1
|
You L, Połońska A, Jasieniecka-Gazarkiewicz K, Richard F, Jouhet J, Maréchal E, Banaś A, Hu H, Pan Y, Hao X, Jin H, Allen AE, Amato A, Gong Y. Two plastidial lysophosphatidic acid acyltransferases differentially mediate the biosynthesis of membrane lipids and triacylglycerols in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1543-1558. [PMID: 38031462 DOI: 10.1111/nph.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT. In vitro enzyme assays showed that they prefer lysophosphatidic acid over other lysophospholipids. ptATS2a is localized in the plastid inner envelope membrane and CRISPR/Cas9-generated ptATS2a mutants showed compromised cell growth, significantly changed plastid and extra-plastidial membrane lipids at nitrogen-replete condition and reduced triacylglycerols (TAGs) under nitrogen-depleted condition. ptATS2b is localized in thylakoid membranes and its knockout led to reduced growth rate and TAG content but slightly altered molecular composition of membrane lipids. The changes in glycerolipid profiles are consistent with the role of both LPAATs in the sn-2 acylation of sn-1-acyl-glycerol-3-phosphate substrates harboring 20:5 at the sn-1 position. Our findings suggest that both LPAATs are important for membrane lipids and TAG biosynthesis in P. tricornutum and further highlight that 20:5-Lyso-PA is likely involved in the massive import of 20:5 back to the plastid to feed plastid glycerolipid syntheses.
Collapse
Affiliation(s)
- Lingjie You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ada Połońska
- Intercollegiate Faculty of Biotechnology of UG and MUG, Gdansk, 80-307, Poland
| | | | - Fabien Richard
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology of UG and MUG, Gdansk, 80-307, Poland
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiahui Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
2
|
Leyland B, Novichkova E, Dolui AK, Jallet D, Daboussi F, Legeret B, Li Z, Li-Beisson Y, Boussiba S, Khozin-Goldberg I. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2024; 194:958-981. [PMID: 37801606 DOI: 10.1093/plphys/kiad525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal β-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Ekaterina Novichkova
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Achintya Kumar Dolui
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Denis Jallet
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Bertrand Legeret
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Zhongze Li
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| |
Collapse
|
3
|
Yamada N, Lepetit B, Mann DG, Sprecher BN, Buck JM, Bergmann P, Kroth PG, Bolton JJ, Dąbek P, Witkowski A, Kim SY, Trobajo R. Prey preference in a kleptoplastic dinoflagellate is linked to photosynthetic performance. THE ISME JOURNAL 2023; 17:1578-1588. [PMID: 37391621 PMCID: PMC10504301 DOI: 10.1038/s41396-023-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Dinoflagellates of the family Kryptoperidiniaceae, known as "dinotoms", possess diatom-derived endosymbionts and contain individuals at three successive evolutionary stages: a transiently maintained kleptoplastic stage; a stage containing multiple permanently maintained diatom endosymbionts; and a further permanent stage containing a single diatom endosymbiont. Kleptoplastic dinotoms were discovered only recently, in Durinskia capensis; until now it has not been investigated kleptoplastic behavior and the metabolic and genetic integration of host and prey. Here, we show D. capensis is able to use various diatom species as kleptoplastids and exhibits different photosynthetic capacities depending on the diatom species. This is in contrast with the prey diatoms in their free-living stage, as there are no differences in their photosynthetic capacities. Complete photosynthesis including both the light reactions and the Calvin cycle remain active only when D. capensis feeds on its habitual associate, the "essential" diatom Nitzschia captiva. The organelles of another edible diatom, N. inconspicua, are preserved intact after ingestion by D. capensis and expresses the psbC gene of the photosynthetic light reaction, while RuBisCO gene expression is lost. Our results indicate that edible but non-essential, "supplemental" diatoms are used by D. capensis for producing ATP and NADPH, but not for carbon fixation. D. capensis has established a species-specifically designed metabolic system allowing carbon fixation to be performed only by its essential diatoms. The ability of D. capensis to ingest supplemental diatoms as kleptoplastids may be a flexible ecological strategy, to use these diatoms as "emergency supplies" while no essential diatoms are available.
Collapse
Affiliation(s)
- Norico Yamada
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Bernard Lepetit
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David G Mann
- Marine and Continental Waters Program, Institute for Food and Agricultural Research and Technology, La Ràpita, Spain
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Jochen M Buck
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, University of Konstanz, Konstanz, Germany
| | - Peter G Kroth
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - So-Yeon Kim
- Department of Oceanography, Kunsan National University, Gunsan, Republic of Korea
| | - Rosa Trobajo
- Marine and Continental Waters Program, Institute for Food and Agricultural Research and Technology, La Ràpita, Spain
| |
Collapse
|
4
|
Gomes KM, Nunn BL, Chappell PD, Jenkins BD. Subcellular proteomics for determining iron-limited remodeling of plastids in the model diatom Thalassiosira pseudonana (Bacillariophyta). JOURNAL OF PHYCOLOGY 2023; 59:1085-1099. [PMID: 37615442 DOI: 10.1111/jpy.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.
Collapse
Affiliation(s)
- Kristofer M Gomes
- Department of Biological Sciences, University of Rhode Island, Rhode Island, Kingston, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Washington, Seattle, USA
| | - P Dreux Chappell
- College of Marine Science, University of South Florida, Florida, St. Petersburg, USA
| | - Bethany D Jenkins
- Department of Cell and Molecular Biology, University of Rhode Island, Rhode Island, Kingston, USA
- Graduate School of Oceanography, University of Rhode Island, Rhode Island, Narragansett, USA
| |
Collapse
|
5
|
Heterologous expression of antimicrobial peptides S-thanatin and bovine lactoferricin in the marine diatom Phaeodactylum tricornutum enhances native antimicrobial activity against Gram-negative bacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Shemi A, Alcolombri U, Schatz D, Farstey V, Vincent F, Rotkopf R, Ben-Dor S, Frada MJ, Tawfik DS, Vardi A. Dimethyl sulfide mediates microbial predator-prey interactions between zooplankton and algae in the ocean. Nat Microbiol 2021; 6:1357-1366. [PMID: 34697459 DOI: 10.1038/s41564-021-00971-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Phytoplankton are key components of the oceanic carbon and sulfur cycles1. During bloom events, some species can emit large amounts of the organosulfur volatile dimethyl sulfide (DMS) into the ocean and consequently the atmosphere, where it can modulate aerosol formation and affect climate2,3. In aquatic environments, DMS plays an important role as a chemical signal mediating diverse trophic interactions. Yet, its role in microbial predator-prey interactions remains elusive with contradicting evidence for its role in either algal chemical defence or in the chemo-attraction of grazers to prey cells4,5. Here we investigated the signalling role of DMS during zooplankton-algae interactions by genetic and biochemical manipulation of the algal DMS-generating enzyme dimethylsulfoniopropionate lyase (DL) in the bloom-forming alga Emiliania huxleyi6. We inhibited DL activity in E. huxleyi cells in vivo using the selective DL-inhibitor 2-bromo-3-(dimethylsulfonio)-propionate7 and overexpressed the DL-encoding gene in the model diatom Thalassiosira pseudonana. We showed that algal DL activity did not serve as an anti-grazing chemical defence but paradoxically enhanced predation by the grazer Oxyrrhis marina and other microzooplankton and mesozooplankton, including ciliates and copepods. Consumption of algal prey with induced DL activity also promoted O. marina growth. Overall, our results demonstrate that DMS-mediated grazing may be ecologically important and prevalent during prey-predator dynamics in aquatic ecosystems. The role of algal DMS revealed here, acting as an eat-me signal for grazers, raises fundamental questions regarding the retention of its biosynthetic enzyme through the evolution of dominant bloom-forming phytoplankton in the ocean.
Collapse
Affiliation(s)
- Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Viviana Farstey
- The Inter-University Institute for Marine Sciences, Eilat, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Miguel J Frada
- The Inter-University Institute for Marine Sciences, Eilat, Israel.,Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Protein Sorting in Plasmodium Falciparum. Life (Basel) 2021; 11:life11090937. [PMID: 34575086 PMCID: PMC8467625 DOI: 10.3390/life11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.
Collapse
|
8
|
Graff van Creveld S, Ben-Dor S, Mizrachi A, Alcolombri U, Hopes A, Mock T, Rosenwasser S, Vardi A. Biochemical Characterization of a Novel Redox-Regulated Metacaspase in a Marine Diatom. Front Microbiol 2021; 12:688199. [PMID: 34566902 PMCID: PMC8455989 DOI: 10.3389/fmicb.2021.688199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Programmed cell death (PCD) in marine microalgae was suggested to be one of the mechanisms that facilitates bloom demise, yet its molecular components in phytoplankton are unknown. Phytoplankton are completely lacking any of the canonical components of PCD, such as caspases, but possess metacaspases. Metacaspases were shown to regulate PCD in plants and some protists, but their roles in algae and other organisms are still elusive. Here, we identified and biochemically characterized a type III metacaspase from the model diatom Phaeodactylum tricornutum, termed PtMCA-IIIc. Through expression of recombinant PtMCA-IIIc in E. coli, we revealed that PtMCA-IIIc exhibits a calcium-dependent protease activity, including auto-processing and cleavage after arginine. Similar metacaspase activity was detected in P. tricornutum cell extracts. PtMCA-IIIc overexpressing cells exhibited higher metacaspase activity, while CRISPR/Cas9-mediated knockout cells had decreased metacaspase activity compared to WT cells. Site-directed mutagenesis of cysteines that were predicted to form a disulfide bond decreased recombinant PtMCA-IIIc activity, suggesting its enhancement under oxidizing conditions. One of those cysteines was oxidized, detected in redox proteomics, specifically in response to lethal concentrations of hydrogen peroxide and a diatom derived aldehyde. Phylogenetic analysis revealed that this cysteine-pair is unique and widespread among diatom type III metacaspases. The characterization of a cell death associated protein in diatoms provides insights into the evolutionary origins of PCD and its ecological significance in algal bloom dynamics.
Collapse
Affiliation(s)
- Shiri Graff van Creveld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avia Mizrachi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Shilo Rosenwasser
- Robert H. Smith Faculty of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. Int J Mol Sci 2021; 22:ijms22126495. [PMID: 34204357 PMCID: PMC8233740 DOI: 10.3390/ijms22126495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Collapse
|
10
|
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li‐Beisson Y, Menand B, Field B, Gontero B. ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 230:1517-1532. [PMID: 33595847 PMCID: PMC8252717 DOI: 10.1111/nph.17286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chloroplasts retain elements of a bacterial stress response pathway that is mediated by the signalling nucleotides guanosine penta- and tetraphosphate ((p)ppGpp). In the model flowering plant Arabidopsis, ppGpp acts as a potent regulator of plastid gene expression and influences photosynthesis, plant growth and development. However, little is known about ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here, we studied the function of ppGpp in the diatom Phaeodactylum tricornutum using transgenic lines containing an inducible system for ppGpp accumulation. We used these lines to investigate the effects of ppGpp on growth, photosynthesis, lipid metabolism and protein expression. We demonstrate that ppGpp accumulation reduces photosynthetic capacity and promotes a quiescent-like state with reduced proliferation and ageing. Strikingly, using nontargeted proteomics, we discovered that ppGpp accumulation also leads to the coordinated upregulation of a protein protection response in multiple cellular compartments. Our findings highlight the importance of ppGpp as a fundamental regulator of chloroplast function across different domains of life, and lead to new questions about the molecular mechanisms and roles of (p)ppGpp signalling in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Luisana Avilan
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
- Centre for Enzyme InnovationSchool of Biological SciencesInstitute of Biological and Biomedical SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
| | - Regine Lebrun
- Plate‐forme ProtéomiqueMarseille Protéomique (MaP)IMM FR 3479, 31 Chemin Joseph AiguierMarseille13009France
| | - Carine Puppo
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Stephane Cuiné
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Yonghua Li‐Beisson
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Benoît Menand
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Ben Field
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Brigitte Gontero
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| |
Collapse
|
11
|
Yang X, Wang X, Yao J, Li W, Duan D. MiR8181 is involved in the cell growth regulation of Saccharina japonica. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153394. [PMID: 33676110 DOI: 10.1016/j.jplph.2021.153394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Aureochrome, a blue-light receptor specifically found in photosynthetic stramenopiles, plays an important role in algal growth and development. It holds a reversed effector-sensor topology for the reception of blue light, acting as a candidate of optogenetic tool in transcriptional regulation. However, the inner regulatory mechanism of aureochrome is still unclear. In this study, we explored the potential regulatory relationship between microRNAs (miRNAs) and mRNAs by small RNA, transcriptome and degradome sequencing in Saccharina japonica. Through screening miRNA-mRNA interaction networks at the whole-genome level, we found that 18 miRNAs perfectly paired with aureochrome. Among these screened miRNAs, miR8181 was negatively correlated with aureochrome5 with high credibility, exhibiting tissue-specific expression in sporophyte of S. japonica. Degradome analysis further revealed the exact cleavage site of miR8181 on aureochrome5, confirming their targeting relationship. For the 54 target genes of miR8181, nine genes that exhibited similar expression to that of aureochrome5 competed for the same binding site, thus establishing a competing endogenous RNA network. Functional enrichment of the target genes revealed that miR8181 was involved in the regulation of cell differentiation and development in S. japonica. Moreover, overexpression of miR8181 resulted in significant decreases in the cell growth rates of Phaeodactylum tricornutum, suggesting negative roles of miR8181 in regulating cell growth. Our study revealed that miR8181, the targeting miRNA of aureochrome5, played negative roles in cell growth and development.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuliang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianting Yao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wei Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
12
|
Bhattacharjya R, Tiwari A, Marella TK, Bansal H, Srivastava S. New paradigm in diatom omics and genetic manipulation. BIORESOURCE TECHNOLOGY 2021; 325:124708. [PMID: 33487514 DOI: 10.1016/j.biortech.2021.124708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are one of the most heterogeneous eukaryotic plankton known for regulating earth's biogeochemical cycles and maintaining the marine ecosystems ever since the late Eocene epoch. The advent of multidisciplinary omics approach has both epitomized and revolutionized the nature of their chimeric genetic toolkit, ecophysiology, and metabolic adaptability as well as their interaction with other communities. In addition, advanced functional annotation of transcriptomic and proteomic data using cutting edge bioinformatics tools together with high-resolution genome-scale mathematical modeling has effectively proven as the catapult in solving genetic bottlenecks in microbial as well as diatom exploration. In this review, a corroborative summation of the robust work done in manipulating, engineering, and sequencing of the diatom genomes besides underpinning the holistic application of omics in transcription and translation has been discussed in order to shrewd their multifarious novel potential in the field of biotechnology and provide an insight into their dynamic evolutionary relevance.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India.
| | - Thomas Kiran Marella
- Algae Biomass Energy System Development Research Center (ABES), Tennodai, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | | |
Collapse
|
13
|
Pyrih J, Žárský V, Fellows JD, Grosche C, Wloga D, Striepen B, Maier UG, Tachezy J. The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. BMC Ecol Evol 2021; 21:46. [PMID: 33740894 PMCID: PMC7980591 DOI: 10.1186/s12862-021-01777-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. Results We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. Conclusion Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans). Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01777-x.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Justin D Fellows
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Christopher Grosche
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
14
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
15
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
16
|
Pollak B, Matute T, Nuñez I, Cerda A, Lopez C, Vargas V, Kan A, Bielinski V, von Dassow P, Dupont CL, Federici F. Universal loop assembly: open, efficient and cross-kingdom DNA fabrication. Synth Biol (Oxf) 2020; 5:ysaa001. [PMID: 32161816 PMCID: PMC7052795 DOI: 10.1093/synbio/ysaa001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/22/2023] Open
Abstract
Standardized type IIS DNA assembly methods are becoming essential for biological engineering and research. These methods are becoming widespread and more accessible due to the proposition of a 'common syntax' that enables higher interoperability between DNA libraries. Currently, Golden Gate (GG)-based assembly systems, originally implemented in host-specific vectors, are being made compatible with multiple organisms. We have recently developed the GG-based Loop assembly system for plants, which uses a small library and an intuitive strategy for hierarchical fabrication of large DNA constructs (>30 kb). Here, we describe 'universal Loop' (uLoop) assembly, a system based on Loop assembly for use in potentially any organism of choice. This design permits the use of a compact number of plasmids (two sets of four odd and even vectors), which are utilized repeatedly in alternating steps. The elements required for transformation/maintenance in target organisms are also assembled as standardized parts, enabling customization of host-specific plasmids. Decoupling of the Loop assembly logic from the host-specific propagation elements enables universal DNA assembly that retains high efficiency regardless of the final host. As a proof-of-concept, we show the engineering of multigene expression vectors in diatoms, yeast, plants and bacteria. These resources are available through the OpenMTA for unrestricted sharing and open access.
Collapse
Affiliation(s)
- Bernardo Pollak
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - Tamara Matute
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isaac Nuñez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Cerda
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Lopez
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Vargas
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anton Kan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Vincent Bielinski
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio de Oceanografía de Chile, Concepción, Chile
- UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Chris L Dupont
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Fernán Federici
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
17
|
Erdene-Ochir E, Shin BK, Kwon B, Jung C, Pan CH. Identification and characterisation of the novel endogenous promoter HASP1 and its signal peptide from Phaeodactylum tricornutum. Sci Rep 2019; 9:9941. [PMID: 31289300 PMCID: PMC6617621 DOI: 10.1038/s41598-019-45786-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Although diatoms have been extensively studied as bioreactors, only a limited number of efficient gene promoters are available. Therefore, the development of new endogenous promoters is important for the heterologous production of a variety of recombinant proteins. Herein, we identified the most abundant secreted protein in Phaeodactylum tricornutum, designated ‘highly abundant secreted protein 1’ (HASP1), and characterised the activities of its promoter and signal peptide using green fluorescent protein (GFP) as a reporter. The HASP1 promoter strongly drove GFP expression during all growth phases of P. tricornutum in culture, in contrast to the commonly used fcpA promoter, which is less active during the stationary phase. The HASP1 signal peptide was also sufficient for facilitating efficient secretion of GFP by P. tricornutum. Our findings suggest that both the promoter and the signal peptide of HASP1 can be utilized as novel tools for the overexpression and secretion of recombinant proteins in P. tricornutum.
Collapse
Affiliation(s)
- Erdenedolgor Erdene-Ochir
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bok-Kyu Shin
- Algaeprona Inc, Gangneung, 25451, Republic of Korea
| | - Byeori Kwon
- Algaeprona Inc, Gangneung, 25451, Republic of Korea
| | - Choonkyun Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
18
|
Taparia Y, Zarka A, Leu S, Zarivach R, Boussiba S, Khozin-Goldberg I. A novel endogenous selection marker for the diatom Phaeodactylum tricornutum based on a unique mutation in phytoene desaturase 1. Sci Rep 2019; 9:8217. [PMID: 31160749 PMCID: PMC6546710 DOI: 10.1038/s41598-019-44710-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/21/2019] [Indexed: 01/10/2023] Open
Abstract
Phaeodactylum tricornutum is a well-developed model diatom for both marine ecology and microalgal biotechnology, which has been enabled by the sequenced genome and the availability of gene delivery tools, such as biolistic transformation and E. coli-mediated conjugation. Till now, these tools have mainly relied on two selectable markers of bacterial origin which confer resistance to antibiotics Zeocin and nourseothricin. An alternative cost-effective and preferably endogenous selectable marker would facilitate gene stacking efforts through successive transformation or conjugation. We performed UV-mutagenesis of P. tricornutum to obtain mutations in the phytoene desaturase (PDS) gene, conferring resistance to the bleaching herbicide norflurazon. Two mutants displaying high tolerance to norflurazon and carrying unique mutations in PtPDS1 (PHATRDRAFT_45735) were selected. These mutants revealed novel point mutations at a conserved residue Gly290 to Ser/Arg. Homology-based structural modeling of mutated PDS1, over a resolved crystallographic model of rice PDS1 complexed with norflurazon, suggests steric hindrance by bulkier residue substitution may confer herbicide resistance. We report the characterization of PtPDS1 mutants and the development of the first endogenous selectable marker in diatoms suitable for industrial strain development, with the added benefit of biocontainment. The plasmid carrying the mutated PDS1 as a selection marker and eGFP as a reporter was created. An optimized biolistic transformation system is reported which allowed the isolation of positive transgenic events at the rate of 96.7%. Additionally, the ease of in vivo UV-mutagenesis may be employed as a strategy to create PDS-norflurazon-based selectable markers for other diatoms.
Collapse
Affiliation(s)
- Yogesh Taparia
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Raz Zarivach
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
19
|
Wetherbee R, Jackson CJ, Repetti SI, Clementson LA, Costa JF, van de Meene A, Crawford S, Verbruggen H. The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes. JOURNAL OF PHYCOLOGY 2019; 55:257-278. [PMID: 30536815 DOI: 10.1111/jpy.12822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
A marine, sand-dwelling, golden-brown alga is described from clonal cultures established from a high intertidal pool in southeastern Australia. This tiny, unicellular species, which we call the "golden paradox" (Chrysoparadoxa australica gen. et sp. nov.), is benthic, surrounded by a multilayered cell wall and attached to the substratum by a complex adhesive plug. Each vegetative cell gives rise to a single, naked zoospore with heterokont flagella that settles and may become briefly amoeboid prior to dividing. Daughter cells are initially amoeboid, then either permanently attach and return to the benthic stage or become motile again prior to final settlement. Two deeply lobed chloroplasts occupy opposite ends of the cell and are surrounded by only two membranes. The outer chloroplast membrane is continuous between the two chloroplasts via the outer membrane of the nuclear envelope. Only two membranes occupy the chloroplast-nucleus interface, the inner membrane of the nuclear envelope and the inner chloroplast membrane. A small pyrenoid is found in each chloroplast and closely abuts the nucleus or protrudes into it. It contains an unusual, membrane-bound inclusion that stains with SYBR green but is unlikely to be a nucleomorph. Phylogenies inferred from a 10-gene concatenated alignment show an early-branching position within the PX clade. The unusual morphological features and phylogenetic position indicate C. australica should be classified as a new class, Chrysoparadoxophyceae. Despite an atypical plastid, exploration of the C. australica transcriptome revealed typical heterokont protein targeting to the plastid.
Collapse
Affiliation(s)
- Richard Wetherbee
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher J Jackson
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Joana F Costa
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Allison van de Meene
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Simon Crawford
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
20
|
Shao Z, Thomas Y, Hembach L, Xing X, Duan D, Moerschbacher BM, Bulone V, Tirichine L, Bowler C. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms. THE NEW PHYTOLOGIST 2019; 221:1890-1905. [PMID: 30288745 DOI: 10.1111/nph.15510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Chitin is generally considered to be present in centric diatoms but not in pennate species. Many aspects of chitin biosynthetic pathways have not been explored in diatoms. We retrieved chitin metabolic genes from pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom genomes. Chitin deacetylase (CDA) genes from each genome (PtCDA and TpCDA) were overexpressed in P. tricornutum. We performed comparative analysis of their sequence structure, phylogeny, transcriptional profiles, localization and enzymatic activities. The chitin relevant proteins show complex subcellular compartmentation. PtCDA was likely acquired by horizontal gene transfer from prokaryotes, whereas TpCDA has closer relationships with sequences in Opisthokonta. Using transgenic P. tricornutum lines expressing CDA-green fluorescent protein (GFP) fusion proteins, PtCDA predominantly localizes to Golgi apparatus whereas TpCDA localizes to endoplasmic reticulum/chloroplast endoplasmic reticulum membrane. CDA-GFP overexpression upregulated the transcription of chitin synthases and potentially enhanced the ability of chitin synthesis. Although both CDAs are active on GlcNAc5 , TpCDA is more active on the highly acetylated chitin polymer DA60. We have addressed the ambiguous characters of CDAs from P. tricornutum and T. pseudonana. Differences in localization, evolution, expression and activities provide explanations underlying the greater potential of centric diatoms for chitin biosynthesis. This study paves the way for in vitro applications of novel CDAs.
Collapse
Affiliation(s)
- Zhanru Shao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Yann Thomas
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Lea Hembach
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, 48143, Münster, Germany
| | - Xiaohui Xing
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Delin Duan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Bruno M Moerschbacher
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, 48143, Münster, Germany
| | - Vincent Bulone
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Leila Tirichine
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| |
Collapse
|
21
|
Kroth PG, Bones AM, Daboussi F, Ferrante MI, Jaubert M, Kolot M, Nymark M, Río Bártulos C, Ritter A, Russo MT, Serif M, Winge P, Falciatore A. Genome editing in diatoms: achievements and goals. PLANT CELL REPORTS 2018; 37:1401-1408. [PMID: 30167805 DOI: 10.1007/s00299-018-2334-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/07/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.
Collapse
Affiliation(s)
- Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Maria I Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Marianne Jaubert
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Misha Kolot
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Andrés Ritter
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Monia T Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Manuel Serif
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
22
|
Ewe D, Tachibana M, Kikutani S, Gruber A, Río Bártulos C, Konert G, Kaplan A, Matsuda Y, Kroth PG. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2018; 137:263-280. [PMID: 29572588 DOI: 10.1007/s11120-018-0500-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are unicellular algae and important primary producers. The process of carbon fixation in diatoms is very efficient even though the availability of dissolved CO2 in sea water is very low. The operation of a carbon concentrating mechanism (CCM) also makes the more abundant bicarbonate accessible for photosynthetic carbon fixation. Diatoms possess carbonic anhydrases as well as metabolic enzymes potentially involved in C4 pathways; however, the question as to whether a C4 pathway plays a general role in diatoms is not yet solved. While genome analyses indicate that the diatom Phaeodactylum tricornutum possesses all the enzymes required to operate a C4 pathway, silencing of the pyruvate orthophosphate dikinase (PPDK) in a genetically transformed cell line does not lead to reduced photosynthetic carbon fixation. In this study, we have determined the intracellular location of all enzymes potentially involved in C4-like carbon fixing pathways in P. tricornutum by expression of the respective proteins fused to green fluorescent protein (GFP), followed by fluorescence microscopy. Furthermore, we compared the results to known pathways and locations of enzymes in higher plants performing C3 or C4 photosynthesis. This approach revealed that the intracellular distribution of the investigated enzymes is quite different from the one observed in higher plants. In particular, the apparent lack of a plastidic decarboxylase in P. tricornutum indicates that this diatom does not perform a C4-like CCM.
Collapse
Affiliation(s)
- Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Masaaki Tachibana
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
- Lion Corporation Pharmaceutical Laboratories No.1, Odawara, Kanagawa, 256-0811, Japan
| | - Sae Kikutani
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
- Tech Manage Corp., Tokyo, 160-0023, Japan
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Grzegorz Konert
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus-Givat Ram, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
23
|
Maeda Y, Nojima D, Yoshino T, Tanaka T. Structure and properties of oil bodies in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0408. [PMID: 28717018 DOI: 10.1098/rstb.2016.0408] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/23/2023] Open
Abstract
Diatoms accumulate triacylglycerols in spherical organelles called oil bodies when exposed to nutrient deprivation conditions. Oil body biology in diatoms has attracted significant attention due to the complexity of the intracellular organelles and the unique combination of genes generated by the evolutionary history of secondary endosymbiosis. The demand for biofuel production has further increased the interest in and importance of a better understanding of oil body biology in diatoms, because it could provide targets for genetic engineering to further enhance their promising lipid accumulation. This review describes recent progress in studies of the structure and properties of diatom oil bodies. Firstly, the general features of diatom oil bodies are described, in particular, their number, size and morphology, as well as the quantity and quality of lipids they contain. Subsequently, the diatom oil body-associated proteins, which were recently discovered through oil body proteomics, are introduced. Then, the metabolic pathways responsible for the biogenesis and degradation of diatom oil bodies are summarized. During biogenesis and degradation, oil bodies interact with other organelles, including chloroplasts, the endoplasmic reticulum and mitochondria, suggesting their dynamic nature in response to environmental changes. Finally, the functions of oil bodies in diatoms are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daisuke Nojima
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
24
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
25
|
Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I. Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 2018. [DOI: 10.1016/j.plipres.2018.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Velmurugan N, Deka D. Transformation techniques for metabolic engineering of diatoms and haptophytes: current state and prospects. Appl Microbiol Biotechnol 2018; 102:4255-4267. [DOI: 10.1007/s00253-018-8925-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/11/2022]
|
27
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida KI, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, Inagaki Y. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids. Mol Biol Evol 2017; 34:2355-2366. [DOI: 10.1093/molbev/msx172] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol 2017; 101:5313-5324. [PMID: 28405704 PMCID: PMC5486823 DOI: 10.1007/s00253-017-8267-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 01/08/2023]
Abstract
Increasing demand for the low-cost production of valuable proteins has stimulated development of novel expression systems. Many challenges faced by existing technology may be overcome by using unicellular microalgae as an expression platform due to their ability to be cultivated rapidly, inexpensively, and in large scale. Diatoms are a particularly productive type of unicellular algae showing promise as production organisms. Here, we report the development of an expression system in the diatom Thalassiosira pseudonana by expressing the protective IbpA DR2 antigen from Histophilus somni for the production of a vaccine against bovine respiratory disease. The utilization of diatoms with their typically silicified cell walls permitted development of silicon-responsive transcription elements to induce protein expression. Specifically, we demonstrate that transcription elements from the silicon transporter gene SIT1 are sufficient to drive high levels of IbpA DR2 expression during silicon limitation and growth arrest. These culture conditions eliminate the flux of cellular resources into cell division processes, yet do not limit protein expression. In addition to improving protein expression levels by molecular manipulations, yield was dramatically increased through cultivation enhancement including elevated light and CO2 supplementation. We substantially increased recombinant protein production over starting levels to 1.2% of the total sodium dodecyl sulfate-extractable protein in T. pseudonana, which was sufficient to conduct preliminary immunization trials in mice. Mice exposed to 5 μg of diatom-expressed DR2 in whole or sonicated cells (without protein purification) exhibited a modest immune response without the addition of adjuvant.
Collapse
|
30
|
Schreiber V, Dersch J, Puzik K, Bäcker O, Liu X, Stork S, Schulz J, Heimerl T, Klingl A, Zauner S, Maier UG. The Central Vacuole of the Diatom Phaeodactylum tricornutum: Identification of New Vacuolar Membrane Proteins and of a Functional Di-leucine-based Targeting Motif. Protist 2017; 168:271-282. [PMID: 28495413 DOI: 10.1016/j.protis.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/24/2017] [Accepted: 03/04/2017] [Indexed: 01/22/2023]
Abstract
Diatoms are unicellular organisms evolved by secondary endosymbiosis. Although studied in many aspects, the functions of vacuolar-like structures of these organisms are rarely investigated. One of these structures is a dominant central vacuole-like compartment with a marbled phenotype, which is supposed to represent a chrysolaminarin-storing and carbohydrate mobilization compartment. However, other functions as well as targeting of proteins to this compartment are not shown experimentally. In order to study trafficking of membrane proteins to the vacuolar membrane, we scanned the genome for intrinsic vacuolar membrane proteins and used one representative for targeting studies. Our work led to the identification of several proteins located in the vacuolar membrane as well as the sub-compartmentalized localization of one protein. In addition, we show that a di-leucine-based motif is an important signal for correct targeting to the central vacuole of diatoms, like it is in plants.
Collapse
Affiliation(s)
| | - Josefine Dersch
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Katharina Puzik
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Oliver Bäcker
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Xiaojuan Liu
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Simone Stork
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Julian Schulz
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Thomas Heimerl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany
| | - Andreas Klingl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany
| | - Stefan Zauner
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany; LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany.
| |
Collapse
|
31
|
Chu L, Gruber A, Ast M, Schmitz-Esser S, Altensell J, Neuhaus HE, Kroth PG, Haferkamp I. Shuttling of (deoxy-) purine nucleotides between compartments of the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2017; 213:193-205. [PMID: 27504715 DOI: 10.1111/nph.14126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/25/2016] [Indexed: 05/10/2023]
Abstract
Diatom plastids show several peculiarities when compared with primary plastids of higher plants or algae. They are surrounded by four membranes and depend on nucleotide uptake because, unlike in plants, nucleotide de novo synthesis exclusively occurs in the cytosol. Previous analyses suggest that two specifically adapted nucleotide transporters (NTTs) facilitate the required passage of nucleotides across the innermost plastid membrane. However, nucleotide transport across the additional plastid membranes remains to be clarified. Phylogenetic studies, transport assays with the recombinant protein as well as GFP-based targeting analyses allowed detailed characterization of a novel isoform (PtNTT5) of the six NTTs of Phaeodactylum tricornutum. PtNTT5 exhibits low amino acid similarities and is only distantly related to all previously characterized NTTs. However, in a heterologous expression system, it acts as a nucleotide antiporter and prefers various (deoxy-) purine nucleotides as substrates. Interestingly, PtNTT5 is probably located in the endoplasmic reticulum, which in diatoms also represents the outermost plastid membrane. PtNTT5, with its unusual transport properties, phylogeny and localization, can be taken as further evidence for the establishment of a sophisticated and specifically adapted nucleotide transport system in diatom plastids.
Collapse
Affiliation(s)
- Lili Chu
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Ansgar Gruber
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Michelle Ast
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | | | - Jacqueline Altensell
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Horst Ekkehard Neuhaus
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Peter G Kroth
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| |
Collapse
|
32
|
Duval R, Duplais C. Fluorescent natural products as probes and tracers in biology. Nat Prod Rep 2017; 34:161-193. [DOI: 10.1039/c6np00111d] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence is a remarkable property of many natural products in addition to their medicinal and biological value. Herein, we provide a review of these peculiar secondary metabolites to stimulate prospecting of them as original fluorescent tracers, endowed with unique photophysical properties and with applications in most fields of biology.
Collapse
Affiliation(s)
- Romain Duval
- IRD
- UMR 216 IRD MERIT (Mère et Enfant face aux Infections Tropicales)
- Université Paris-Descartes
- 75006 Paris
- France
| | - Christophe Duplais
- CNRS
- UMR 8172 EcoFoG (Ecologie des Forêts de Guyane)
- AgroParisTech
- Cirad
- INRA
| |
Collapse
|
33
|
Liu X, Hempel F, Stork S, Bolte K, Moog D, Heimerl T, Maier UG, Zauner S. Addressing various compartments of the diatom model organism Phaeodactylum tricornutum via sub-cellular marker proteins. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Davis A, Abbriano R, Smith SR, Hildebrand M. Clarification of Photorespiratory Processes and the Role of Malic Enzyme in Diatoms. Protist 2016; 168:134-153. [PMID: 28104538 DOI: 10.1016/j.protis.2016.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/20/2022]
Abstract
Evidence suggests that diatom photorespiratory metabolism is distinct from other photosynthetic eukaryotes in that there may be at least two routes for the metabolism of the photorespiratory metabolite glycolate. One occurs primarily in the mitochondria and is similar to the C2 photorespiratory pathway, and the other processes glycolate through the peroxisomal glyoxylate cycle. Genomic analysis has identified the presence of key genes required for glycolate oxidation, the glyoxylate cycle, and malate metabolism, however, predictions of intracellular localization can be ambiguous and require verification. This knowledge gap leads to uncertainties surrounding how these individual pathways operate, either together or independently, to process photorespiratory intermediates under different environmental conditions. Here, we combine in silico sequence analysis, in vivo protein localization techniques and gene expression patterns to investigate key enzymes potentially involved in photorespiratory metabolism in the model diatom Thalassiosira pseudonana. We demonstrate the peroxisomal localization of isocitrate lyase and the mitochondrial localization of malic enzyme and a glycolate oxidase. Based on these analyses, we propose an updated model for photorespiratory metabolism in T. pseudonana, as well as a mechanism by which C2 photorespiratory metabolism and its associated pathways may operate during silicon starvation and growth arrest.
Collapse
Affiliation(s)
- Aubrey Davis
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A
| | - Raffaela Abbriano
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A
| | - Sarah R Smith
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A.; J. Craig Venter Institute, La Jolla, CA, U.S.A
| | - Mark Hildebrand
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A..
| |
Collapse
|
35
|
Levering J, Broddrick J, Dupont CL, Peers G, Beeri K, Mayers J, Gallina AA, Allen AE, Palsson BO, Zengler K. Genome-Scale Model Reveals Metabolic Basis of Biomass Partitioning in a Model Diatom. PLoS One 2016; 11:e0155038. [PMID: 27152931 PMCID: PMC4859558 DOI: 10.1371/journal.pone.0155038] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022] Open
Abstract
Diatoms are eukaryotic microalgae that contain genes from various sources, including bacteria and the secondary endosymbiotic host. Due to this unique combination of genes, diatoms are taxonomically and functionally distinct from other algae and vascular plants and confer novel metabolic capabilities. Based on the genome annotation, we performed a genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tricornutum. Due to their endosymbiotic origin, diatoms possess a complex chloroplast structure which complicates the prediction of subcellular protein localization. Based on previous work we implemented a pipeline that exploits a series of bioinformatics tools to predict protein localization. The manually curated reconstructed metabolic network iLB1027_lipid accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites distributed across six compartments. To constrain the genome-scale model, we determined the organism specific biomass composition in terms of lipids, carbohydrates, and proteins using Fourier transform infrared spectrometry. Our simulations indicate the presence of a yet unknown glutamine-ornithine shunt that could be used to transfer reducing equivalents generated by photosynthesis to the mitochondria. The model reflects the known biochemical composition of P. tricornutum in defined culture conditions and enables metabolic engineering strategies to improve the use of P. tricornutum for biotechnological applications.
Collapse
Affiliation(s)
- Jennifer Levering
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jared Broddrick
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karen Beeri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Joshua Mayers
- Division of Industrial Biotechnology, Department of Biology and Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Alessandra A. Gallina
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Andrew E. Allen
- J. Craig Venter Institute, La Jolla, California, United States of America
- Integrative Oceanography Division, Scripps Institute of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Karsten Zengler
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kamikawa R, Tanifuji G, Ishikawa SA, Ishii KI, Matsuno Y, Onodera NT, Ishida KI, Hashimoto T, Miyashita H, Mayama S, Inagaki Y. Proposal of a Twin Aarginine Translocator System-Mediated Constraint against Loss of ATP Synthase Genes from Nonphotosynthetic Plastid Genomes. Mol Biol Evol 2015; 32:2598-604. [DOI: 10.1093/molbev/msv134] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
37
|
Hehenberger E, Imanian B, Burki F, Keeling PJ. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biol Evol 2015; 6:2321-34. [PMID: 25172904 PMCID: PMC4217693 DOI: 10.1093/gbe/evu182] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dinoflagellates harboring diatom endosymbionts (termed “dinotoms”) have undergone a process often referred to as “tertiary endosymbiosis”—the uptake of algae containing secondary plastids and integration of those plastids into the new host. In contrast to other tertiary plastids, and most secondary plastids, the endosymbiont of dinotoms is distinctly less reduced, retaining a number of cellular features, such as their nucleus and mitochondria and others, in addition to their plastid. This has resulted in redundancy between host and endosymbiont, at least between some mitochondrial and cytosolic metabolism, where this has been investigated. The question of plastidial redundancy is particularly interesting as the fate of the host dinoflagellate plastid is unclear. The host cytosol possesses an eyespot that has been postulated to be a remnant of the ancestral peridinin plastid, but this has not been tested, nor has its possible retention of plastid functions. To investigate this possibility, we searched for plastid-associated pathways and functions in transcriptomic data sets from three dinotom species. We show that the dinoflagellate host has indeed retained genes for plastid-associated pathways and that these genes encode targeting peptides similar to those of other dinoflagellate plastid-targeted proteins. Moreover, we also identified one gene encoding an essential component of the dinoflagellate plastid protein import machinery, altogether suggesting the presence of a functioning plastid import system in the host, and by extension a relict plastid. The presence of the same plastid-associated pathways in the endosymbiont also extends the known functional redundancy in dinotoms, further confirming the unusual state of plastid integration in this group of dinoflagellates.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Behzad Imanian
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabien Burki
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biol Evol 2015; 7:1728-42. [PMID: 25994931 PMCID: PMC4494062 DOI: 10.1093/gbe/evv095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid’s red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Present address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
39
|
In vivo Localization Studies in the Stramenopile Alga Nannochloropsis oceanica. Protist 2015; 166:161-71. [DOI: 10.1016/j.protis.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/21/2023]
|
40
|
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:519-28. [PMID: 25438865 PMCID: PMC4329603 DOI: 10.1111/tpj.12734] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 05/19/2023]
Abstract
The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear-encoded plastid-localized proteins contain N-terminal bipartite targeting peptides with the conserved amino acid sequence motif 'ASAFAP'. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear-encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved 'ASAFAP' motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid-localized proteins with both high sensitivity and high specificity. To identify nucleus-encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full-length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae.
Collapse
Affiliation(s)
- Ansgar Gruber
- Fachbereich Biologie, Universität KonstanzKonstanz, 78457, Germany
| | - Gabrielle Rocap
- School of Oceanography, Center for Environmental Genomics, University of WashingtonSeattle, WA, 98195, USA
| | - Peter G Kroth
- Fachbereich Biologie, Universität KonstanzKonstanz, 78457, Germany
| | - E Virginia Armbrust
- School of Oceanography, Center for Environmental Genomics, University of WashingtonSeattle, WA, 98195, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East AngliaNorwich Research Park, NR4 7TJ, Norwich, UK
- *
For correspondence (e-mail )
| |
Collapse
|
41
|
Sunaga Y, Maeda Y, Yabuuchi T, Muto M, Yoshino T, Tanaka T. Chloroplast-targeting protein expression in the oleaginous diatom Fistulifera solaris JPCC DA0580 toward metabolic engineering. J Biosci Bioeng 2014; 119:28-34. [PMID: 25043335 DOI: 10.1016/j.jbiosc.2014.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/12/2023]
Abstract
The chloroplast plays critical roles in lipid metabolism of microalgae, thus it is recognized as an attractive target of metabolic engineering to enhance biofuel production. It has been well known that recombinant protein expression in microalgal chloroplasts needs specific signal sequence which governs the transition manner of nuclear-encoded polypeptides within the subcellular compartments. However certain microalgae, including diatoms, have complex membrane systems surrounding the chloroplast, and thus chloroplast-targeting protein expression with the signal sequence has rarely been demonstrated except for a few model non-oleaginous diatoms. In this study, we performed recombinant green fluorescence protein (GFP) expression and transportation into the chloroplast of the oleaginous marine diatom, Fistulifera solaris JPCC DA0580. The signal sequence of ATP synthetase gamma subunit, which was predicted to localize in the chloroplast according to a bioinformatics analysis pipeline, was employed as a key factor of this technique. As a result, specific localization of GFP in the chloroplast was observed. It would be useful to engineer the lipid synthesis pathways existing in the chloroplast. Furthermore, intensive gathering of GFP in the rod-like structure was also detected, which has not been observed in model diatom studies. As comparing with electron microscopic observation, the structure was estimated to be a pyrenoid.
Collapse
Affiliation(s)
- Yoshihiko Sunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Yabuuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masaki Muto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
42
|
Maeda Y, Sunaga Y, Yoshino T, Tanaka T. Oleosome-associated protein of the oleaginous diatom Fistulifera solaris contains an endoplasmic reticulum-targeting signal sequence. Mar Drugs 2014; 12:3892-903. [PMID: 24983635 PMCID: PMC4113804 DOI: 10.3390/md12073892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Microalgae tend to accumulate lipids as an energy storage material in the specific organelle, oleosomes. Current studies have demonstrated that lipids derived from microalgal oleosomes are a promising source of biofuels, while the oleosome formation mechanism has not been fully elucidated. Oleosome-associated proteins have been identified from several microalgae to elucidate the fundamental mechanisms of oleosome formation, although understanding their functions is still in infancy. Recently, we discovered a diatom-oleosome-associated-protein 1 (DOAP1) from the oleaginous diatom, Fistulifera solaris JPCC DA0580. The DOAP1 sequence implied that this protein might be transported into the endoplasmic reticulum (ER) due to the signal sequence. To ensure this, we fused the signal sequence to green fluorescence protein. The fusion protein distributed around the chloroplast as like a meshwork membrane structure, indicating the ER localization. This result suggests that DOAP1 could firstly localize at the ER, then move to the oleosomes. This study also demonstrated that the DOAP1 signal sequence allowed recombinant proteins to be specifically expressed in the ER of the oleaginous diatom. It would be a useful technique for engineering the lipid synthesis pathways existing in the ER, and finally controlling the biofuel quality.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yoshihiko Sunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
43
|
Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, Bowler C, Botté C, Maréchal E. Evolution of galactoglycerolipid biosynthetic pathways – From cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 2014; 54:68-85. [DOI: 10.1016/j.plipres.2014.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
|
44
|
Light acclimation in diatoms: from phenomenology to mechanisms. Mar Genomics 2014; 16:5-15. [PMID: 24412570 DOI: 10.1016/j.margen.2013.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
This review summarizes the current knowledge about light acclimation processes in diatoms. Against the background of the phenomenological description of the process in the 70s-80s, the recent progress in diatom genetics has generated new information about the underlying mechanisms. Although the general responses of diatoms to changes in the light climate are comparable to the green algal lineage, many differences in the underlying mechanisms have been observed in the last ten years, yielding clear evidence that the regulatory network in diatoms has unique traits that might explain their ecological success.
Collapse
|
45
|
Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proc Natl Acad Sci U S A 2013; 110:20123-8. [PMID: 24277817 DOI: 10.1073/pnas.1304727110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diatoms, unicellular phytoplankton that account for ∼40% of marine primary productivity, often dominate coastal and open-ocean upwelling zones. Limitation of growth and productivity by iron at low light is attributed to an elevated cellular Fe requirement for the synthesis of Fe-rich photosynthetic proteins. In the dynamic coastal environment, Fe concentrations and daily surface irradiance levels can vary by two to three orders of magnitude on short spatial and temporal scales. Although genome-wide studies are beginning to provide insight into the molecular mechanisms used by diatoms to rapidly respond to such fluxes, their functional role in mediating the Fe stress response remains uncharacterized. Here, we show, using reverse genetics, that a death-specific protein (DSP; previously named for its apparent association with cell death) in the coastal diatom Thalassiosira pseudonana (TpDSP1) localizes to the plastid and enhances growth during acute Fe limitation at subsaturating light by increasing the photosynthetic efficiency of carbon fixation. Clone lines overexpressing TpDSP1 had a lower quantum requirement for growth, increased levels of photosynthetic and carbon fixation proteins, and increased cyclic electron flow around photosystem I. Cyclic electron flow is an ATP-producing pathway essential in higher plants and chlorophytes with a heretofore unappreciated role in diatoms. However, cells under replete conditions were characterized as having markedly reduced growth and photosynthetic rates at saturating light, thereby constraining the benefits afforded by overexpression. Widespread distribution of DSP-like sequences in environmental metagenomic and metatranscriptomic datasets highlights the presence and relevance of this protein in natural phytoplankton populations in diverse oceanic regimes.
Collapse
|
46
|
Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, Hogan DA, Housman DE. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mol Biol 2013; 14:25. [PMID: 24180290 PMCID: PMC3832940 DOI: 10.1186/1471-2199-14-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions. RESULTS Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions. CONCLUSION Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important neurotoxin that affects human health as well as ecosystem function.
Collapse
Affiliation(s)
- Katie Rose Boissonneault
- Department of Biological Sciences, Plymouth State University, MSC 64, 17 High St., Plymouth, NH 03264, USA
- Koch Institute, Massachusetts Institute of Technology, 76-553, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brooks M Henningsen
- Department of Biological Sciences, Plymouth State University, MSC 64, 17 High St., Plymouth, NH 03264, USA
- Present address: Mascoma Corporation, 67 Etna Road Suite 300, Lebanon, NH 03766, USA
| | - Stephen S Bates
- Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick E1C 9B6, Canada
| | - Deborah L Robertson
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Sean Milton
- Koch Institute, Massachusetts Institute of Technology, 76-553, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Present address: Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, MA 02139, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Vail Building Room 208, Dartmouth Medical School, Hanover, NH 03755, USA
| | - David E Housman
- Koch Institute, Massachusetts Institute of Technology, 76-553, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Stork S, Lau J, Moog D, Maier UG. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. PROTOPLASMA 2013; 250:1013-1023. [PMID: 23612938 DOI: 10.1007/s00709-013-0498-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Engulfment of a red or green alga by another eukaryote and subsequent reduction of the symbiont to an organelle, termed a complex plastid, is a process known as secondary endosymbiosis and is shown in a diverse group of eukaryotic organisms. Important members are heterokontophytes, haptophytes, cryptophytes, and apicomplexan parasites, all of them with complex plastids of red algal origin surrounded by four membranes. Although the evolutionary relationship between these organisms is still debated, they share common mechanisms for plastid protein import. In this review, we describe recent findings and current models on preprotein import into complex plastids with a special focus on the second outermost plastid membrane. Derived from the plasma membrane of the former endosymbiont, the evolution of protein transport across this so-called periplastidal membrane most likely represented the challenge in the transition from an endosymbiont to a host-dependent organelle. Here, remodeling and relocation of the symbiont endoplasmic reticulum-associated degradation (ERAD) machinery gave rise to a translocon complex termed symbiont-specific ERAD-like machinery and provides a fascinating insight into complex cellular evolution.
Collapse
Affiliation(s)
- Simone Stork
- Laboratory for Cell Biology, Philipps-Universität Marburg, Karl-von-Frisch Str.8, 35032, Marburg, Germany
| | | | | | | |
Collapse
|
48
|
Huesgen PF, Alami M, Lange PF, Foster LJ, Schröder WP, Overall CM, Green BR. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLoS One 2013; 8:e74483. [PMID: 24066144 PMCID: PMC3774753 DOI: 10.1371/journal.pone.0074483] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/01/2013] [Indexed: 01/14/2023] Open
Abstract
In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.
Collapse
Affiliation(s)
- Pitter F. Huesgen
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meriem Alami
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philipp F. Lange
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfgang P. Schröder
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Christopher M. Overall
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beverley R. Green
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
49
|
Abstract
Diatoms are microalgae that possess so-called "complex plastids," which evolved by secondary endosymbiosis and are surrounded by four membranes. Thus, in contrast to primary plastids, which are surrounded by only two membranes, nucleus-encoded proteins of complex plastids face additional barriers, i.e., during evolution, mechanisms had to evolve to transport preproteins across all four membranes. This study reveals that there exist glycoproteins not only in primary but also in complex plastids, making transport issues even more complicated, as most translocation machineries are not believed to be able to transport bulky proteins. We show that plastidal reporter proteins with artificial N-glycosylation sites are indeed glycosylated during transport into the complex plastid of the diatom Phaeodactylum tricornutum. Additionally, we identified five endogenous glycoproteins, which are transported into different compartments of the complex plastid. These proteins get N-glycosylated during transport across the outermost plastid membrane and thereafter are transported across the second, third, and fourth plastid membranes in the case of stromal proteins. The results of this study provide insights into the evolutionary pressure on translocation mechanisms and pose unique questions on the operating mode of well-known transport machineries like the translocons of the outer/inner chloroplast membranes (Toc/Tic).
Collapse
|
50
|
Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:583-607. [PMID: 23451781 DOI: 10.1146/annurev-arplant-050312-120144] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastids (chloroplasts) have long been recognized to have originated by endosymbiosis of a cyanobacterium, but their subsequent evolutionary history has proved complex because they have also moved between eukaryotes during additional rounds of secondary and tertiary endosymbioses. Much of this history has been revealed by genomic analyses, but some debates remain unresolved, in particular those relating to secondary red plastids of the chromalveolates, especially cryptomonads. Here, I examine several fundamental questions and assumptions about endosymbiosis and plastid evolution, including the number of endosymbiotic events needed to explain plastid diversity, whether the genetic contribution of the endosymbionts to the host genome goes far beyond plastid-targeted genes, and whether organelle origins are best viewed as a singular transition involving one symbiont or as a gradual transition involving a long line of transient food/symbionts. I also discuss a possible link between transporters and the evolution of protein targeting in organelle integration.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research and Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4.
| |
Collapse
|