1
|
Cai S, Yin N. Single-cell transcriptome and chromatin accessibility mapping of upper lip and primary palate fusion. J Cell Mol Med 2024; 28:e70128. [PMID: 39392189 PMCID: PMC11467802 DOI: 10.1111/jcmm.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Cleft lip and/or primary palate (CL/P) represent a prevalent congenital malformation, the aetiology of which is highly intricate. Although it is generally accepted that the condition arises from failed fusion between the upper lip and primary palate, the precise mechanism underlying this fusion process remains enigmatic. In this study, we utilized transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to interrogate lambdoidal junction tissue derived from C57BL/6J mouse embryos at critical stages of embryogenesis (10.5, 11.5 and 12.5 embryonic days). We successfully identified distinct subgroups of mesenchymal and ectodermal cells involved in the fusion process and characterized their unique transcriptional profiles. Furthermore, we conducted cell differentiation trajectory analysis, revealing a dynamic repertoire of genes that are sequentially activated or repressed during pseudotime, facilitating the transition of relevant cell types. Additionally, we employed scATAC data to identify key genes associated with the fusion process and demonstrated differential chromatin accessibility across major cell types. Finally, we constructed a dynamic intercellular communication network and predicted upstream transcriptional regulators of critical genes involved in important signalling pathways. Our findings provide a valuable resource for future studies on upper lip and primary palate development, as well as congenital defects.
Collapse
Affiliation(s)
- Sini Cai
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Medical Cosmetic Center of Dermatology Hospital of Southern Medical UniversityGuangdong Provincial Dermatology HospitalGuangzhouChina
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Stanton E, Sheridan S, Urata M, Chai Y. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. Cleft Palate Craniofac J 2024; 61:759-773. [PMID: 36457208 DOI: 10.1177/10556656221142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To provide a comprehensive understanding of the pathophysiology of cleft palate (CP) and future perspectives. DESIGN Literature review. SETTING Setting varied across studies by level of care and geographical locations. INTERVENTIONS No interventions were performed. MAIN OUTCOME MEASURE(S) Primary outcome measures were to summarize our current understanding of palatogenesis in humans and animal models, the pathophysiology of CP, and potential future treatment modalities. RESULTS Animal research has provided considerable insight into the pathophysiology, molecular and cellular mechanisms of CP that have allowed for the development of novel treatment strategies. However, much work has yet to be done to connect our mouse model investigations and discoveries to CP in humans. The success of innovative strategies for tissue regeneration in mice provides promise for an exciting new avenue for improved and more targeted management of cleft care with precision medicine in patients. However, significant barriers to clinical translation remain. Among the most notable challenges include the differences in some aspects of palatogenesis and tissue repair between mice and humans, suggesting that potential therapies that have worked in animal models may not provide similar benefits to humans. CONCLUSIONS Increased translation of pathophysiological and tissue regeneration studies to clinical trials will bridge a wide gap in knowledge between animal models and human disease. By enhancing interaction between basic scientists and clinicians, and employing our animal model findings of disease mechanisms in concert with what we glean in the clinic, we can generate a more targeted and improved treatment algorithm for patients with CP.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel Sheridan
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mark Urata
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Yoshida N, Inubushi T, Hirose T, Aoyama G, Kurosaka H, Yamashiro T. The roles of JAK2/STAT3 signaling in fusion of the secondary palate. Dis Model Mech 2023; 16:dmm050085. [PMID: 37846594 PMCID: PMC10602007 DOI: 10.1242/dmm.050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Cleft palate has a multifactorial etiology. In palatal fusion, the contacting medial edge epithelium (MEE) forms the epithelial seam, which is subsequently removed with the reduction of p63. Failure in this process results in a cleft palate. We herein report the involvement of janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in palatal fusion and that folic acid rescues the fusing defect by reactivating JAK2/STAT3. In closure of bilateral palatal shelves, STAT3 phosphorylation was activated at the fusing MEE and mesenchyme underlying the MEE. JAK2 inhibition by AG490 inhibited STAT3 phosphorylation and resulted in palatal fusion failure without removal of the epithelial seam, in which p63 and keratin 17 (K17) periderm markers were retained. Folic acid application restored STAT3 phosphorylation in AG490-treated palatal explants and rescued the fusion defect, in which the p63- and K17-positive epithelial seam were removed. The AG490-induced palatal defect was also rescued in p63 haploinsufficient explants. These findings suggest that JAK2/STAT3 signaling is involved in palatal fusion by suppressing p63 expression in MEE and that folate restores the fusion defect by reactivating JAK2/STAT3.
Collapse
Affiliation(s)
- Naoki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Takumi Hirose
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Ma W, Fang H, Pease N, Filippova GN, Disteche CM, Berletch JB. Sex-biased and parental allele-specific gene regulation by KDM6A. Biol Sex Differ 2022; 13:40. [PMID: 35871105 PMCID: PMC9308343 DOI: 10.1186/s13293-022-00452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/29/2022] [Accepted: 07/09/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
KDM6A is a demethylase encoded by a gene with female-biased expression due to escape from X inactivation. Its main role is to facilitate gene expression through removal of the repressive H3K27me3 mark, with evidence of some additional histone demethylase-independent functions. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in cancer.
Methods
Kdm6a was knocked out using CRISPR/Cas9 gene editing in F1 male and female mouse embryonic stem cells (ES) derived from reciprocal crosses between C57BL6 x Mus castaneus. Diploid and allelic RNA-seq analyses were done to compare gene expression between wild-type and Kdm6a knockout (KO) clones. The effects of Kdm6a KO on sex-biased gene expression were investigated by comparing gene expression between male and female ES cells. Changes in H3K27me3 enrichment and chromatin accessibility at promoter regions of genes with expression changes were characterized by ChIP-seq and ATAC-seq followed by diploid and allelic analyses.
Results
We report that Kdm6a KO in male and female embryonic stem (ES) cells derived from F1 hybrid mice cause extensive gene dysregulation, disruption of sex biases, and specific parental allele effects. Among the dysregulated genes are candidate genes that may explain abnormal developmental features of Kabuki syndrome caused by KDM6A mutations in human. Strikingly, Kdm6a knockouts result in a decrease in sex-biased expression and in preferential downregulation of the maternal alleles of a number of genes. Most promoters of dysregulated genes show concordant epigenetic changes including gain of H3K27me3 and loss of chromatin accessibility, but there was less concordance when considering allelic changes.
Conclusions
Our study reveals new sex-related roles of KDM6A in the regulation of developmental genes, the maintenance of sex-biased gene expression, and the differential expression of parental alleles.
Collapse
|
5
|
Inubushi T, Nakanishi Y, Abe M, Takahata Y, Nishimura R, Kurosaka H, Irie F, Yamashiro T, Yamaguchi Y. The cell surface hyaluronidase TMEM2 plays an essential role in mouse neural crest cell development and survival. PLoS Genet 2022; 18:e1009765. [PMID: 35839257 PMCID: PMC9328550 DOI: 10.1371/journal.pgen.1009765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2021] [Revised: 07/27/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Hyaluronan (HA) is a major extracellular matrix component whose tissue levels are dynamically regulated during embryonic development. Although the synthesis of HA has been shown to exert a substantial influence on embryonic morphogenesis, the functional importance of the catabolic aspect of HA turnover is poorly understood. Here, we demonstrate that the transmembrane hyaluronidase TMEM2 plays an essential role in neural crest development and the morphogenesis of neural crest derivatives, as evidenced by the presence of severe craniofacial abnormalities in Wnt1-Cre–mediated Tmem2 knockout (Tmem2CKO) mice. Neural crest cells (NCCs) are a migratory population of cells that gives rise to diverse cell lineages, including the craniofacial complex, the peripheral nervous system, and part of the heart. Analysis of Tmem2 expression during NCC formation and migration reveals that Tmem2 is expressed at the site of NCC delamination and in emigrating Sox9-positive NCCs. In Tmem2CKO embryos, the number of NCCs emigrating from the neural tube is greatly reduced. Furthermore, linage tracing reveals that the number of NCCs traversing the ventral migration pathway and the number of post-migratory neural crest derivatives are both significantly reduced in a Tmem2CKO background. In vitro studies using Tmem2-depleted mouse O9-1 neural crest cells demonstrate that Tmem2 expression is essential for the ability of these cells to form focal adhesions on and to migrate into HA-containing substrates. Additionally, we show that Tmem2-deficient NCCs exhibit increased apoptotic cell death in NCC-derived tissues, an observation that is corroborated by in vitro experiments using O9-1 cells. Collectively, our data demonstrate that TMEM2-mediated HA degradation plays an essential role in normal neural crest development. This study reveals the hitherto unrecognized functional importance of HA degradation in embryonic development and highlights the pivotal role of Tmem2 in the developmental process. As a major component of the extracellular matrix, hyaluronan is particularly abundant in the extracellular matrix of embryonic tissues, where its expression is dynamically regulated during tissue morphogenetic processes. Tissue levels of hyaluronan are regulated not only by its synthesis but also by its degradation. Curiously, however, mice lacking known hyaluronidase molecules, including HYAL1 and HYAL2, exhibit minimal embryonic phenotypes. As a result, our understanding of the role of the catabolic aspect of hyaluronan metabolism in embryonic development is quite limited. Here, we show that TMEM2, a recently identified hyaluronidase that degrades hyaluronan on the cell surface, plays a critical role in the development of neural crest cells and their derivatives. Our analyses of Tmem2 conditional knockout mice, Tmem2 knock-in reporter mice, and in vitro cell cultures demonstrate that TMEM2 is essential for generating a tissue environment needed for efficient migration of neural crest cells from the neural tube. Our paper reveals for the first time that the degradation of hyaluronan plays a specific regulatory role in embryonic morphogenesis, and that dysregulation of hyaluronan degradation leads to severe developmental defects.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Yuichiro Nakanishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| |
Collapse
|
6
|
Denault WRP, Romanowska J, Haaland ØA, Lyle R, Taylor J, Xu Z, Lie RT, Gjessing HK, Jugessur A. Wavelet Screening identifies regions highly enriched for differentially methylated loci for orofacial clefts. NAR Genom Bioinform 2021; 3:lqab035. [PMID: 33987535 PMCID: PMC8092375 DOI: 10.1093/nargab/lqab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is the most widely studied epigenetic mark in humans and plays an essential role in normal biological processes as well as in disease development. More focus has recently been placed on understanding functional aspects of methylation, prompting the development of methods to investigate the relationship between heterogeneity in methylation patterns and disease risk. However, most of these methods are limited in that they use simplified models that may rely on arbitrarily chosen parameters, they can only detect differentially methylated regions (DMRs) one at a time, or they are computationally intensive. To address these shortcomings, we present a wavelet-based method called 'Wavelet Screening' (WS) that can perform an epigenome-wide association study (EWAS) of thousands of individuals on a single CPU in only a matter of hours. By detecting multiple DMRs located near each other, WS identifies more complex patterns that can differentiate between different methylation profiles. We performed an extensive set of simulations to demonstrate the robustness and high power of WS, before applying it to a previously published EWAS dataset of orofacial clefts (OFCs). WS identified 82 associated regions containing several known genes and loci for OFCs, while other findings are novel and warrant replication in other OFCs cohorts.
Collapse
Affiliation(s)
- William R P Denault
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Jack A Taylor
- Epidemiology Branch and Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIH/NIEHS), 27709, Durham, North Carolina, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIH/NIEHS), 27709, Durham, North Carolina, USA
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| |
Collapse
|
7
|
Yamamoto S, Kurosaka H, Miura J, Aoyama G, Sarper SE, Oka A, Inubushi T, Nakatsugawa K, Usami Y, Toyosawa S, Yamashiro T. Observation of the Epithelial Cell Behavior in the Nasal Septum During Primary Palate Closure in Mice. Front Physiol 2020; 11:538835. [PMID: 33123019 PMCID: PMC7566916 DOI: 10.3389/fphys.2020.538835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Epithelial fusion is critical in palatogenesis, and incomplete fusion results in various type of facial cleft, depending on the region that fails to fuse. In mammalian palatogenesis, the bilateral secondary palatal processes fuse in the middle of the face to form the secondary palate. Later, the dorsal side of the secondary palatal shelves fuses with the nasal septum to complete palatogenesis. Importantly, the anterior border of the secondary palatal shelf fuses with the primary palate, which is located at the anterior and ventral border of the nasal septum. While numerous studies have investigated the mechanism of fusion between secondary palatal shelves, very little is known about how the primary palate touches and fuses with the secondary palatal shelves. In this study, we investigate the possible epithelial cell behaviors on the surface of the primary palate using palatal explant cultures of K14-GFP mice. A time-lapse observation of the GFP-labeled epithelium and an SEM analysis revealed that the extrusion epithelium appeared at the region corresponding to the fusing area and expanded rostrally on the nasal septum surface in the absence of the secondary palatal processes. Unlike on the secondary palate surface, cellular migration and subsequent autonomous mesenchymal exposure were not evident on the nasal septum or the primary palate. TUNEL staining revealed that these extrusion epithelia were undergoing apoptosis. These findings indicated that extrusion with apoptosis was autonomously initiated at the presumptive region of the fusion without contact with the opposing secondary palate.
Collapse
Affiliation(s)
- Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Dental Hospital, Osaka University, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Safiye Esra Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Oliver JD, Jia S, Halpern LR, Graham EM, Turner EC, Colombo JS, Grainger DW, D'Souza RN. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:215-237. [PMID: 32873216 DOI: 10.1089/ten.teb.2020.0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and/or palate are the most prevalent orofacial birth defects occurring in about 1:700 live human births worldwide. Early postnatal surgical interventions are extensive and staged to bring about optimal growth and fusion of palatal shelves. Severe cleft defects pose a challenge to correct with surgery alone, resulting in complications and sequelae requiring life-long, multidisciplinary care. Advances made in materials science innovation, including scaffold-based delivery systems for precision tissue engineering, now offer new avenues for stimulating bone formation at the site of surgical correction for palatal clefts. In this study, we review the present scientific literature on key developmental events that can go awry in palate development and the common surgical practices and challenges faced in correcting cleft defects. How key osteoinductive pathways implicated in palatogenesis inform the design and optimization of constructs for cleft palate correction is discussed within the context of translation to humans. Finally, we highlight new osteogenic agents and innovative delivery systems with the potential to be adopted in engineering-based therapeutic approaches for the correction of palatal defects. Impact statement Tissue-engineered scaffolds supplemented with osteogenic growth factors have attractive, largely unexplored possibilities to modulate molecular signaling networks relevant to driving palatogenesis in the context of congenital anomalies (e.g., cleft palate). Constructs that address this need may obviate current use of autologous bone grafts, thereby avoiding donor-site morbidity and other regenerative challenges in patients afflicted with palatal clefts. Combinations of biomaterials and drug delivery of diverse regenerative cues and biologics are currently transforming strategies exploited by engineers, scientists, and clinicians for palatal cleft repair.
Collapse
Affiliation(s)
- Jeremie D Oliver
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Shihai Jia
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Leslie R Halpern
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emily M Graham
- School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emma C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - John S Colombo
- University of Las Vegas at Nevada School of Dental Medicine, Las Vegas, Nevada, USA
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Oliver JD, Turner EC, Halpern LR, Jia S, Schneider P, D'Souza RN. Molecular Diagnostics and In Utero Therapeutics for Orofacial Clefts. J Dent Res 2020; 99:1221-1227. [PMID: 32609569 DOI: 10.1177/0022034520936245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Orofacial clefts and their management impose a substantial burden on patients, on their families, and on the health system. Under the current standard of care, affected patients are subjected to a lifelong journey of corrective surgeries and multidisciplinary management to replace bone and soft tissues, as well as restore esthetics and physiologic functions while restoring self-esteem and psychological health. Hence, a better understanding of the dynamic interplay of molecular signaling pathways at critical phases of palate development is necessary to pioneer novel prenatal interventions. Such pathways include transforming growth factor-β (Tgfβ), sonic hedgehog (Shh), wingless-integrated site (Wnt)/β-catenin, bone morphogenetic protein (Bmp), and fibroblast growth factor (Fgf) and its associated receptors, among others. Here, we summarize commonly used surgical methods used to correct cleft defects postnatally. We also review the advances made in prenatal diagnostics of clefts through imaging and genomics and the various in utero surgical corrections that have been attempted thus far. An overview of how key mediators of signaling that drive palatogenesis are emphasized in the context of the framework and rationale for the development and testing of therapeutics in animal model systems and in humans is provided. The pros and cons of in utero therapies that can potentially restore molecular homeostasis needed for the proper growth and fusion of palatal shelves are presented. The theme advanced throughout this review is the need to develop preclinical molecular therapies that could ultimately be translated into human trials that can correct orofacial clefts at earlier stages of development.
Collapse
Affiliation(s)
- J D Oliver
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA.,Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA
| | - E C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - L R Halpern
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA
| | - S Jia
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA
| | - P Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - R N D'Souza
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA.,Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA.,University of Utah, Departments of Neurobiology and Anatomy, Pathology, and Surgery, Salt Lake City, UT, USA
| |
Collapse
|