1
|
Taliaferro LP, Agarwal RK, Coleman CN, DiCarlo AL, Hofmeyer KA, Loelius SG, Molinar-Inglis O, Tedesco DC, Satyamitra MM. Sex differences in radiation research. Int J Radiat Biol 2023; 100:466-485. [PMID: 37991728 PMCID: PMC10922591 DOI: 10.1080/09553002.2023.2283089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE The Sex Differences in Radiation Research workshop addressed the role of sex as a confounder in radiation research and its implication in real-world radiological and nuclear applications. METHODS In April 2022, HHS-wide partners from the Radiation and Nuclear Countermeasures Program, the Office of Research on Women's Health National Institutes of Health Office of Women's Health, U.S. Food and Drug Administration, and the Radiological and Nuclear Countermeasures Branch at the Biomedical Advanced Research and Development Authority conducted a workshop to address the scientific implication and knowledge gaps in understanding sex in basic and translational research. The goals of this workshop were to examine sex differences in 1. Radiation animal models and understand how these may affect radiation medical countermeasure development; 2. Biodosimetry and/or biomarkers used to assess acute radiation syndrome, delayed effects of acute radiation exposure, and/or predict major organ morbidities; 3. medical research that lacks representation from both sexes. In addition, regulatory policies that influence inclusion of women in research, and the gaps that exist in drug development and device clearance were discussed. Finally, real-world sex differences in human health scenarios were also considered. RESULTS This report provides an overview of the two-day workshop, and open discussion among academic investigators, industry researchers, and U.S. government representatives. CONCLUSIONS This meeting highlighted that current study designs lack the power to determine statistical significance based on sex, and much is unknown about the underlying factors that contribute to these differences. Investigators should accommodate both sexes in all stages of research to ensure that the outcome is robust, reproducible, and accurate, and will benefit public health.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| | - Rajeev K. Agarwal
- Office of Research on Women’s Health (ORWH), Office of the Director, NIH, Rockville, MD, USA
| | - C. Norman Coleman
- Radiation Research Program Division of Cancer Treatment and Diagnosis, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI) and Administration for Strategic Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS), Washington, DC, USA
| | - Andrea L. DiCarlo
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| | - Kimberly A. Hofmeyer
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Shannon G. Loelius
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Olivia Molinar-Inglis
- Previously RNCP, DAIT, NIAID, NIH; now Antivirals and Antitoxins Program, Division of CBRN Countermeasures, BARDA, ASPR, HHS, Washington, DC, USA
| | - Dana C. Tedesco
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Merriline M. Satyamitra
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| |
Collapse
|
2
|
Gibbs A, Gupta P, Mali B, Poirier Y, Gopalakrishnan M, Newman D, Zodda A, Down JD, Serebrenik AA, Kaytor MD, Jackson IL. A C57L/J Mouse Model of the Delayed Effects of Acute Radiation Exposure in the Context of Evolving Multi-Organ Dysfunction and Failure after Total-Body Irradiation with 2.5% Bone Marrow Sparing. Radiat Res 2023; 199:319-335. [PMID: 36857032 PMCID: PMC10289057 DOI: 10.1667/rade-22-00178.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
The objective of the current study was to establish a mouse model of acute radiation syndrome (ARS) after total-body irradiation with 2.5% bone marrow sparing (TBI/BM2.5) that progressed to the delayed effects of acute radiation exposure, specifically pneumonitis and/or pulmonary fibrosis (DEARE-lung), in animals surviving longer than 60 days. Two hundred age and sex matched C57L/J mice were assigned to one of six arms to receive a dose of 9.5 to 13.25 Gy of 320 kV X-ray TBI/BM2.5. A sham-irradiated cohort was included as an age- and sex-matched control. Blood was sampled from the facial vein prior to irradiation and on days 5, 10, 15, 20, 25, and 30 postirradiation for hematology. Respiratory function was monitored at regular intervals throughout the in-life phase. Animals with respiratory dysfunction were administered a single 12-day tapered regimen of dexamethasone, allometrically scaled from a similar regimen in the non-human primate. All animals were monitored daily for up to 224 days postirradiation for signs of organ dysfunction and morbidity/mortality. At euthanasia due to criteria or at the study endpoint, wet lung weights were recorded, and blood sampled for hematology and serum chemistry. The left lung, heart, spleen, small and large intestine, and kidneys were processed for histopathology. A dose-response curve with the estimated lethal dose for 10-99% of animals with 95% confidence intervals was established. The median survival time was significantly prolonged in males as compared to females across the 10.25 to 12.5 Gy dose range. Animal sex played a significant role in overall survival, with males 50% less likely to expire prior to the study endpoint compared to females. All animals developed pancytopenia within the first one- to two-weeks after TBI/BM2.5 followed by a progressive recovery through day 30. Fourteen percent of animals expired during the first 30-days postirradiation due to ARS (e.g., myelosuppression, gastrointestinal tissue abnormalities), with most deaths occurring prior to day 15. Microscopic findings show the presence of radiation pneumonitis as early as day 57. At time points later than day 70, pneumonitis was consistently present in the lungs of mice and the severity was comparable across radiation dose arms. Pulmonary fibrosis was first noted at day 64 but was not consistently present and stable in severity until after day 70. Fibrosis was comparable across radiation dose arms. In conclusion, this study established a multiple organ injury mouse model that progresses through the ARS phase to DEARE-lung, characterized by respiratory dysfunction, and microscopic abnormalities consistent with radiation pneumonitis/fibrosis. The model provides a platform for future development of medical countermeasures for approval and licensure by the U.S. Food and Drug Administration under the animal rule regulatory pathway.
Collapse
Affiliation(s)
- Allison Gibbs
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Pawan Gupta
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Buddha Mali
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yannick Poirier
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Diana Newman
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Andrew Zodda
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Julian D. Down
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | |
Collapse
|
3
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Chung EJ, Kwon S, Shankavaram U, White AO, Das S, Citrin DE. Natural variation in macrophage polarization and function impact pneumocyte senescence and susceptibility to fibrosis. Aging (Albany NY) 2022; 14:7692-7717. [PMID: 36173617 PMCID: PMC9596223 DOI: 10.18632/aging.204309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF), a late adverse event of radiation therapy, is characterized by infiltration of inflammatory cells, progressive loss of alveolar structure, secondary to the loss of pneumocytes and accumulation of collagenous extracellular matrix, and senescence of alveolar stem cells. Differential susceptibility to lung injury from radiation and other toxic insults across mouse strains is well described but poorly understood. The accumulation of alternatively activated macrophages (M2) has previously been implicated in the progression of lung fibrosis. Using fibrosis prone strain (C57L), a fibrosis-resistant strain (C3H/HeN), and a strain with intermediate susceptibility (C57BL6/J), we demonstrate that the accumulation of M2 macrophages correlates with the manifestation of fibrosis. A comparison of primary macrophages derived from each strain identified phenotypic and functional differences, including differential expression of NADPH Oxidase 2 and production of superoxide in response to M2 polarization and activation. Further, the sensitivity of primary AECII to senescence after coculture with M2 macrophages was strain dependent and correlated to observations of sensitivity to fibrosis and senescence in vivo. Taken together, these data support that the relative susceptibility of different strains to RIPF is closely related to distinct senescence responses induced through pulmonary M2 macrophages after thoracic irradiation.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Fish BL, MacVittie TJ, Gao F, Narayanan J, Gasperetti T, Scholler D, Sheinin Y, Himburg HA, Hart B, Medhora M. Rat Models of Partial-body Irradiation with Bone Marrow-sparing (Leg-out PBI) Designed for FDA Approval of Countermeasures for Mitigation of Acute and Delayed Injuries by Radiation. HEALTH PHYSICS 2021; 121:419-433. [PMID: 34546222 PMCID: PMC8577554 DOI: 10.1097/hp.0000000000001444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
ABSTRACT The goal of this study was to develop rat models of partial body irradiation with bone-marrow sparing (leg-out PBI) to test medical countermeasures (MCM) of both acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE) under the FDA animal rule. The leg-out PBI models were developed in female and male WAG/RijCmcr rats at doses of 12.5-14.5 Gy. Rats received supportive care consisting of fluids and antibiotics. Gastrointestinal ARS (GI-ARS) was assessed by lethality to d 7 and diarrhea scoring to d 10. Differential blood counts were analyzed between d 1-42 for the natural history of hematopoietic ARS (H-ARS). Lethality and breathing intervals (BI) were measured between d 28-110 to assess delayed injury to the lung (L-DEARE). Kidney injury (K-DEARE) was evaluated by measuring elevation of blood urea nitrogen (BUN) between d 90-180. The LD50/30, including both lethality from GI-ARS and H-ARS, for female and male rats are 14.0 Gy and 13.5 Gy, respectively, while the LD50/7 for only GI-ARS are 14.3 Gy and 13.6 Gy, respectively. The all-cause mortalities, including ARS and L-DEARE, through 120 d (LD50/120) are 13.5 Gy and 12.9 Gy, respectively. Secondary end points confirmed occurrence of four distinct sequelae representing GI, hematopoietic, lung, and kidney toxicities after leg-out PBI. Adult rat models of leg-out PBI showed the acute and long-term sequelae of radiation damage that has been reported in human radiation exposure case studies. Sex-specific differences were observed in the DRR between females and males. These rat models are among the most useful for the development and approval of countermeasures for mitigation of radiation injuries under the FDA animal rule.
Collapse
Affiliation(s)
- Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, 9200 Watertown Plank Road, Milwaukee, WI 53226
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Barry Hart
- Innovation Pathways, Palo Alto, CA. 94301
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
6
|
Huang W, Yu J, Liu T, Defnet AE, Zalesak S, Farese AM, MacVittie TJ, Kane MA. Acute Proteomic Changes in Lung after Radiation: Toward Identifying Initiating Events of Delayed Effects of Acute Radiation Exposure in Non-human Primate after Partial Body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:384-394. [PMID: 34546219 PMCID: PMC8546870 DOI: 10.1097/hp.0000000000001476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a non-human primate model of partial body irradiation with minimal bone marrow sparing, lung was analyzed from animals irradiated with 12 Gy at timepoints every 4 d up to 21 d after irradiation and compared to non-irradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry followed by pathway analysis. Out of the 3,101 unique proteins that were identified, we found that 252 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 215 proteins showed strong up-regulation while 37 proteins showed down-regulation. Canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, fibrosis, and retinoic acid signaling were identified. The proteomic profiling of lung conducted here represents an untargeted systems biology approach to identify acute molecular events in the non-human primate lung that could potentially be initiating events for radiation-induced lung injury.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| |
Collapse
|
7
|
Cassatt DR, Gorovets A, Karimi-Shah B, Roberts R, Price PW, Satyamitra MM, Todd N, Wang SJ, Marzella L. A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury. Radiat Res 2021; 197:415-433. [PMID: 34342637 DOI: 10.1667/rade-21-00127.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Research and development of medical countermeasures (MCMs) for radiation-induced lung injury relies on the availability of animal models with well-characterized pathophysiology, allowing effective bridging to humans. To develop useful animal models, it is important to understand the clinical condition, advantages and limitations of individual models, and how to properly apply these models to demonstrate MCM efficacy. On March 20, 2019, a meeting sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID) brought together medical, scientific and regulatory communities, including academic and industry subject matter experts, and government stakeholders from the Food and Drug Administration (FDA) and the Biomedical Advanced Research and Development Authority (BARDA), to identify critical research gaps, discuss current clinical practices for various forms of pulmonary damage, and consider available animal models for radiation-induced lung injury.
Collapse
Affiliation(s)
- David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Alex Gorovets
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Banu Karimi-Shah
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Rosemary Roberts
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Nushin Todd
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| |
Collapse
|
8
|
Thakur P, DeBo R, Dugan GO, Bourland JD, Michalson KT, Olson JD, Register TC, Kock ND, Cline JM. Clinicopathologic and Transcriptomic Analysis of Radiation-Induced Lung Injury in Nonhuman Primates. Int J Radiat Oncol Biol Phys 2021; 111:249-259. [PMID: 33848608 DOI: 10.1016/j.ijrobp.2021.03.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is a progressive condition with an early phase (radiation pneumonitis) and a late phase (lung fibrosis). RILI may occur after partial-body ionizing radiation exposures or internal radioisotope exposure, with wide individual variability in timing and extent of lung injury. This study aimed to provide new insights into the pathogenesis and progression of RILI in the nonhuman primate (NHP) rhesus macaque model. METHODS AND MATERIALS We used an integrative approach to understand RILI and its evolution at clinical and molecular levels in 17 NHPs exposed to 10 Gy of whole-thorax irradiation in comparison with 3 sham-irradiated control NHPs. Clinically, we monitored respiratory rates, computed tomography (CT) scans, plasma cytokine levels, and bronchoalveolar lavage (BAL) over 8 months and lung samples collected at necropsy for molecular and histopathologic analyses using RNA sequencing and immunohistochemistry. RESULTS Elevated respiratory rates, greater CT density, and more severe pneumonitis with increased macrophage content were associated with early mortality. Radiation-induced lung fibrosis included polarization of macrophages toward the M2-like phenotype, TGF-β signaling, expression of CDKN1A/p21 in epithelial cells, and expression of α-SMA in lung stroma. RNA sequencing analysis of lung tissue revealed SERPINA3, ATP12A, GJB2, CLDN10, TOX3, and LPA as top dysregulated transcripts in irradiated animals. In addition to transcriptomic data, we observed increased protein expression of SERPINA3, TGF-β1, CCL2, and CCL11 in BAL and plasma samples. CONCLUSIONS Our combined clinical, imaging, histologic, and transcriptomic analysis provides new insights into the early and late phases of RILI and highlights possible biomarkers and potential therapeutic targets of RILI. Activation of TGF-β and macrophage polarization appear to be key mechanisms involved in RILI.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Ryne DeBo
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Provention Bio, Red Bank, New Jersey
| | - Gregory O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - J Daniel Bourland
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Kris T Michalson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.
| |
Collapse
|
9
|
Rahman L, Williams A, Gelda K, Nikota J, Wu D, Vogel U, Halappanavar S. 21st Century Tools for Nanotoxicology: Transcriptomic Biomarker Panel and Precision-Cut Lung Slice Organ Mimic System for the Assessment of Nanomaterial-Induced Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000272. [PMID: 32347014 DOI: 10.1002/smll.202000272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
There is an urgent need for reliable toxicity assays to support the human health risk assessment of an ever increasing number of engineered nanomaterials (ENMs). Animal testing is not a suitable option for ENMs. Sensitive in vitro models and mechanism-based targeted in vitro assays that enable accurate prediction of in vivo responses are not yet available. In this proof-of-principle study, publicly available mouse lung transcriptomics data from studies investigating xenobiotic-induced lung diseases are used and a 17-gene biomarker panel (PFS17) applicable to the assessment of lung fibrosis is developed. The PFS17 is validated using a limited number of in vivo mouse lung transcriptomics datasets from studies investigating ENM-induced responses. In addition, an ex vivo precision-cut lung slice (PCLS) model is optimized for screening of potentially inflammogenic and pro-fibrotic ENMs. Using bleomycin and a multiwalled carbon nanotube, the practical application of the PCLS method as a sensitive alternative to whole animal tests to screen ENMs that may potentially induce inhalation toxicity is shown. Conditional to further optimization and validation, it is established that a combination of PFS17 and the ex vivo PCLS method will serve as a robust and sensitive approach to assess lung inflammation and fibrosis induced by ENMs.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Krishna Gelda
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, 2100, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Building 101A 2800 Copenhagen, Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
10
|
Elliott J, Linder K, Nolan MW. Feasibility study evaluating arrhythmogenesis and cardiac damage after heart-base irradiation in mice: A brief communication. Vet Med Sci 2020; 6:1009-1016. [PMID: 32524778 PMCID: PMC7738730 DOI: 10.1002/vms3.303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation‐induced heart disease (RIHD) is a potential cause of morbidity and mortality in dogs undergoing thoracic irradiation. Arrhythmias and sudden death have been documented in dogs undergoing stereotactic body radiation therapy for heart base tumours. A study was proposed to interrogate the effect of different stereotactic‐like radiation prescriptions on RIHD development, including arrhythmogenesis and classical histological endpoints in a mouse model. A pilot study was performed initially. The heart base of CD1 (n = 3) and C57Bl/6J (n = 3) female mice were irradiated (12 Gy × 3, daily) with a clinical linear accelerator. No significant adverse effects were noted and each mouse survived the entire subsequent 3‐month observation period. At various time points, no arrhythmias were identified on ECG analysis. Cardiac histology (haematoxylin and eosin, and picrosirius red staining) was performed at 3 months. In a single CD1 mouse and two C57BI/6J mice, multifocal, minimal, peri‐vascular lymphoplasmacytic inflammation was noted within the irradiated proximal heart. In one mouse of each strain, a small, single focus of fibrinoid vascular necrosis was observed. Overall, there was no significant myocardial necrosis, atrophy or inflammation. Picrosirius red staining revealed no evidence of fibrosis in any mouse. Dosimetric verification indicated that the irradiation was successful and delivered as planned, with an average predicted‐to‐measured dose‐difference within 5%. While this study did not demonstrate significant arrhythmogenesis, certain modifications of the experimental mouse irradiation procedures are discussed which may enable more translationally relevant modelling of the canine cardiac response to SBRT‐like irradiation.
Collapse
Affiliation(s)
- James Elliott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Keith Linder
- Department of Population Health and Population Biology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
12
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Huang W, Yu J, Jones JW, Carter CL, Jackson IL, Vujaskovic Z, MacVittie TJ, Kane MA. Acute Proteomic Changes in the Lung After WTLI in a Mouse Model: Identification of Potential Initiating Events for Delayed Effects of Acute Radiation Exposure. HEALTH PHYSICS 2019; 116:503-515. [PMID: 30652977 PMCID: PMC6384149 DOI: 10.1097/hp.0000000000000956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a murine model of whole-thorax lung irradiation, C57BL/6J mice were irradiated at 8, 10, 12, and 14 Gy and assayed at day 1, 3, and 6 postexposure and compared to nonirradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry on a Waters nanoLC instrument coupled to a Thermo Scientific Q Exactive hybrid quadrupole-orbitrap mass spectrometer. Pathway and gene ontology analysis were performed with Qiagen Ingenuity, Panther GO, and DAVID databases. A number of trends were identified in the proteomic data, including protein changes greater than 10 fold, protein changes that were consistently up regulated or down regulated at all time points and dose levels interrogated, time and dose dependency of protein changes, canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, radiation, and retinoic acid signaling. The proteomic profiling conducted here represents an untargeted systems biology approach to identify acute molecular events that could potentially be initiating events for radiation-induced lung injury.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - I. Lauren Jackson
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Zeljko Vujaskovic
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, Ph.D., University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room 723, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
14
|
Zhou C, Moustafa MR, Cao L, Kriegsmann M, Winter M, Schwager C, Jones B, Wang S, Bäuerle T, Zhou PK, Schnölzer M, Weichert W, Debus J, Abdollahi A. Modeling and multiscale characterization of the quantitative imaging based fibrosis index reveals pathophysiological, transcriptome and proteomic correlates of lung fibrosis induced by fractionated irradiation. Int J Cancer 2019; 144:3160-3173. [PMID: 30536712 PMCID: PMC6590477 DOI: 10.1002/ijc.32059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis represents a leading cause of morbidity and mortality worldwide. Therapy induced lung fibrosis constitutes a pivotal dose‐limiting side effect of radiotherapy and other anticancer agents. We aimed to develop objective criteria for assessment of fibrosis and discover pathophysiological and molecular correlates of lung fibrosis as a function of fractionated whole thoracic irradiation. Dose–response series of fractionated irradiation was utilized to develop a non‐invasive and quantitative measure for the degree of fibrosis – the fibrosis index (FI). The correlation of FI with histopathology, blood‐gas, transcriptome and proteome responses of the lung tissue was analyzed. Macrophages infiltration and polarization was assessed by immunohistochemistry. Fibrosis development followed a slow kinetic with maximum lung fibrosis levels detected at 24‐week post radiation insult. FI favorably correlated with radiation dose and surrogates of lung fibrosis i.e., enhanced pro‐inflammatory response, tissue remodeling and extracellular matrix deposition. The loss of lung architecture correlated with decreased epithelial marker, loss of microvascular integrity with decreased endothelial and elevated mesenchymal markers. Lung fibrosis was further attributed to a switch of the inflammatory state toward a macrophage/T‐helper cell type 2‐like (M2/Th2) polarized phenotype. Together, the multiscale characterization of FI in radiation‐induced lung fibrosis (RILF) model identified pathophysiological, transcriptional and proteomic correlates of fibrosis. Pathological immune response and endothelial/epithelial to mesenchymal transition were discovered as critical events governing lung tissue remodeling. FI will be instrumental for deciphering the molecular mechanisms governing lung fibrosis and discovery of novel targets for treatment of this devastating disease with an unmet medical need. What's new? The development of fibrosis scar tissue in the lungs is a dose‐limiting effect of radiotherapy for thoracic malignancies. Molecular mechanisms driving radiation‐induced lung fibrosis (RILF), however, remain unclear. In this study, a fibrosis index (FI) was devised to quantitatively detect spatial and temporal kinetics of lung fibrosis development. Multi‐scale characterization of FI uncovered mechanisms governing lung fibrosis, including perturbation of immune balance and microvascular integrity. Radiation dose and FI were correlated with an inflammatory switch toward a macrophage/T‐helper cell type 2‐like polarized phenotype. The findings open the way for further mechanistic study and the discovery of therapeutic targets for RILF.
Collapse
Affiliation(s)
- Cheng Zhou
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mahmoud R Moustafa
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Liji Cao
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Winter
- Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Shijun Wang
- Department of Pediatric Nephrology, Gastroenterology & Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Martina Schnölzer
- Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Juergen Debus
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
15
|
Qin W, Liu B, Yi M, Li L, Tang Y, Wu B, Yuan X. Antifibrotic Agent Pirfenidone Protects against Development of Radiation-Induced Pulmonary Fibrosis in a Murine Model. Radiat Res 2018; 190:396-403. [PMID: 30016220 DOI: 10.1667/rr15017.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced complications of the respiratory system are a common side effect of thoracic radiotherapy with no viable treatment option. Here, we investigated the potential therapeutic effect of the orphan drug pirfenidone for treating radiation-induced pulmonary fibrosis. C57BL/6 mice received a single fraction of 16 Gy to the thorax and were subsequently treated with 300 mg/kg/day pirfenidone for four weeks. Survival and body weight of the mice were quantified. Micro-CT in vivo lung imaging was performed to dynamically observe the developmental process of pulmonary fibrosis. The lungs were excised at the end of the experiment and evaluated for histological changes. Compared to the irradiated mice that received no pirfenidone, mice treated with pirfenidone after irradiation had an extended median survival time (>140 days vs. 73 days, P < 0.01). The accumulation of collagen and fibrosis in lung tissues after irradiation was decreased with pirfenidone treatment. Pirfenidone also reduced the expression of TGF-β1 and phosphorylation of Smad3 in lung tissues. The dose level of Pirfenidone used in this study attenuated pulmonary fibrosis and prolonged the life span of irradiated mice. It may offer a promising approach to treat or minimize radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Sci Rep 2017; 7:11586. [PMID: 28912510 PMCID: PMC5599556 DOI: 10.1038/s41598-017-11656-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy can result in lung diseases pneumonitis or fibrosis dependent on patient susceptibility. Herein we used inbred and genetically altered mice to investigate whether the tissue adaptive immune response to radiation injury influences the development of radiation-induced lung disease. Six inbred mouse strains were exposed to 18 Gy whole thorax irradiation and upon respiratory distress strains prone to pneumonitis with fibrosis presented an increased pulmonary frequency of Thelper (Th)17 cells which was not evident in strains prone solely to pneumonitis. The contribution of Th17 cells to fibrosis development was supported as the known enhanced fibrosis of toll-like receptor 2&4 deficient mice, compared to C57BL/6J mice, occurred with earlier onset neutrophilia, and with increased levels of pulmonary Th17, but not Th1, cells following irradiation. Irradiated Il17−/− mice lacked Th17 cells, and were spared both fibrosis and pneumonitis, as they survived to the end of the experiment with a significantly increased pulmonary Th1 cell frequency, only. Interferon-γ−/− mice, deficient in Th1 cells, developed a significantly enhanced fibrosis response compared to that of C57BL/6J mice. The tissue adaptive immune response influences the pulmonary disease response to radiotherapy, as an increased Th17 cell frequency enhanced and a Th1 response spared, fibrosis in mice.
Collapse
|