2051-5960-2-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022] Open
Abstract
Background Medulloblastoma is the most common intracranial childhood malignancy and a genetically heterogeneous disease. Despite recent advances, current therapeutic approaches are still associated with high morbidity and mortality. Recent molecular profiling has suggested the stratification of medulloblastoma from one single disease into four distinct subgroups namely: WNT Group (best prognosis), SHH Group (intermediate prognosis), Group 3 (worst prognosis) and Group 4 (intermediate prognosis). BMI1 is a Polycomb group repressor complex gene overexpressed across medulloblastoma subgroups but most significantly in Group 4 tumours. Bone morphogenetic proteins are morphogens belonging to TGF-β superfamily of growth factors, known to inhibit medulloblastoma cell proliferation and induce apoptosis. Results Here we demonstrate that human medulloblastoma of Group 4 characterised by the greatest overexpression of BMI1, also display deregulation of cell adhesion molecules. We show that BMI1 controls intraparenchymal invasion in a novel xenograft model of human MB of Group 4, while in vitro assays highlight that cell adhesion and motility are controlled by BMI1 in a BMP dependent manner. Conclusions BMI1 controls MB cell migration and invasion through repression of the BMP pathway, raising the possibility that BMI1 could be used as a biomarker to identify groups of patients who may benefit from a treatment with BMP agonists.
Collapse
|
11
|
Li CM, Yan HC, Fu HL, Xu GF, Wang XQ. Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells1. J Anim Sci 2014; 92:85-94. [DOI: 10.2527/jas.2013-7048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- C.-M. Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - H.-C. Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - H.-L. Fu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - G.-F. Xu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - X.-Q. Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Benetatos L, Vartholomatos G, Hatzimichael E. Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci 2014; 71:257-69. [PMID: 23897499 PMCID: PMC11113285 DOI: 10.1007/s00018-013-1426-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers. Although the interaction of PcG and MYC in cancer was described years ago, new findings are reported every day to explain the exact mechanisms and results of such interactions. In this review, we summarize recent data on the PcG and MYC interactions in cancer, and the putative involvement of microRNAs in the equation.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, General Hospital of Preveza, Selefkias 2, 48100, Preveza, Greece,
| | | | | |
Collapse
|