1
|
Küppers O, Ahmad M, Haffner-Luntzer M, Scharffetter-Kochanek K, Ignatius A, Fischer V. Inflammatory priming of human mesenchymal stem cells induces osteogenic differentiation via the early response gene IER3. FASEB J 2024; 38:e70076. [PMID: 39373973 DOI: 10.1096/fj.202401344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.
Collapse
Affiliation(s)
- Oliver Küppers
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
2
|
Suh J, Lee YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res 2024; 39:1205-1214. [PMID: 38907370 PMCID: PMC11371665 DOI: 10.1093/jbmr/zjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Chen J, Kuang S, Cen J, Zhang Y, Shen Z, Qin W, Huang Q, Wang Z, Gao X, Huang F, Lin Z. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci 2024; 16:41. [PMID: 38777841 PMCID: PMC11111693 DOI: 10.1038/s41368-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.
Collapse
Affiliation(s)
- Jiayao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuhong Kuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jietao Cen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiting Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianling Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Qiu W, Sun Q, Li N, Chen Z, Wu H, Chen Z, Guo X, Fang F. Superoxide dismutase 2 scavenges ROS to promote osteogenic differentiation of human periodontal ligament stem cells by regulating Smad3 in alveolar bone-defective rats. J Periodontol 2024; 95:469-482. [PMID: 37921754 DOI: 10.1002/jper.23-0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is an essential event in alveolar bone regeneration. Oxidative stress may be the main inhibiting factor of hPDLSC osteogenesis. Superoxide dismutase 2 (SOD2) is a key antioxidant enzyme, but its effect on hPDLSC osteogenic differentiation is unclear. METHODS Several surface markers were detected by flow cytometry, and the differentiation potential of hPDLSCs was validated by alkaline phosphatase (ALP), Alizarin Red S, and Oil Red O staining. Osteogenic indicators of hPDLSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and ALP staining. Furthermore, alveolar bone defect rat models were analyzed through micro-CT, hematoxylin and eosin, and Masson staining. The intracellular reactive oxygen species (ROS) level was evaluated by a ROS assay kit. Finally, the expression of SOD2, Smad3, and p-Smad3 in hPDLSCs was detected by RT-qPCR and Western blotting (WB). RESULTS SOD2 positively regulated the gene and protein expressions of ALP, BMP6, and RUNX2 in hPDLSCs (p < 0.05). Ideal bone formation and continuous cortical bone were obtained by transplanting LV-SOD2 hPDLSCs (lentivirus vector for overexpressing SOD2 in hPDLSCs) in vivo. Exogenous H2O2 downregulated osteogenic indicators (ALP, BMP6, RUNX2) in hPDLSCs (p < 0.05); this was reversed by overexpression of SOD2. WB results showed that the Smad3 and p-Smad3 signaling pathways participated in the osteogenic process of SOD2 in hPDLSCs. CONCLUSION SOD2 positively regulated hPDLSC osteogenic differentiation in vitro and in vivo. Mechanistically, SOD2 promotes hPDLSC osteogenic differentiation by regulating the phosphorylation of Smad3 to scavenge ROS. This work provides a theoretical basis for the treatment of alveolar bone regeneration.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Sun
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Semicheva A, Ersoy U, Vasilaki A, Myrtziou I, Kanakis I. Defining the Most Potent Osteoinductive Culture Conditions for MC3T3-E1 Cells Reveals No Implication of Oxidative Stress or Energy Metabolism. Int J Mol Sci 2024; 25:4180. [PMID: 38673767 PMCID: PMC11050066 DOI: 10.3390/ijms25084180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and β-glycerophosphate (βGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 μg.mL-1/2 mM Asc/βGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.
Collapse
Affiliation(s)
- Alexandra Semicheva
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
| | - Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
| | - Ioannis Kanakis
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| |
Collapse
|
6
|
Xu K, Fei W, Gao W, Fan C, Li Y, Hong Y, Cui R. SOD3 regulates FLT1 to affect bone metabolism by promoting osteogenesis and inhibiting adipogenesis through PI3K/AKT and MAPK pathways. Free Radic Biol Med 2024; 212:65-79. [PMID: 38141889 DOI: 10.1016/j.freeradbiomed.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Osteoporosis is a chronic disease that seriously affects the quality of life and longevity of the elderly, so exploring the mechanism of osteoporosis is crucial for drug development and treatment. Bone marrow mesenchymal stem cells are stem cells with multiple differentiation potentials in bone marrow, and changing their differentiation direction can change bone mass. As an extracellular superoxide dismutase, Superoxide Dismutase 3 (SOD3) has been proved to play an important role in multiple organs, but the detailed mechanism of action in bone metabolism is still unclear. In this study, the results of clinical serum samples ELISA and single cell sequencing chip analysis proved that the expression of SOD3 was positively correlated with bone mass, and SOD3 was mainly expressed in osteoblasts and adipocytes and rarely expressed in osteoblasts in BMSCs. In vitro experiments showed that SOD3 can promote osteogenesis and inhibit adipogenesis. Compared with WT mice, the mice that were knocked out of SOD3 had a significant decrease in bone mineral density and significant changes in related parameters. The results of HE and IHC staining suggested that knocking out SOD3 would lead to fat accumulation in the bone marrow cavity and weakened osteogenesis. Both in vitro and in vivo experiments indicated that SOD3 affects bone metabolism by promoting osteogenesis and inhibiting adipogenesis. The results of transcriptome sequencing and revalidation showed that SOD3 can affect the expression of FLT1. Through in vitro experiments, we proved that FLT1 can also promote osteogenesis and inhibit adipogenesis. In addition, through the repeated experiments, the interaction between the two molecules (SOD3 and FLT1) was verified again. Finally, it was verified by WB that SOD3 regulates FLT1 to affect bone metabolism through PI3K/AKT and MAPK pathways.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Wenxue Gao
- Medical Services Section, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Changxiu Fan
- Department of Stomatology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yinghua Li
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China; Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yang Hong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Ran Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Ma Z, Sun J, Jiang Q, Zhao Y, Jiang H, Sun P, Feng W. Identification and analysis of mitochondria-related central genes in steroid-induced osteonecrosis of the femoral head, along with drug prediction. Front Endocrinol (Lausanne) 2024; 15:1341366. [PMID: 38384969 PMCID: PMC10879930 DOI: 10.3389/fendo.2024.1341366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory orthopedic hip joint disease that primarily affects middle-aged and young individuals. SONFH may be caused by ischemia and hypoxia of the femoral head, where mitochondria play a crucial role in oxidative reactions. Currently, there is limited literature on whether mitochondria are involved in the progression of SONFH. Here, we aim to identify and validate key potential mitochondrial-related genes in SONFH through bioinformatics analysis. This study aims to provide initial evidence that mitochondria play a role in the progression of SONFH and further elucidate the mechanisms of mitochondria in SONFH. Methods The GSE123568 mRNA expression profile dataset includes 10 non-SONFH (non-steroid-induced osteonecrosis of the femoral head) samples and 30 SONFH samples. The GSE74089 mRNA expression profile dataset includes 4 healthy samples and 4 samples with ischemic necrosis of the femoral head. Both datasets were downloaded from the Gene Expression Omnibus (GEO) database. The mitochondrial-related genes are derived from MitoCarta3.0, which includes data for all 1136 human genes with high confidence in mitochondrial localization based on integrated proteomics, computational, and microscopy approaches. By intersecting the GSE123568 and GSE74089 datasets with a set of mitochondrial-related genes, we screened for mitochondrial-related genes involved in SONFH. Subsequently, we used the good Samples Genes method in R language to remove outlier genes and samples in the GSE123568 dataset. We further used WGCNA to construct a scale-free co-expression network and selected the hub gene set with the highest connectivity. We then intersected this gene set with the previously identified mitochondrial-related genes to select the genes with the highest correlation. A total of 7 mitochondrial-related genes were selected. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the selected mitochondrial-related genes using R software. Furthermore, we performed protein network analysis on the differentially expressed proteins encoded by the mitochondrial genes using STRING. We used the GSEA software to group the genes within the gene set in the GSE123568 dataset based on their coordinated changes and evaluate their impact on phenotype changes. Subsequently, we grouped the samples based on the 7 selected mitochondrial-related genes using R software and observed the differences in immune cell infiltration between the groups. Finally, we evaluated the prognostic significance of these features in the two datasets, consisting of a total of 48 samples, by integrating disease status and the 7 gene features using the cox method in the survival R package. We performed ROC analysis using the roc function in the pROC package and evaluated the AUC and confidence intervals using the ci function to obtain the final AUC results. Results Identification and analysis of 7 intersecting DEGs (differentially expressed genes) were obtained among peripheral blood, cartilage samples, hub genes, and mitochondrial-related genes. These 7 DEGs include FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR, all of which are upregulated genes with no intersection in the downregulated gene set. Subsequently, GO and KEGG pathway enrichment analysis revealed that the upregulated DEGs are primarily involved in processes such as oxidative stress, release of cytochrome C from mitochondria, negative regulation of intrinsic apoptotic signaling pathway, cell apoptosis, mitochondrial metabolism, p53 signaling pathway, and NK cell-mediated cytotoxicity. GSEA also revealed enriched pathways associated with hub genes. Finally, the diagnostic value of these key genes for hormone-related ischemic necrosis of the femoral head (SONFH) was confirmed using ROC curves. Conclusion BID, FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR may serve as potential diagnostic mitochondrial-related biomarkers for SONFH. Additionally, they hold research value in investigating the involvement of mitochondria in the pathogenesis of ischemic necrosis of the femoral head.
Collapse
Affiliation(s)
- Zheru Ma
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Jing Sun
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Jiang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Haozhuo Jiang
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Peng Sun
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Wei Feng
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| |
Collapse
|
8
|
Marques-Carvalho A, Kim HN, Almeida M. The role of reactive oxygen species in bone cell physiology and pathophysiology. Bone Rep 2023; 19:101664. [PMID: 38163012 PMCID: PMC10757300 DOI: 10.1016/j.bonr.2023.101664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Hydrogen peroxide (H2O2), superoxide anion radical (O2-•), and other forms of reactive oxygen species (ROS) are produced by the vast majority of mammalian cells and can contribute both to cellular homeostasis and dysfunction. The NADPH oxidases (NOX) enzymes and the mitochondria electron transport chain (ETC) produce most of the cellular ROS. Multiple antioxidant systems prevent the accumulation of excessive amounts of ROS which cause damage to all cellular macromolecules. Many studies have examined the contribution of ROS to different bone cell types and to skeletal physiology and pathophysiology. Here, we discuss the role of H2O2 and O2-• and their major enzymatic sources in osteoclasts and osteoblasts, the fundamentally different ways via which these cell types utilize mitochondrial derived H2O2 for differentiation and function, and the molecular mechanisms that impact and are altered by ROS in these cells. Particular emphasis is placed on evidence obtained from mouse models describing the contribution of different sources of ROS or antioxidant enzymes to bone resorption and formation. Findings from studies using pharmacological or genetically modified mouse models indicate that an increase in H2O2 and perhaps other ROS contribute to the loss of bone mass with aging and estrogen deficiency, the two most important causes of osteoporosis and increased fracture risk in humans.
Collapse
Affiliation(s)
- Adriana Marques-Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
9
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
10
|
Hu G, Yu Y, Sharma D, Pruett-Miller SM, Ren Y, Zhang GF, Karner CM. Glutathione limits RUNX2 oxidation and degradation to regulate bone formation. JCI Insight 2023; 8:e166888. [PMID: 37432749 PMCID: PMC10543723 DOI: 10.1172/jci.insight.166888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Reactive oxygen species (ROS) are natural products of mitochondrial oxidative metabolism and oxidative protein folding. ROS levels must be well controlled, since elevated ROS has been shown to have deleterious effects on osteoblasts. Moreover, excessive ROS is thought to underlie many of the skeletal phenotypes associated with aging and sex steroid deficiency in mice and humans. The mechanisms by which osteoblasts regulate ROS and how ROS inhibits osteoblasts are not well understood. Here, we demonstrate that de novo glutathione (GSH) biosynthesis is essential in neutralizing ROS and establish a proosteogenic reduction and oxidation reaction (REDOX) environment. Using a multifaceted approach, we demonstrate that reducing GSH biosynthesis led to acute degradation of RUNX2, impaired osteoblast differentiation, and reduced bone formation. Conversely, reducing ROS using catalase enhanced RUNX2 stability and promoted osteoblast differentiation and bone formation when GSH biosynthesis was limited. Highlighting the therapeutic implications of these findings, in utero antioxidant therapy stabilized RUNX2 and improved bone development in the Runx2+/- haplo-insufficient mouse model of human cleidocranial dysplasia. Thus, our data establish RUNX2 as a molecular sensor of the osteoblast REDOX environment and mechanistically clarify how ROS negatively impacts osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yinshi Ren
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Guo-Fang Zhang
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, and
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Courtney M. Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Huang Y, Dou Y, Yang B, He B, Zhang X, Zhang K, Yang X. Nicotinamide mononucleotide supplementation mitigates osteopenia induced by modeled microgravity in rats. Cell Stress Chaperones 2023; 28:385-394. [PMID: 37195399 PMCID: PMC10352228 DOI: 10.1007/s12192-023-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
Exposure to weightlessness causes severe osteopenia, resulting in raised fracture risk. The current study aimed to investigate whether nicotinamide mononucleotide (NMN) supplementation protected against the osteopenia in hindlimb unloading (HLU) rats in vivo and modeled microgravity-induced osteoblastic dysfunction in vitro. The 3-mo-old rats were exposed to HLU and intragastrically administered NMN every 3 days (500 mg/kg body weight) for 4 weeks. NMN supplementation mitigated HLU-induced bone loss, evidenced by greater bone mass and biomechanical properties and better trabecular bone structure. NMN supplementation mitigated HLU-induced oxidative stress, evidenced by greater levels of nicotinamide adenine dinucleotide and activities of superoxide dismutase 2 and lesser malondialdehyde levels. Modeled microgravity stimulation using rotary wall vessel bioreactor in MC3T3-E1 cells inhibited osteoblast differentiation, which was reversed by NMN treatment. Furthermore, NMN treatment mitigated microgravity-induced mitochondrial impairments, evidenced by lesser reactive oxygen species generation and greater adenosine triphosphate production, mtDNA copy number, and activities of superoxide dismutase 2 and Complex I and II. Additionally, NMN promoted activation of AMP-activated protein kinase (AMPK), evidenced by greater AMPKα phosphorylation. Our research suggested that NMN supplementation attenuated osteoblastic mitochondrial impairment and mitigated osteopenia induced by modeled microgravity.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Yusheng Dou
- Department of Should and Elbow Joint, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Baorong He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Xuefang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Ke Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Xiaobin Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
12
|
Yoon H, Park SG, Kim HJ, Shin HR, Kim KT, Cho YD, Moon JI, Park MS, Kim WJ, Ryoo HM. Nicotinamide enhances osteoblast differentiation through activation of the mitochondrial antioxidant defense system. Exp Mol Med 2023; 55:1531-1543. [PMID: 37464093 PMCID: PMC10393969 DOI: 10.1038/s12276-023-01041-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023] Open
Abstract
Although the normal physiological level of oxidative stress is beneficial for maintaining bone homeostasis, imbalance between reactive oxygen species (ROS) production and antioxidant defense can cause various bone diseases. The purpose of this study was to determine whether nicotinamide (NAM), an NAD+ precursor, can support the maintenance of bone homeostasis by regulating osteoblasts. Here, we found that NAM enhances osteoblast differentiation and mitochondrial metabolism. NAM increases the expression of antioxidant enzymes, which is due to increased FOXO3A transcriptional activity via SIRT3 activation. NAM has not only a preventive effect against weak and chronic oxidative stress but also a therapeutic effect against strong and acute exposure to H2O2 in osteoblast differentiation. Collectively, the results indicate that NAM increases mitochondrial biogenesis and antioxidant enzyme expression through activation of the SIRT3-FOXO3A axis, which consequently enhances osteoblast differentiation. These results suggest that NAM could be a potential preventive or therapeutic agent for bone diseases caused by ROS.
Collapse
Affiliation(s)
- Heein Yoon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Young-Dan Cho
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, 03080, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Min-Sang Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
13
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
14
|
Aaseth JO, Alexander J. Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients 2023; 15:nu15061302. [PMID: 36986032 PMCID: PMC10057453 DOI: 10.3390/nu15061302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Obesity has become a worldwide epidemic accompanied by adverse health effects. The limited efficiency of traditional weight reduction regimens has led to a substantial increase in the use of bariatric surgery. Today, sleeve gastrectomy (SG) and Roux-en-Y-gastric bypass (RYGB) are the most used procedures. The present narrative review focuses on the risk of developing postoperative osteoporosis and summarizes some of the most relevant micronutrient deficiencies associated with RYGB and SG. Preoperatively, the dietary habits of obese individuals might lead to precipitated deficiencies in vitamin D and other nutrients affecting bone mineral metabolism. Bariatric surgery with SG or RYGB can aggravate these deficiencies. The various surgical procedures appear to affect nutrient absorption differently. Being purely restrictive, SG may particularly affect the absorption of vitamin B12 and also vitamin D. In contrast, RYGB has a more profound impact on the absorption of fat-soluble vitamins and other nutrients, although both surgical methods induce only a mild protein deficiency. Despite adequate supplementation of calcium and vitamin D, osteoporosis may still occur after the surgery. This might be due to deficiencies in other micronutrients, e.g., vitamin K and zinc. Regular follow-ups with individual assessments and nutritional advice are indispensable to prevent osteoporosis and other adverse postoperative issues.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
- Correspondence: ; Tel.: +47-9959-6960
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| |
Collapse
|
15
|
Exogenous Hydrogen Sulfide Mitigates Oxidative Stress and Mitochondrial Damages Induced by Polystyrene Microplastics in Osteoblastic Cells of Mice. DISEASE MARKERS 2023; 2023:2516472. [PMID: 36860583 PMCID: PMC9969973 DOI: 10.1155/2023/2516472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
Polystyrene microplastics (mic-PS) have become harmful pollutants that attracted substantial attention about their potential toxicity. Hydrogen sulfide (H2S) is the third reported endogenous gas transmitter with protective functions on numerous physiologic responses. Nevertheless, the roles for mic-PS on skeletal systems in mammals and the protective effects of exogenous H2S are still indistinct. Here, the proliferation of MC3T3-E1 cell was analyzed by CCK8. Gene changes between the control and mic-PS treatment groups were analyzed by RNA-seq. The mRNA expression of bone morphogenetic protein 4 (Bmp4), alpha cardiac muscle 1 (Actc1), and myosin heavy polypeptide 6 (Myh6) was analyzed by QPCR. ROS level was analyzed by 2',7'-dichlorofluorescein (DCFH-DA). The mitochondrial membrane potential (MMP) was analyzed by Rh123. Our results indicated after exposure for 24 h, 100 mg/L mic-PS induced considerable cytotoxicity in the osteoblastic cells of mice. There were 147 differentially expressed genes (DEGs) including 103 downregulated genes and 44 upregulated genes in the mic-PS-treated group versus the control. The related signaling pathways were oxidative stress, energy metabolism, bone formation, and osteoblast differentiation. The results indicate that exogenous H2S may relieve mic-PS toxicity by altering Bmp4, Actc1, and Myh6 mRNA expressions associated with mitochondrial oxidative stress. Taken together, this study demonstrated that the bone toxicity effects of mic-PS along with exogenous H2S have protective function in mic-PS-mediated oxidative damage and mitochondrial dysfunction in osteoblastic cells of mice.
Collapse
|
16
|
Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci 2023; 24:ijms24043772. [PMID: 36835184 PMCID: PMC9963528 DOI: 10.3390/ijms24043772] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Collapse
|
17
|
Korokin MV, Gudyrev OS, Lebedev PR, Kuzubova EV, Radchenko AI, Koklin IS, Taran EI, Kochkarov AA. Characteristics of the state of bone tissue in genetically modified mice with impaired enzymatic regulation of steroid hormone metabolism. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.98779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: The aim was to evaluate the structural and functional changes of bone tissue in mice with null expression of 11β-HSD2 or both 11β-HSD2 and Apolipoprotein E.
Materials and methods: The experimental study was performed in 60 male mice, weighting 24–30 g. The animals were kept in accordance with the rules of laboratory practice for preclinical studies on the territory of the Russian Federation. Mice lacking 11β-HSD2 (Hsd2-/-) and male mice lacking 11β-HSD2 and Apolipoprotein E (Hsd2-/-/Apoe-/-) were used in the study. We studied and characterized the state of bone tissue, indicators of bone density, microcirculation in bone tissue, endothelial dysfunction coefficient, width of bone trabeculae, as well as serum concentrations of bone alkaline phosphatase, hydroxyproline, deoxyprinoline and expression levels of p53, Bcl2, Bax, eNOS genes.
Results and discussion: We showed that mice with the Hsd2-/- genotype with no expression of 11ß-HSD2 by the 6th month of life showed a statistically significant decrease in bone density, which progresses to the 7th and 8th months of life. At the 8th month of animal life, a decrease in bone density is accompanied by a statistically significant decrease in the level of microcirculation in the bone and an increase in the coefficient of endothelial dysfunction. Taking into account the relationship of endothelial dysfunction, atherogenesis and disorders in the processes of bone remodeling, in the framework of this study, we also assessed the state of bone tissue in double transgenes with the genotype Hsd2-/-/Apoe-/-, which lack the expression of both 11ß-HSD2 and Apolipoprotein E. In this study, we also saw increased activation of processes leading to disruption of bone remodeling processes. In the group of the animals with the genotype Hsd2-/-/Apoe-/-, we found statistically significant differences from the mice with no expression of 11ß-HSD2 in bone density and microcirculation, and the width of bone trabeculae. Also, a statistically significant increase in hydroxyproline and deoxyprinoline was found in the group of double transgenes, in the absence of significant changes in the concentration of bone alkaline phosphatase. This fact indicates a pronounced activation of bone resorption processes in the absence of activation of osteosynthesis processes, which leads to the detected violation of bone remodeling processes.
Conclusion: Thus, we have shown that a violation of the metabolic regulation of steroid hormone metabolism in animals with null expression of the 11ß-HSD2 (Hsd2-/- genotype) leads to the development of signs of osteoporosis – bone density decreases, which is accompanied by a decrease in the width of bone trabeculae, the level of microcirculation in bone tissue decreases simultaneously with an increase in the coefficient of endothelial dysfunction. The additional null expression of ApoE gene in double transgenes with the genotype Hsd2-/-/Apoe-/- leads to an increase in the severity of changes associated with a violation of bone remodeling processes and, in addition to a more pronounced change in bone tissue density, bone trabecular width, microcirculation and the coefficient of endothelial dysfunction leads to an increase in the concentration of biochemical markers of bone resorption. These changes indicate the important role of the enzyme 11ß-hydroxysteroid dehydrogenase type 2 in the processes of bone remodeling disorders.
Graphical abstract
Collapse
|
18
|
Ouyang J, Xiao Y, Ren Q, Huang J, Zhou Q, Zhang S, Li L, Shi W, Chen Z, Wu L. 7-Ketocholesterol Induces Oxiapoptophagy and Inhibits Osteogenic Differentiation in MC3T3-E1 Cells. Cells 2022; 11:cells11182882. [PMID: 36139457 PMCID: PMC9496706 DOI: 10.3390/cells11182882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/16/2023] Open
Abstract
7-Ketocholesterol (7KC) is one of the oxysterols produced by the auto-oxidation of cholesterol during the dysregulation of cholesterol metabolism which has been implicated in the pathological development of osteoporosis (OP). Oxiapoptophagy involving oxidative stress, autophagy, and apoptosis can be induced by 7KC. However, whether 7KC produces negative effects on MC3T3-E1 cells by stimulating oxiapoptophagy is still unclear. In the current study, 7KC was found to significantly decrease the cell viability of MC3T3-E1 cells in a concentration-dependent manner. In addition, 7KC decreased ALP staining and mineralization and down-regulated the protein expression of OPN and RUNX2, inhibiting osteogenic differentiation. 7KC significantly stimulated oxidation and induced autophagy and apoptosis in the cultured MC3T3-E1 cells. Pretreatment with the anti-oxidant acetylcysteine (NAC) could effectively decrease NOX4 and MDA production, enhance SOD activity, ameliorate the expression of autophagy-related factors, decrease apoptotic protein expression, and increase ALP, OPN, and RUNX2 expression, compromising 7KC-induced oxiapoptophagy and osteogenic differentiation inhibition in MC3T3-E1 cells. In summary, 7KC may induce oxiapoptophagy and inhibit osteogenic differentiation in the pathological development of OP.
Collapse
Affiliation(s)
- Jing Ouyang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Yaosheng Xiao
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shanshan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
- Correspondence:
| |
Collapse
|