1
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
2
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
3
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
4
|
Gregoric Kumperscak H, Krgovic D, Drobnic Radobuljac M, Senica N, Zagorac A, Kokalj Vokac N. CNVs and Chromosomal Aneuploidy in Patients With Early-Onset Schizophrenia and Bipolar Disorder: Genotype-Phenotype Associations. Front Psychiatry 2020; 11:606372. [PMID: 33510659 PMCID: PMC7837028 DOI: 10.3389/fpsyt.2020.606372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction: Early-onset schizophrenia (EOS) and bipolar disorder (EOB) start before the age of 18 years and have a more severe clinical course, a worse prognosis, and a greater genetic loading compared to the late-onset forms. Copy number variations (CNVs) are an important genetic factor in the etiology of psychiatric disorders. Therefore, this study aimed to analyze CNVs in patients with EOS and EOB and to establish genotype-phenotype relationships for contiguous gene syndromes or genes affected by identified CNVs. Methods: Molecular karyotyping was performed in 45 patients, 38 with EOS and seven with EOB hospitalized between 2010 and 2017. The exclusion criteria were medical or neurological disorders or IQ under 70. Detected CNVs were analyzed according to the standards and guidelines of the American College of Medical Genetics. Result: Molecular karyotyping showed CNVs in four patients with EOS (encompassing the PAK2, ADAMTS3, and ADAMTSL1 genes, and the 16p11.2 microduplication syndrome) and in two patients with EOB (encompassing the ARHGAP11B and PRODH genes). In one patient with EOB, a chromosomal aneuploidy 47, XYY was found. Discussion: Our study is the first study of CNVs in EOS and EOB patients in Slovenia. Our findings support the association of the PAK2, ARHGAP11B, and PRODH genes with schizophrenia and/or bipolar disorder. To our knowledge, this is also the first report of a multiplication of the ADAMTSL1 gene and the smallest deletion of the PAK2 gene in a patient with EOS, and one of the few reports of the 47, XYY karyotype in a patient with EOB.
Collapse
Affiliation(s)
- Hojka Gregoric Kumperscak
- Department of Pediatrics, University Medical Center Maribor, Maribor, Slovenia.,Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Danijela Krgovic
- Medical Faculty, University of Maribor, Maribor, Slovenia.,Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| | - Maja Drobnic Radobuljac
- Unit for Intensive Child and Adolescent Psychiatry, Center for Mental Health, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Senica
- Department of Pediatrics, University Medical Center Maribor, Maribor, Slovenia
| | - Andreja Zagorac
- Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| | - Nadja Kokalj Vokac
- Medical Faculty, University of Maribor, Maribor, Slovenia.,Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Smith P, Buhl E, Tsaneva-Atanasova K, Hodge JJL. Shaw and Shal voltage-gated potassium channels mediate circadian changes in Drosophila clock neuron excitability. J Physiol 2019; 597:5707-5722. [PMID: 31612994 DOI: 10.1113/jp278826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023] Open
Abstract
As in mammals, Drosophila circadian clock neurons display rhythms of activity with higher action potential firing rates and more positive resting membrane potentials during the day. This rhythmic excitability has been widely observed but, critically, its regulation remains unresolved. We have characterized and modelled the changes underlying these electrical activity rhythms in the lateral ventral clock neurons (LNvs). We show that currents mediated by the voltage-gated potassium channels Shaw (Kv3) and Shal (Kv4) oscillate in a circadian manner. Disruption of these channels, by expression of dominant negative (DN) subunits, leads to changes in circadian locomotor activity and shortens lifespan. LNv whole-cell recordings then show that changes in Shaw and Shal currents drive changes in action potential firing rate and that these rhythms are abolished when the circadian molecular clock is stopped. A whole-cell biophysical model using Hodgkin-Huxley equations can recapitulate these changes in electrical activity. Based on this model and by using dynamic clamp to manipulate clock neurons directly, we can rescue the pharmacological block of Shaw and Shal, restore the firing rhythm, and thus demonstrate the critical importance of Shaw and Shal. Together, these findings point to a key role for Shaw and Shal in controlling circadian firing of clock neurons and show that changes in clock neuron currents can account for this. Moreover, with dynamic clamp we can switch the LNvs between morning-like and evening-like states of electrical activity. We conclude that changes in Shaw and Shal underlie the daily oscillation in LNv firing rate.
Collapse
Affiliation(s)
- Philip Smith
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
6
|
Corthals K, Heukamp AS, Kossen R, Großhennig I, Hahn N, Gras H, Göpfert MC, Heinrich R, Geurten BRH. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster. Front Psychiatry 2017; 8:113. [PMID: 28740469 PMCID: PMC5502276 DOI: 10.3389/fpsyt.2017.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster, an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.
Collapse
Affiliation(s)
- Kristina Corthals
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Alina Sophia Heukamp
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Robert Kossen
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Isabel Großhennig
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Nina Hahn
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Heribert Gras
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|