1
|
Yang J, Zhu L, Pan H, Ueharu H, Toda M, Yang Q, Hallett SA, Olson LE, Mishina Y. A BMP-controlled metabolic/epigenetic signaling cascade directs midfacial morphogenesis. J Clin Invest 2024; 134:e165787. [PMID: 38466355 PMCID: PMC11014657 DOI: 10.1172/jci165787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
Craniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients and are associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that bone morphogenetic protein (BMP) signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis. Elevated BMP signaling in CNCCs through constitutively activated ACVR1 (ca-ACVR1) suppressed glycolytic activity and blocked lactate production via a p53-dependent process that resulted in severe midline facial defects. By modulating epigenetic remodeling, BMP signaling-dependent lactate generation drove histone lactylation levels to alter essential genes of Pdgfra, thus regulating CNCC behavior in vitro as well as in vivo. These findings define an axis wherein BMP signaling controls a metabolic/epigenetic cascade to direct craniofacial morphogenesis, thus providing a conceptual framework for understanding the interaction between genetic and metabolic cues operative during embryonic development. These findings indicate potential preventive strategies of congenital craniofacial birth defects via modulating metabolic-driven histone lactylation.
Collapse
Affiliation(s)
- Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Masako Toda
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shawn A. Hallett
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, and
| |
Collapse
|
2
|
Levitin MO, Rawlins LE, Sanchez-Andrade G, Arshad OA, Collins SC, Sawiak SJ, Iffland PH, Andersson MHL, Bupp C, Cambridge EL, Coomber EL, Ellis I, Herkert JC, Ironfield H, Jory L, Kretz PF, Kant SG, Neaverson A, Nibbeling E, Rowley C, Relton E, Sanderson M, Scott EM, Stewart H, Shuen AY, Schreiber J, Tuck L, Tonks J, Terkelsen T, van Ravenswaaij-Arts C, Vasudevan P, Wenger O, Wright M, Day A, Hunter A, Patel M, Lelliott CJ, Crino PB, Yalcin B, Crosby AH, Baple EL, Logan DW, Hurles ME, Gerety SS. Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes. Brain 2023; 146:4766-4783. [PMID: 37437211 PMCID: PMC10629792 DOI: 10.1093/brain/awad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023] Open
Abstract
KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.
Collapse
Affiliation(s)
- Maria O Levitin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Evox Therapeutics Limited, Oxford OX4 4HG, UK
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK
| | | | - Osama A Arshad
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephan C Collins
- INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Phillip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malin H L Andersson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Caleb Bupp
- Spectrum Health, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Emma L Cambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ian Ellis
- Department of Clinical Genetics, Alder Hey Children’s Hospital, Liverpool L14 5AB, UK
| | - Johanna C Herkert
- Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Logan Jory
- Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK
| | | | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Alexandra Neaverson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Esther Nibbeling
- Laboratory for Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center, Leiden 3015 GD, The Netherlands
| | - Christine Rowley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK
| | - Emily Relton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7YH, UK
| | - Mark Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ethan M Scott
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford OX3 7HE, UK
| | - Andrew Y Shuen
- London Health Sciences Centre, London, ON N6A 5W9, Canada
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5W9, Canada
| | - John Schreiber
- Department of Neurology, Children’s National Medical Center, Washington DC 20007, USA
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - James Tonks
- Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK
| | - Thorkild Terkelsen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Conny van Ravenswaaij-Arts
- Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, UK
| | - Olivia Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA
| | - Michael Wright
- Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne NE1 7RU, UK
| | - Andrew Day
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Qkine Ltd., Cambridge CB5 8HW, UK
| | - Adam Hunter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Christopher J Lelliott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Binnaz Yalcin
- INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France
| | - Andrew H Crosby
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Waltham Petcare Science Institute, Waltham on the Wolds LE14 4RT, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
3
|
Yamaguchi H, Swaminathan S, Mishina Y, Komatsu Y. Enhanced BMP signaling leads to enlarged nasal cartilage formation in mice. Biochem Biophys Res Commun 2023; 678:173-178. [PMID: 37640003 DOI: 10.1016/j.bbrc.2023.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Bone morphogenetic proteins (BMPs) are required for craniofacial bone development. However, it remains elusive how BMP signaling regulates craniofacial cartilage development. To address this question, we utilized a genetic system to enhance BMP signaling via one of BMP type I receptors ALK2 in a chondrocyte-specific manner (hereafter Ca-Alk2:Col2-Cre) in mice. Ca-Alk2:Col2-Cre mice died shortly after birth due to severe craniofacial abnormalities including cleft palate, defective tongue, and shorter mandible formation. Histological analysis revealed that these phenotypes were attributed to the extensive chondrogenesis. Compared with controls, enhanced SOX9 and RUNX2 production were observed in nasal cartilage of Ca-Alk2:Col2-Cre mice. To reveal the mechanisms responsible for enlarged nasal cartilage, we examined Smad-dependent and Smad-independent BMP signaling pathways. While the Smad-independent BMP signaling pathway including p38, ERK, and JNK remained silent, the Smad1/5/9 was highly phosphorylated in Ca-Alk2:Col2-Cre mice. Interestingly, Ca-Alk2:Col2-Cre mice showed enhanced S6 kinase phosphorylation, a readout of mammalian target of rapamycin complex 1 (mTORC1). These findings may suggest that enhanced Smad-dependent BMP signaling positively regulates the mTOR pathway and stimulates chondrocytes toward hypertrophic differentiation, thereby leading to enlarged nasal cartilage formation in mice.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Baldwin MC, Zarudnaya D, Liu ZJ, Herring SW. The nasal septum and midfacial growth. Anat Rec (Hoboken) 2023. [PMID: 36965023 DOI: 10.1002/ar.25214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
The nasal septum is the only element of the chondrocranium which never completely ossifies. The persistence of this nonarticular cartilage has given rise to a variety of theories concerning cranial mechanics and growth of the midface. Previously, using pigs, we demonstrated that the septum is not a strut supporting the snout and that septal growth seems capable of stretching the overlying nasofrontal suture, a major contributor to snout elongation. Here we investigate whether abnormalities of the septum are implicated in cases of midfacial hypoplasia, in which growth of the midface is inadequate. Mild midfacial hypoplasia is common in domestic pig breeds and often severe in the Yucatan minipig, a popular laboratory breed. Normal-snouted and midfacial hypoplastic heads of standard (farm mixed breed) and minipigs ranging in age from perinatal to 12 months were dissected, imaged by CT, and/or prepared for histology. Even at birth, Yucatan minipigs with midfacial hypoplasia exhibited greater caudal ossification than normal; the ventral cartilaginous sphenoidal "tail" was diminished or missing. In addition, cells that morphologically appeared to have divided recently were less numerous than in newborn standard pigs. Juvenile Yucatan minipigs lacked caudal cartilaginous growth zones almost completely. In standard newborns, the ventral caudal septum was more replicative than the dorsal, but this trend was not seen in Yucatan newborns. In conclusion, accelerated maturation of the caudal septum was associated with midfacial hypoplasia, a further indication that the septum, particularly its ventral portion, is important for midfacial elongation.
Collapse
Affiliation(s)
- Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Diana Zarudnaya
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| | - Susan W Herring
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| |
Collapse
|
5
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
6
|
Fagundes NCF, Gianoni-Capenakas S, Heo G, Flores-Mir C. Craniofacial features in children with obstructive sleep apnea: a systematic review and meta-analysis. J Clin Sleep Med 2022; 18:1865-1875. [PMID: 35074045 PMCID: PMC9243277 DOI: 10.5664/jcsm.9904] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES This review aimed to evaluate the association between craniofacial features in children and adolescents with pediatric obstructive sleep apnea (OSA). METHODS Seven databases were searched to fulfill our research objectives. Clinical studies that included participants younger than 18 years with fully diagnosed OSA or without OSA and that evaluated skeletal, soft craniofacial features, or dental arch morphology were considered for this review. The risk of bias and certainty of evidence were assessed. A meta-analysis was performed when low methodological and clinical heterogeneity were detected. This review followed the protocols recommended by the Preferred Reporting Items for a Systematic Review and Meta-analysis (PRISMA-2020) guidelines. RESULTS Nine studies were identified at the end of the selection process, from which 5 did not report differences. Four studies reported differences between craniofacial features when OSA was compared to an asymptomatic control group. Mandibular retrognathia, reduced anteroposterior linear dimensions of the bony nasopharynx (decreased pharyngeal diameters at the levels of the adenoids), longer facial profile, and a narrower intercanine width were described among children with OSA. A meta-analysis was performed considering the studies with a similar methodological approach, and no differences were observed in all the considered cephalometric angles (SNA, SNB, ANB, NSBa, U1-L1, U1-SN). All the included studies were considered at low risk of bias even though some limitations were noted. CONCLUSIONS Due to the very low to moderate level of certainty, neither an association nor a lack thereof between craniofacial morphology and pediatric OSA can be supported by these data. CITATION Fagundes NCF, Gianoni-Capenakas S, Heo G, Flores-Mir C. Craniofacial features in children with obstructive sleep apnea: a systematic review and meta-analysis. J Clin Sleep Med. 2022;18(7):1865-1875.
Collapse
Affiliation(s)
| | - Silvia Gianoni-Capenakas
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Giseon Heo
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Hooper KM, Justice MJ, Patton EE. Developmental disorders Journal Meeting: a collaboration between Development and Disease Models & Mechanisms. Dis Model Mech 2021; 14:272141. [PMID: 34515289 DOI: 10.1242/dmm.049268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kirsty M Hooper
- The Company of Biologists, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
8
|
Fernandes Fagundes NC, d'Apuzzo F, Perillo L, Puigdollers A, Gozal D, Graf D, Heo G, Flores-Mir C. Potential impact of pediatric obstructive sleep apnea on mandibular cortical width dimensions. J Clin Sleep Med 2021; 17:1627-1634. [PMID: 33745506 DOI: 10.5664/jcsm.9262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
STUDY OBJECTIVES To analyze differences in mandibular cortical width (MCW) among children diagnosed with obstructive sleep apnea (OSA) or at high- or low-risk for OSA. METHODS A total of 161 children were assessed: 60 children with polysomnographically diagnosed OSA, 56 children presenting symptoms suggestive of high-risk for OSA, and 45 children at low risk for OSA. Children at high- and low-risk for OSA were evaluated through the Pediatric Sleep Questionnaire. MCW was calculated using ImageJ software from panoramic radiograph images available from all participants. Differences between MCW measurements in the 3 groups were evaluated using analysis of covariance and Bonferroni post-hoc tests, with age as a covariate. The association between MCW and specific cephalometric variables was assessed through regression analysis. RESULTS The participants' mean age was 9.6 ± 3.1 years (59% male and 41% female). The mean body mass index z-score was 0.62 ± 1.3. The polysomnographically diagnosed OSA group presented smaller MCW than the group at low-risk for OSA (mean difference = -0.385 mm, P = .001), but no difference with the group at high-risk for OSA (polysomnographically diagnosed OSA vs high-risk OSA: P = .085). In addition, the MCW in the group at high-risk for the OSA was significantly smaller than the group at low-risk for the OSA (mean difference = -0.301 mm, P = .014). The cephalometric variables (Sella-Nasion-A point angle (SNA) and Frankfort - Mandibular Plane angle (FMA)) explained only 8% of the variance in MCW. CONCLUSIONS Reductions in MCW appear to be present among children with OSA or those at high-risk for OSA, suggesting potential interactions between mandibular bone development and/or homeostasis and pediatric OSA. CITATION Fernandes Fagundes NC, d'Apuzzo F, Perillo L, et al. Potential impact of pediatric obstructive sleep apnea on mandibular cortical width dimensions. J Clin Sleep Med. 2021;17(8):1627-1634.
Collapse
Affiliation(s)
| | - Fabrizia d'Apuzzo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Orthodontic Program, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Letizia Perillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Orthodontic Program, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andreu Puigdollers
- Department of Orthodontics and Craniofacial Orthopedics, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Giseon Heo
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Baddam P, Young D, Dunsmore G, Nie C, Eaton F, Elahi S, Jovel J, Adesida AB, Dufour A, Graf D. Nasal Septum Deviation as the Consequence of BMP-Controlled Changes to Cartilage Properties. Front Cell Dev Biol 2021; 9:696545. [PMID: 34249945 PMCID: PMC8265824 DOI: 10.3389/fcell.2021.696545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
The nasal septum cartilage is a specialized hyaline cartilage important for normal midfacial growth. Abnormal midfacial growth is associated with midfacial hypoplasia and nasal septum deviation (NSD). However, the underlying genetics and associated functional consequences of these two anomalies are poorly understood. We have previously shown that loss of Bone Morphogenetic Protein 7 (BMP7) from neural crest (BMP7 ncko ) leads to midfacial hypoplasia and subsequent septum deviation. In this study we elucidate the cellular and molecular abnormalities underlying NSD using comparative gene expression, quantitative proteomics, and immunofluorescence analysis. We show that reduced cartilage growth and septum deviation are associated with acquisition of elastic cartilage markers and share similarities with osteoarthritis (OA) of the knee. The genetic reduction of BMP2 in BMP7 ncko mice was sufficient to rescue NSD and suppress elastic cartilage markers. To our knowledge this investigation provides the first genetic example of an in vivo cartilage fate switch showing that this is controlled by the relative balance of BMP2 and BMP7. Cellular and molecular changes similar between NSD and knee OA suggest a related etiology underlying these cartilage abnormalities.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Garett Dunsmore
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Chunpeng Nie
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
First person – Pranidhi Baddam. Dis Model Mech 2021. [PMCID: PMC7888705 DOI: 10.1242/dmm.048914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Pranidhi Baddam is first author on ‘Neural crest-specific loss of Bmp7 leads to midfacial hypoplasia, nasal airway obstruction and disordered breathing, modeling obstructive sleep apnea’, published in DMM. Pranidhi is a PhD student in the lab of Daniel Graf at the University of Alberta, Edmonton, Canada, investigating the contribution of different types of cartilage to midfacial growth.
Collapse
|