1
|
Ojeda-Granados C, Abondio P, Setti A, Sarno S, Gnecchi-Ruscone GA, González-Orozco E, De Fanti S, Jiménez-Kaufmann A, Rangel-Villalobos H, Moreno-Estrada A, Sazzini M. Dietary, Cultural and Pathogens-Related Selective Pressures Shaped Differential Adaptive Evolution Among Native Mexican Populations. Mol Biol Evol 2021; 39:6379730. [PMID: 34597392 PMCID: PMC8763094 DOI: 10.1093/molbev/msab290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations.
Collapse
Affiliation(s)
- Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara "Fray Antonio Alcalde" & Health Sciences Center, University of Guadalajara, Jalisco, Mexico
| | - Paolo Abondio
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Alice Setti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo-Trento, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Guido Alberto Gnecchi-Ruscone
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eduardo González-Orozco
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Sara De Fanti
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| | - Andres Jiménez-Kaufmann
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Héctor Rangel-Villalobos
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| |
Collapse
|
2
|
Blagotinšek Cokan K, Mavri M, Rutland CS, Glišić S, Senćanski M, Vrecl M, Kubale V. Critical Impact of Different Conserved Endoplasmic Retention Motifs and Dopamine Receptor Interacting Proteins (DRIPs) on Intracellular Localization and Trafficking of the D 2 Dopamine Receptor (D 2-R) Isoforms. Biomolecules 2020; 10:biom10101355. [PMID: 32977535 PMCID: PMC7598153 DOI: 10.3390/biom10101355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The type 2 dopamine receptor D2 (D2-R), member of the G protein-coupled receptor (GPCR) superfamily, exists in two isoforms, short (D2S-R) and long (D2L-R). They differ by an additional 29 amino acids (AA) in the third cytoplasmic loop (ICL3) of the D2L-R. These isoforms differ in their intracellular localization and trafficking functionality, as D2L-R possesses a larger intracellular pool, mostly in the endoplasmic reticulum (ER). This review focuses on the evolutionarily conserved motifs in the ICL3 of the D2-R and proteins interacting with the ICL3 of both isoforms, specifically with the 29 AA insert. These motifs might be involved in D2-R exit from the ER and have an impact on cell-surface and intracellular localization and, therefore, also play a role in the function of dopamine receptor signaling, ligand binding and possible homo/heterodimerization. Our recent bioinformatic data on potential new interaction partners for the ICL3 of D2-Rs are also presented. Both are highly relevant, and have clinical impacts on the pathophysiology of several diseases such as Parkinson’s disease, schizophrenia, Tourette’s syndrome, Huntington’s disease, manic depression, and others, as they are connected to a variety of essential motifs and differences in communication with interaction partners.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, Sutton, Bonington Campus, Loughborough LE12 5RD, UK;
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
- Correspondence:
| |
Collapse
|
3
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
4
|
López-Aranda MF, Navarro-Lobato I, López-Téllez JF, Blanco E, Masmudi-Martín M, Khan ZU. Activation of caspase-3 pathway by expression of sGαi2 protein in BHK cells. Neurosci Lett 2008; 439:37-41. [DOI: 10.1016/j.neulet.2008.04.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
5
|
López-Aranda MF, López-Téllez JF, Blanco E, Masmudi-Martín M, Navarro-Lobato I, Khan ZU. A dynamic expression pattern of sGalpha(i2) protein during early period of postnatal rat brain development. Int J Dev Neurosci 2008; 26:611-24. [PMID: 18472243 DOI: 10.1016/j.ijdevneu.2008.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022] Open
Abstract
The function of sGalphai2 protein in central nervous system is not well understood. Therefore to explore the possible role of this protein in postnatal brain development, we have analyzed the protein expression pattern of brain obtained from rats of postnatal day 0 (P0) to P90 by dot-blots and immunocytochemistry techniques. In dot-blots, both nuclear and membrane fractions showed a gradual decrease from P0 to P60. Highest protein level was observed at the age of P0. There was also a trend of decline in the sGalphai2 protein from P0 to P90 in brain sections stained by immunocytochemistry method. At P0, the protein labeling was highest in cerebral cortex, hippocampus, cerebellum and mitral cell layer. In cerebral cortex, a drop in the immunolabeling of sGalphai2 protein was observed at P3, which was significantly increased at the age of P5. However, in striatum and olfactory tubercle, it was maintained through P0-P10 and P0-P5, respectively. Thalamus was one of the areas where labeling was not as strong as cortex, hippocampus or striatum. In contrary to other areas, immunostaining of sGalphai2 in corpus-callosum and lacunosum-molecular was not seen at P0 and appeared in advanced postnatal ages. A detectable level of sGalphai2 protein was observed at P5 in carpus-callosum and at P20 in lacunosum-molecular. A high level of sGalphai2 protein in the period when cellular layer organization and synaptic innervations, synaptic connections and maturation take place, suggests for a potential role of this protein in the early postnatal brain development.
Collapse
Affiliation(s)
- Manuel F López-Aranda
- Laboratory of Neurobiology, CIMES, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga 29071, Spain.
| | | | | | | | | | | |
Collapse
|