1
|
Michel ZD, Aitken SF, Glover OD, Alejandro LO, Randazzo D, Dambkowski C, Martin D, Collins MT, Somerman MJ, Chu EY. Infigratinib, a selective FGFR1-3 tyrosine kinase inhibitor, alters dentoalveolar development at high doses. Dev Dyn 2023; 252:1428-1448. [PMID: 37435833 PMCID: PMC10784415 DOI: 10.1002/dvdy.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor-3 (FGFR3) gain-of-function mutations are linked to achondroplasia. Infigratinib, a FGFR1-3 tyrosine kinase inhibitor, improves skeletal growth in an achondroplasia mouse model. FGFs and their receptors have critical roles in developing teeth, yet effects of infigratinib on tooth development have not been assessed. Dentoalveolar and craniofacial phenotype of Wistar rats dosed with low (0.1 mg/kg) and high (1.0 mg/kg) dose infigratinib were evaluated using micro-computed tomography, histology, and immunohistochemistry. RESULTS Mandibular third molars were reduced in size and exhibited aberrant crown and root morphology in 100% of female rats and 80% of male rats at high doses. FGFR3 and FGF18 immunolocalization and extracellular matrix protein expression were unaffected, but cathepsin K (CTSK) was altered by infigratinib. Cranial vault bones exhibited alterations in dimension, volume, and density that were more pronounced in females. In both sexes, interfrontal sutures were significantly more patent with high dose vs vehicle. CONCLUSIONS High dose infigratinib administered to rats during early stages affects dental and craniofacial development. Changes in CTSK from infigratinib in female rats suggest FGFR roles in bone homeostasis. While dental and craniofacial disruptions are not expected at therapeutic doses, our findings confirm the importance of dental monitoring in clinical studies.
Collapse
Affiliation(s)
- Zachary D Michel
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sarah F Aitken
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Omar D Glover
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Lucy O Alejandro
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - David Martin
- QED Therapeutics, San Francisco, California, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Martha J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Y Chu
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
- Department of Comprehensive Dentistry, Division of Cariology and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Tang Y, Zhang M. Fibroblast growth factor 21 and bone homeostasis. Biomed J 2023; 46:100548. [PMID: 35850479 PMCID: PMC10345222 DOI: 10.1016/j.bj.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a member of the FGF subfamily, is produced primarily in the liver and adipose tissue. The main function of FGF21 is to regulate energy metabolism of carbohydrates and lipids in the body through endocrine and other means, making FGF21 have potential clinical value in the treatment of metabolic disorders. Although FGF21 and its receptors play a role in the regulation of bone homeostasis through a variety of signaling pathways, a large number of studies have reported that the abuse of FGF21 and its analogues and the abnormal expression of FGF21 in vivo may be associated with bone abnormalities. Due to limited research information on the effect of FGF21 on bone metabolism regulation, the role of FGF21 in the process of bone homeostasis regulation and the mechanism of its occurrence and development have not been fully clarified. Certainly, the various roles played by FGF21 in the regulation of bone homeostasis deserve increasing attention. In this review, we summarize the basic physiological knowledge of FGF21 and the effects of FGF21 on metabolic homeostasis of the skeletal system in animal and human studies. The information provided in this review may prove beneficial for the intervention of bone diseases.
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kawashima I, Matsushita M, Mishima K, Kamiya Y, Osawa Y, Ohkawara B, Ohno K, Kitoh H, Imagama S. Activated FGFR3 suppresses bone regeneration and bone mineralization in an ovariectomized mouse model. BMC Musculoskelet Disord 2023; 24:200. [PMID: 36927417 PMCID: PMC10018961 DOI: 10.1186/s12891-023-06318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis is a widespread health concern due to its prevalence among older adults and an associated high risk of fracture. The downregulation of bone regeneration delays fracture healing. Activated fibroblast growth factor receptor 3 (FGFR3) accelerates bone regeneration at juvenile age and downregulates bone mineralization at all ages. However, the impact of FGFR3 signaling on bone regeneration and bone mineralization post-menopause is still unknown. This study aimed to evaluate the impact of FGFR3 signaling on bone regeneration and bone mineralization during menopause by developing a distraction osteogenesis (DO) mouse model after ovariectomy (OVX) using transgenic mice with activated FGFR3 driven by Col2a1 promoter (Fgfr3 mice). METHODS The OVX or sham operations were performed in 8-week-old female Fgfr3 and wild-type mice. After 8 weeks of OVX surgery, DO surgery in the lower limb was performed. The 5-day-latency period followed by performing distraction for 9 days. Bone mineral density (BMD) and bone regeneration was assessed by micro-computed tomography (micro-CT) scan and soft X-ray. Bone volume in the distraction area was also evaluated by histological analysis after 7 days at the end of distraction. Osteogenic differentiation and mineralization of bone marrow-derived mesenchymal stem cells (BMSCs) derived from each mouse after 8 weeks of the OVX or sham operations were also evaluated with and without an inhibitor for FGFR3 signaling (meclozine). RESULTS BMD decreased after OVX in both groups, and it further deteriorated in Fgfr3 mice. Poor callus formation after DO was also observed in both groups with OVX, and the amount of regenerated bone was further decreased in Fgfr3 mice. Similarly, histological analysis revealed that Fgfr3 OVX mice showed lower bone volume. Osteogenic differentiation and mineralization of BMSCs were also deteriorated in Fgfr3 OVX mice. An inhibitor for FGFR3 signaling dramatically reversed the inhibitory effect of OVX and FGFR3 signaling on BMSC mineralization. CONCLUSION Upregulated FGFR3 decreased newly regenerated bone after DO and BMD in OVX mice. FGFR3 signaling can be a potential therapeutic target in patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Itaru Kawashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan.
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Yasunari Kamiya
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 4748710, Obu, Aichi, Japan.,Department of Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Cheng Y, Du Y, Zhang X, Zhang P, Liu Y. Conditional knockout of Cdc20 attenuates osteogenesis in craniofacial bones. Tissue Cell 2022; 77:101829. [DOI: 10.1016/j.tice.2022.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
5
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Wrobel W, Pach E, Ben-Skowronek I. Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review. Int J Mol Sci 2021; 22:ijms22115573. [PMID: 34070375 PMCID: PMC8197470 DOI: 10.3390/ijms22115573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Achondroplasia (ACH) is a disease caused by a missense mutation in the FGFR3 (fibroblast growth factor receptor 3) gene, which is the most common cause of short stature in humans. The treatment of ACH is necessary and urgent because untreated achondroplasia has many complications, both orthopedic and neurological, which ultimately lead to disability. This review presents the current and potential pharmacological treatments for achondroplasia, highlighting the advantages and disadvantages of all the drugs that have been demonstrated in human and animal studies in different stages of clinical trials. The article includes the potential impacts of drugs on achondroplasia symptoms other than short stature, including their effects on spinal canal stenosis, the narrowing of the foramen magnum and the proportionality of body structure. Addressing these effects could significantly improve the quality of life of patients, possibly reducing the frequency and necessity of hospitalization and painful surgical procedures, which are currently the only therapeutic options used. The criteria for a good drug for achondroplasia are best met by recombinant human growth hormone at present and will potentially be met by vosoritide in the future, while the rest of the drugs are in the early stages of clinical trials.
Collapse
|