1
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Guo J, Zhang H, Hu H, Zhao T, Ji H, Ma L, Lu J, Yuan J, Xu B. Silent information regulator 2 deficiency exacerbates chronic cold exposure-induced colonic injury and p65 activation in mice. Gene 2024; 907:148276. [PMID: 38360128 DOI: 10.1016/j.gene.2024.148276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Cold is a common stressor that threatens colonic health by affecting internal homeostasis. From the literature, Silent information regulator 2 (SIRT2) may have important roles during cold stress, but this conjecture requires investigation. To address this knowledge gap, we investigated the effects of SIRT2 on colonic injury in chronically cold-exposure mice. In a previous study, we showed that SIRT2 regulated p65 activation after cold exposure. In the current study, mice were exposed to 4 °C for 3 h/day for 3 weeks to simulate a chronic cold exposure environment. Chronic cold exposure shortened colon length, disrupted tight junctions in colonic epithelial tissue, and disordered colonic flora. Chronic cold exposure also increased p65 acetylation levels, promoted nuclear factor (NF)-κB activation, and increased the expression of its downstream pro-inflammatory factors, while SIRT2 knockdown aggravated the consequences of tissue structure disruption and increased inflammatory factors brought about by chronic cold exposure to some extent, but could alleviate the downregulation of colonic tight junction-related proteins to some extent. We also observed direct SIRT2 regulatory effects toward p65, and in Caco-2 cells treated with lipopolysaccharide (LPS), SIRT2 knockdown increased p65 acetylation levels and pro-inflammatory factor expression, while SIRT2 overexpression reversed these phenomena. Therefore, SIRT2 deletion exacerbated chronic cold exposure-induced colonic injury and p65 activation in mice. Mechanistically, p65 modification by SIRT2 via deacetylation may affect NF-κB signaling. These findings suggest that SIRT2 is a key target of colonic health maintenance under chronic cold exposure conditions.
Collapse
Affiliation(s)
- Jingru Guo
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huaixiu Zhang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huijie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianrui Zhao
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Ma
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
3
|
Rajan JR, McDonald S, Bjourson AJ, Zhang SD, Gibson DS. An AI Approach to Identifying Novel Therapeutics for Rheumatoid Arthritis. J Pers Med 2023; 13:1633. [PMID: 38138860 PMCID: PMC10744895 DOI: 10.3390/jpm13121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that has a significant impact on quality of life and work capacity. Treatment of RA aims to control inflammation and alleviate pain; however, achieving remission with minimal toxicity is frequently not possible with the current suite of drugs. This review aims to summarise current treatment practices and highlight the urgent need for alternative pharmacogenomic approaches for novel drug discovery. These approaches can elucidate new relationships between drugs, genes, and diseases to identify additional effective and safe therapeutic options. This review discusses how computational approaches such as connectivity mapping offer the ability to repurpose FDA-approved drugs beyond their original treatment indication. This review also explores the concept of drug sensitisation to predict co-prescribed drugs with synergistic effects that produce enhanced anti-disease efficacy by involving multiple disease pathways. Challenges of this computational approach are discussed, including the availability of suitable high-quality datasets for comprehensive analysis and other data curation issues. The potential benefits include accelerated identification of novel drug combinations and the ability to trial and implement established treatments in a new index disease. This review underlines the huge opportunity to incorporate disease-related data and drug-related data to develop methods and algorithms that have strong potential to determine novel and effective treatment regimens.
Collapse
Affiliation(s)
- Jency R. Rajan
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| | - Stephen McDonald
- Rheumatology Department, Altnagelvin Hospital, Western Health and Social Care Trust, Londonderry BT47 6SB, UK;
| | - Anthony J. Bjourson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| | - David S. Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| |
Collapse
|
4
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
5
|
Lucafò M, Muzzo A, Marcuzzi M, Giorio L, Decorti G, Stocco G. Patient-derived organoids for therapy personalization in inflammatory bowel diseases. World J Gastroenterol 2022; 28:2636-2653. [PMID: 35979165 PMCID: PMC9260862 DOI: 10.3748/wjg.v28.i24.2636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract that have emerged as a growing problem in industrialized countries. Knowledge of IBD pathogenesis is still incomplete, and the most widely-accepted interpretation considers genetic factors, environmental stimuli, uncontrolled immune responses and altered intestinal microbiota composition as determinants of IBD, leading to dysfunction of the intestinal epithelial functions. In vitro models commonly used to study the intestinal barrier do not fully reflect the proper intestinal architecture. An important innovation is represented by organoids, 3D in vitro cell structures derived from stem cells that can self-organize into functional organ-specific structures. Organoids may be generated from induced pluripotent stem cells or adult intestinal stem cells of IBD patients and therefore retain their genetic and transcriptomic profile. These models are powerful pharmacological tools to better understand IBD pathogenesis, to study the mechanisms of action on the epithelial barrier of drugs already used in the treatment of IBD, and to evaluate novel target-directed molecules which could improve therapeutic strategies. The aim of this review is to illustrate the potential use of organoids for therapy personalization by focusing on the most significant advances in IBD research achieved through the use of adult stem cells-derived intestinal organoids.
Collapse
Affiliation(s)
- Marianna Lucafò
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - Antonella Muzzo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Martina Marcuzzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Lorenzo Giorio
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Giuliana Decorti
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Gabriele Stocco
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
6
|
Kolpakov F, Akberdin I, Kiselev I, Kolmykov S, Kondrakhin Y, Kulyashov M, Kutumova E, Pintus S, Ryabova A, Sharipov R, Yevshin I, Zhatchenko S, Kel A. BioUML-towards a universal research platform. Nucleic Acids Res 2022; 50:W124-W131. [PMID: 35536253 PMCID: PMC9252820 DOI: 10.1093/nar/gkac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
BioUML (https://www.biouml.org)—is a web-based integrated platform for systems biology and data analysis. It supports visual modelling and construction of hierarchical biological models that allow us to construct the most complex modular models of blood pressure regulation, skeletal muscle metabolism, COVID-19 epidemiology. BioUML has been integrated with git repositories where users can store their models and other data. We have also expanded the capabilities of BioUML for data analysis and visualization of biomedical data: (i) any programs and Jupyter kernels can be plugged into the BioUML platform using Docker technology; (ii) BioUML is integrated with the Galaxy and Galaxy Tool Shed; (iii) BioUML provides two-way integration with R and Python (Jupyter notebooks): scripts can be executed on the BioUML web pages, and BioUML functions can be called from scripts; (iv) using plug-in architecture, specialized viewers and editors can be added. For example, powerful genome browsers as well as viewers for molecular 3D structure are integrated in this way; (v) BioUML supports data analyses using workflows (own format, Galaxy, CWL, BPMN, nextFlow). Using these capabilities, we have initiated a new branch of the BioUML development—u-science—a universal scientific platform that can be configured for specific research requirements.
Collapse
Affiliation(s)
- Fedor Kolpakov
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation.,Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation
| | - Ilya Akberdin
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation.,Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Ilya Kiselev
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation.,Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation
| | - Semyon Kolmykov
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | - Yury Kondrakhin
- Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | | | - Elena Kutumova
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation
| | - Sergey Pintus
- Sirius University of Science and Technology, Sochi 354340, Russian Federation
| | - Anna Ryabova
- Sirius University of Science and Technology, Sochi 354340, Russian Federation
| | - Ruslan Sharipov
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation.,Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Ivan Yevshin
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | - Sergey Zhatchenko
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | - Alexander Kel
- Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation.,geneXplain GmbH, Wolfenbüttel 38302, Germany
| |
Collapse
|
7
|
Papoutsopoulou S, Morris L, Bayliff A, Mair T, England H, Stagi M, Bergey F, Alam MT, Sheibani-Tezerji R, Rosenstiel P, Müller W, Martins Dos Santos VAP, Campbell BJ. Effects of Human RelA Transgene on Murine Macrophage Inflammatory Responses. Biomedicines 2022; 10:biomedicines10040757. [PMID: 35453507 PMCID: PMC9027775 DOI: 10.3390/biomedicines10040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
- Correspondence: (S.P.); (B.J.C.)
| | - Lorna Morris
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Andrew Bayliff
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Thomas Mair
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Hazel England
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Massimiliano Stagi
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - François Bergey
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, P.O. Box 8033, 6700 EJ Wageningen, The Netherlands
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
- Correspondence: (S.P.); (B.J.C.)
| |
Collapse
|
8
|
da Rocha GHO, de Paula-Silva M, Broering MF, Scharf PRDS, Matsuyama LSAS, Maria-Engler SS, Farsky SHP. Pioglitazone-Mediated Attenuation of Experimental Colitis Relies on Cleaving of Annexin A1 Released by Macrophages. Front Pharmacol 2021; 11:591561. [PMID: 33519451 PMCID: PMC7845455 DOI: 10.3389/fphar.2020.591561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases (IBDs) which burden health systems worldwide; available pharmacological therapies are limited and cost-intensive. Use of peroxisome proliferator activated-receptor γ (PPARγ) ligands for IBD treatment, while promising, lacks solid evidences to ensure its efficacy. Annexin A1 (AnxA1), a glucocorticoid-modulated anti-inflammatory protein, plays a key role on IBD control and is a potential biomarker of IBD progression. We here investigated whether effects of pioglitazone, a PPARγ ligand, rely on AnxA1 actions to modulate IBD inflammation. Experimental colitis was evoked by 2% dextran sodium sulfate (DSS) in AnxA1 knockout (AnxA1-/-) or wild type (WT) C57BL/6 mice. Clinical and histological parameters were more severe for AnxA-/- than WT mice, and 10 mg/kg pioglitazone treatment attenuated disease parameters in WT mice only. AnxA1 expression was increased in tissue sections of diseased WT mice, correlating positively with presence of CD68+ macrophages. Metalloproteinase-9 (MMP-9) and inactive 33 kDa AnxA1 levels were increased in the colon of diseased WT mice, which were reduced by pioglitazone treatment. Cytokine secretion, reactive oxygen species generation and MMP-9 expression caused by lipopolysaccharide (LPS) treatment in AnxA1-expressing RAW 264.7 macrophages were reduced by pioglitazone treatment, effects not detected in AnxA1 knockdown macrophages. LPS-mediated increase of AnxA1 cleaving in RAW 264.7 macrophages was also attenuated by pioglitazone treatment. Finally, pioglitazone treatment increased extracellular signal-regulated kinase (ERK) phosphorylation in AnxA1-expressing RAW 264.7 macrophages, but not in AnxA1-knockdown macrophages. Thus, our data highlight AnxA1 as a crucial factor for the therapeutic actions of pioglitazone on IBDs.
Collapse
Affiliation(s)
| | - Marina de Paula-Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pablo Rhasan Dos Santos Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
First person – Katie Lloyd and Stamatia Papoutsopoulou. Dis Model Mech 2020. [PMCID: PMC7710022 DOI: 10.1242/dmm.047506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Katie Lloyd and Stamatia Papoutsopoulou are co-first authors on ‘Using systems medicine to identify a therapeutic agent with potential for repurposing in inflammatory bowel disease’, published in DMM. Katie conducted the research described in this article while a postdoctoral research associate in Prof. Chris Probert's lab at the University of Liverpool, Liverpool, UK. She is now a lecturer in pharmacology at the University of Chester, Chester, UK. Her research focuses on personalising medicine by combining innovative experimental approaches to identify biomarkers of inflammatory disease, drug response and mechanisms of drug resistance, which consider complex factors such as inter-patient variability and co-morbidities. Stamatia conducted the research described in this article while a postdoctoral research associate in Werner Muller's lab at the University of Manchester, Manchester, UK. She is currently a postdoctoral research associate in the lab of Mark Pritchard at the University of Liverpool, Liverpool, UK, investigating the regulation of transcriptional responses during inflammation and the impact of environmental factors on them, and has just accepted the position of assistant professor at the University of Thessaly, Greece.
Collapse
|