1
|
Bala A, Roy S, Das D, Marturi V, Mondal C, Patra S, Haldar PK, Samajdar G. Role of Glycogen Synthase Kinase-3 in the Etiology of Type 2 Diabetes Mellitus: A Review. Curr Diabetes Rev 2022; 18:e300721195147. [PMID: 34376135 DOI: 10.2174/1573399817666210730094225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
The risk of type 2 diabetes mellitus (T2DM) is increasing abundantly due to lifestyle-related obesity and associated cardiovascular problems. Presently, Glycogen synthase kinase-3 (GSK-3) has gained considerable attention from biomedical scientists to treat diabetes. Phosphorylation of GSK-3 permits a number of cellular activities like regulation of cell signaling, cellular metabolism, cell proliferation and cellular transport. Inhibiting GSK-3 activity by pharmacological intervention has become an important strategy for the management of T2DM. This review focuses on the schematic representation of fundamental GSK-3 enzymology and encompasses the GSK-3 inhibitors as a future therapeutic lead target for the management of T2DM that may significantly regulate insulin sensitivity to insulin receptor, glycogen synthesis and glucose metabolism. The various signaling mechanisms of inhibiting the GSK-3 by describing insulin signaling through Insulin Receptor Substrate (IRS-1), Phosphatidylinositol-3 Kinase (PI3K) and Protein Kinase B (PKB/ AKT) pathways that may hopefully facilitate the pharmacologist to design for antidiabetic drug evaluation model in near future have also been highlighted.
Collapse
Affiliation(s)
- Asis Bala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, EPIP Campus, Hajipur, Bihar 844102, India
- Division of Pharmacology and Toxicology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Panihati, Sodepur, Kolkata-700114; India
| | - Susmita Roy
- Division of Pharmacology and Toxicology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Panihati, Sodepur, Kolkata-700114; India
| | - Debanjana Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Campus, Hajipur, Bihar 844102, India
| | - Venkatesh Marturi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, EPIP Campus, Hajipur, Bihar 844102, India
| | - Chaitali Mondal
- TCG Life Sciences (Chembiotek) Pvt. Ltd., Sector V, Salt Lake Electronics Complex, Kolkata, West Bengal 700091, India
| | - Susmita Patra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Gourav Samajdar
- Division of Pharmacology and Toxicology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Panihati, Sodepur, Kolkata-700114; India
| |
Collapse
|
2
|
Buckley C, Wilson C, McCarron JG. FK506 regulates Ca 2+ release evoked by inositol 1,4,5-trisphosphate independently of FK-binding protein in endothelial cells. Br J Pharmacol 2020; 177:1131-1149. [PMID: 31705533 PMCID: PMC7042112 DOI: 10.1111/bph.14905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose FK506 and rapamycin are modulators of FK‐binding proteins (FKBP) that are used to suppress immune function after organ and hematopoietic stem cell transplantations. The drugs share the unwanted side‐effect of evoking hypertension that is associated with reduced endothelial function and nitric oxide production. The underlying mechanisms are not understood. FKBP may regulate IP3 receptors (IP3R) and ryanodine receptors (RyR) to alter Ca2+ signalling in endothelial cells. Experimental Approach We investigated the effects of FK506 and rapamycin on Ca2+ release via IP3R and RyR in hundreds of endothelial cells, using the indicator Cal‐520, in intact mesenteric arteries from male Sprague‐Dawley rats. IP3Rs were activated by acetylcholine or localised photo‐uncaging of IP3, and RyR by caffeine. Key Results While FKBPs were present, FKBP modulation with rapamycin did not alter IP3‐evoked Ca2+ release. Conversely, FK506, which modulates FKBP and blocks calcineurin, increased IP3‐evoked Ca2+ release. Inhibition of calcineurin (okadiac acid or cypermethrin) also increased IP3‐evoked Ca2+ release and blocked FK506 effects. When calcineurin was inhibited, FK506 reduced IP3‐evoked Ca2+ release. These findings suggest that IP3‐evoked Ca2+ release is not modulated by FKBP, but by FK506‐mediated calcineurin inhibition. The RyR modulators caffeine and ryanodine failed to alter Ca2+ signalling suggesting that RyR is not functional in native endothelium. Conclusion and Implications The hypertensive effects of the immunosuppressant drugs FK506 and rapamycin, while mediated by endothelial cells, do not appear to be exerted at the documented cellular targets of Ca2+ release and altered FKBP binding to IP3 and RyR.
Collapse
Affiliation(s)
- Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Zhang X, Lee MD, Wilson C, McCarron JG. Hydrogen peroxide depolarizes mitochondria and inhibits IP 3-evoked Ca 2+ release in the endothelium of intact arteries. Cell Calcium 2019; 84:102108. [PMID: 31715384 PMCID: PMC6891240 DOI: 10.1016/j.ceca.2019.102108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
H2O2 is produced by several cell processes including mitochondria and may act as an intracellular messenger and cell-cell signalling molecule. Spontaneous local Ca2+ signals and IP3-evoked Ca2+ increases were inhibited by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria via a decrease in the mitochondrial membrane potential. H2O2-induced mitochondrial depolarization and inhibition of IP3-evoked Ca2+ release, may protect mitochondria from Ca2+ overload during IP3-linked Ca2+ signals.
Hydrogen peroxide (H2O2) is a mitochondrial-derived reactive oxygen species (ROS) that regulates vascular signalling transduction, vasocontraction and vasodilation. Although the physiological role of ROS in endothelial cells is acknowledged, the mechanisms underlying H2O2 regulation of signalling in native, fully-differentiated endothelial cells is unresolved. In the present study, the effects of H2O2 on Ca2+ signalling were investigated in the endothelium of intact rat mesenteric arteries. Spontaneous local Ca2+ signals and acetylcholine evoked Ca2+ increases were inhibited by H2O2. H2O2 inhibition of acetylcholine-evoked Ca2+ signals was reversed by catalase. H2O2 exerts its inhibition on the IP3 receptor as Ca2+ release evoked by photolysis of caged IP3 was supressed by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria. H2O2 depolarized mitochondria membrane potential. Acetylcholine-evoked Ca2+ release was inhibited by depolarisation of the mitochondrial membrane potential by the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or complex 1 inhibitor, rotenone. We propose that the suppression of IP3-evoked Ca2+ release by H2O2 arises from the decrease in mitochondrial membrane potential. These results suggest that mitochondria may protect themselves against Ca2+ overload during IP3-linked Ca2+ signals by a H2O2 mediated negative feedback depolarization of the organelle and inhibition of IP3-evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
4
|
Wilson C, Zhang X, Buckley C, Heathcote HR, Lee MD, McCarron JG. Increased Vascular Contractility in Hypertension Results From Impaired Endothelial Calcium Signaling. Hypertension 2019; 74:1200-1214. [PMID: 31542964 PMCID: PMC6791503 DOI: 10.1161/hypertensionaha.119.13791] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells line all blood vessels and are critical regulators of vascular tone. In hypertension, disruption of endothelial function alters the release of endothelial-derived vasoactive factors and results in increased vascular tone. Although the release of endothelial-derived vasodilators occurs in a Ca2+-dependent manner, little is known on how Ca2+ signaling is altered in hypertension. A key element to endothelial control of vascular tone is Ca2+ signals at specialized regions (myoendothelial projections) that connect endothelial cells and smooth muscle cells. This work describes disruption in the operation of this key Ca2+ signaling pathway in hypertension. We show that vascular reactivity to phenylephrine is increased in hypertensive (spontaneously hypertensive rat) when compared with normotensive (Wistar Kyoto) rats. Basal endothelial Ca2+ activity limits vascular contraction, but that Ca2+-dependent control is impaired in hypertension. When changes in endothelial Ca2+ levels are buffered, vascular contraction to phenylephrine increased, resulting in similar responses in normotension and hypertension. Local endothelial IP3(inositol trisphosphate)-mediated Ca2+ signals are smaller in amplitude, shorter in duration, occur less frequently, and arise from fewer sites in hypertension. Spatial control of endothelial Ca2+ signaling is also disrupted in hypertension: local Ca2+ signals occur further from myoendothelial projections in hypertension. The results demonstrate that the organization of local Ca2+ signaling circuits occurring at myoendothelial projections is disrupted in hypertension, giving rise to increased contractile responses.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
McCarron JG, Lee MD, Wilson C. The Endothelium Solves Problems That Endothelial Cells Do Not Know Exist. Trends Pharmacol Sci 2017; 38:322-338. [PMID: 28214012 PMCID: PMC5381697 DOI: 10.1016/j.tips.2017.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
The endothelium is the single layer of cells that lines the entire cardiovascular system and regulates vascular tone and blood-tissue exchange, recruits blood cells, modulates blood clotting, and determines the formation of new blood vessels. To control each function, the endothelium uses a remarkable sensory capability to continuously monitor vanishingly small changes in the concentrations of many simultaneously arriving extracellular activators that each provides cues to the physiological state. Here we suggest that the extraordinary sensory capabilities of the endothelium do not come from single cells but from the combined activity of a large number of endothelial cells. Each cell has a limited, but distinctive, sensory capacity and shares information with neighbours so that sensing is distributed among cells. Communication of information among connected cells provides system-level sensing substantially greater than the capabilities of any single cell and, as a collective, the endothelium solves sensory problems too complex for any single cell.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
6
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Wilson C, Lee MD, McCarron JG. Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 2016; 594:7267-7307. [PMID: 27730645 PMCID: PMC5157078 DOI: 10.1113/jp272927] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli. The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh-induced activation of the endothelium is unknown. In the present study, we investigated the mechanisms of flow-mediated endothelial calcium signalling. Our data establish that flow-mediated endothelial calcium responses arise from the autocrine action of non-neuronal ACh released by the endothelium. ABSTRACT Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow-mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow-activated release of ACh from the endothelium is non-vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeSIPBS BuildingGlasgowUK
| | - Matthew D. Lee
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeSIPBS BuildingGlasgowUK
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeSIPBS BuildingGlasgowUK
| |
Collapse
|
8
|
Sandison ME, Dempster J, McCarron JG. The transition of smooth muscle cells from a contractile to a migratory, phagocytic phenotype: direct demonstration of phenotypic modulation. J Physiol 2016; 594:6189-6209. [PMID: 27393389 PMCID: PMC5088226 DOI: 10.1113/jp272729] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022] Open
Abstract
Key points Smooth muscle cell (SMC) phenotypic conversion from a contractile to a migratory phenotype is proposed to underlie cardiovascular disease but its contribution to vascular remodelling and even its existence have recently been questioned. Tracking the fate of individual SMCs is difficult as no specific markers of migratory SMCs exist. This study used a novel, prolonged time‐lapse imaging approach to continuously track the behaviour of unambiguously identified, fully differentiated SMCs. In response to serum, highly‐elongated, contractile SMCs initially rounded up, before spreading and migrating and these migratory cells displayed clear phagocytic activity. This study provides a direct demonstration of the transition of fully contractile SMCs to a non‐contractile, migratory phenotype with phagocytic capacity that may act as a macrophage‐like cell.
Abstract Atherosclerotic plaques are populated with smooth muscle cells (SMCs) and macrophages. SMCs are thought to accumulate in plaques because fully differentiated, contractile SMCs reprogramme into a ‘synthetic’ migratory phenotype, so‐called phenotypic modulation, whilst plaque macrophages are thought to derive from blood‐borne myeloid cells. Recently, these views have been challenged, with reports that SMC phenotypic modulation may not occur during vascular remodelling and that plaque macrophages may not be of haematopoietic origin. Following the fate of SMCs is complicated by the lack of specific markers for the migratory phenotype and direct demonstrations of phenotypic modulation are lacking. Therefore, we employed long‐term, high‐resolution, time‐lapse microscopy to track the fate of unambiguously identified, fully‐differentiated, contractile SMCs in response to the growth factors present in serum. Phenotypic modulation was clearly observed. The highly elongated, contractile SMCs initially rounded up, for 1–3 days, before spreading outwards. Once spread, the SMCs became motile and displayed dynamic cell‐cell communication behaviours. Significantly, they also displayed clear evidence of phagocytic activity. This macrophage‐like behaviour was confirmed by their internalisation of 1 μm fluorescent latex beads. However, migratory SMCs did not uptake acetylated low‐density lipoprotein or express the classic macrophage marker CD68. These results directly demonstrate that SMCs may rapidly undergo phenotypic modulation and develop phagocytic capabilities. Resident SMCs may provide a potential source of macrophages in vascular remodelling. Smooth muscle cell (SMC) phenotypic conversion from a contractile to a migratory phenotype is proposed to underlie cardiovascular disease but its contribution to vascular remodelling and even its existence have recently been questioned. Tracking the fate of individual SMCs is difficult as no specific markers of migratory SMCs exist. This study used a novel, prolonged time‐lapse imaging approach to continuously track the behaviour of unambiguously identified, fully differentiated SMCs. In response to serum, highly‐elongated, contractile SMCs initially rounded up, before spreading and migrating and these migratory cells displayed clear phagocytic activity. This study provides a direct demonstration of the transition of fully contractile SMCs to a non‐contractile, migratory phenotype with phagocytic capacity that may act as a macrophage‐like cell.
Collapse
Affiliation(s)
- Mairi E Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John Dempster
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
9
|
Wilson C, Saunter CD, Girkin JM, McCarron JG. Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium. FASEB J 2016; 30:2000-13. [PMID: 26873937 PMCID: PMC4836367 DOI: 10.1096/fj.201500090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
Agonist-mediated signaling by the endothelium controls virtually all vascular functions. Because of the large diversity of agonists, each with varying concentrations, background noise often obscures individual cellular signals. How the endothelium distinguishes low-level fluctuations from noise and decodes and integrates physiologically relevant information remains unclear. Here, we recorded changes in intracellular Ca(2+) concentrations in response to acetylcholine in areas encompassing hundreds of endothelial cells from inside intact pressurized arteries. Individual cells responded to acetylcholine with a concentration-dependent increase in Ca(2+) signals spanning a single order of magnitude. Interestingly, however, intercellular response variation extended over 3 orders of magnitude of agonist concentration, thus crucially enhancing the collective bandwidth of endothelial responses to agonists. We also show the accuracy of this collective mode of detection is facilitated by spatially restricted clusters of comparably sensitive cells arising from heterogeneous receptor expression. Simultaneous stimulation of clusters triggered Ca(2+) signals that were transmitted to neighboring cells in a manner that scaled with agonist concentration. Thus, the endothelium detects agonists by acting as a distributed sensing system. Specialized clusters of detector cells, analogous to relay nodes in modern communication networks, integrate populationwide inputs, and enable robust noise filtering for efficient high-fidelity signaling.-Wilson, C., Saunter, C. D., Girkin, J. M., McCarron, J. G. Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom; and
| | - Christopher D Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, Durham, United Kingdom
| | - John M Girkin
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, Durham, United Kingdom
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom; and
| |
Collapse
|
10
|
Wilson C, Saunter CD, Girkin JM, McCarron JG. Pressure-dependent regulation of Ca2+ signalling in the vascular endothelium. J Physiol 2015; 593:5231-53. [PMID: 26507455 PMCID: PMC4704526 DOI: 10.1113/jp271157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Key points Increased pressure suppresses endothelial control of vascular tone but it remains uncertain (1) how pressure is sensed by the endothelium and (2) how the vascular response is inhibited. This study used a novel imaging method to study large numbers of endothelial cells in arteries that were in a physiological configuration and held at normal blood pressures. Increased pressure suppressed endothelial IP3‐mediated Ca2+ signals. Pressure modulated endothelial cell shape. The changes in cell shape may alter endothelial Ca2+ signals by modulating the diffusive environment for Ca2+ near IP3 receptors. Endothelial pressure‐dependent mechanosensing may occur without a requirement for a conventional molecular mechanoreceptor.
Abstract The endothelium is an interconnected network upon which haemodynamic mechanical forces act to control vascular tone and remodelling in disease. Ca2+ signalling is central to the endothelium's mechanotransduction and networked activity. However, challenges in imaging Ca2+ in large numbers of endothelial cells under conditions that preserve the intact physical configuration of pressurized arteries have limited progress in understanding how pressure‐dependent mechanical forces alter networked Ca2+ signalling. We developed a miniature wide‐field, gradient‐index (GRIN) optical probe designed to fit inside an intact pressurized artery that permitted Ca2+ signals to be imaged with subcellular resolution in a large number (∼200) of naturally connected endothelial cells at various pressures. Chemical (acetylcholine) activation triggered spatiotemporally complex, propagating inositol trisphosphate (IP3)‐mediated Ca2+ waves that originated in clusters of cells and progressed from there across the endothelium. Mechanical stimulation of the artery, by increased intraluminal pressure, flattened the endothelial cells and suppressed IP3‐mediated Ca2+ signals in all activated cells. By computationally modelling Ca2+ release, endothelial shape changes were shown to alter the geometry of the Ca2+ diffusive environment near IP3 receptor microdomains to limit IP3‐mediated Ca2+ signals as pressure increased. Changes in cell shape produce a geometric microdomain regulation of IP3‐mediated Ca2+ signalling to explain macroscopic pressure‐dependent, endothelial mechanosensing without the need for a conventional mechanoreceptor. The suppression of IP3‐mediated Ca2+ signalling may explain the decrease in endothelial activity as pressure increases. GRIN imaging provides a convenient method that gives access to hundreds of endothelial cells in intact arteries in physiological configuration. Increased pressure suppresses endothelial control of vascular tone but it remains uncertain (1) how pressure is sensed by the endothelium and (2) how the vascular response is inhibited. This study used a novel imaging method to study large numbers of endothelial cells in arteries that were in a physiological configuration and held at normal blood pressures. Increased pressure suppressed endothelial IP3‐mediated Ca2+ signals. Pressure modulated endothelial cell shape. The changes in cell shape may alter endothelial Ca2+ signals by modulating the diffusive environment for Ca2+ near IP3 receptors. Endothelial pressure‐dependent mechanosensing may occur without a requirement for a conventional molecular mechanoreceptor.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Christopher D Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - John M Girkin
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
11
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
12
|
McCarron JG, Olson ML, Chalmers S, Girkin JM. Single cell and subcellular measurements of intracellular Ca²⁺ concentration. Methods Mol Biol 2013; 937:239-251. [PMID: 23007591 DOI: 10.1007/978-1-62703-086-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Increases in bulk average cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) are derived from the combined activities of many Ca(2+) channels. Near (<100 nm) the mouth of each of these channels the local [Ca(2+)](c) rises and falls more quickly and reaches much greater values than occurs in the bulk cytoplasm. Even during apparently uniform, steady-state [Ca(2+)] increases large local inhomogeneities exist near channels. These local increases modulate processes that are sensitive to rapid and large changes in [Ca(2+)] but they cannot easily be visualized with conventional imaging approaches. The [Ca(2+)] changes near channels can be examined using total internal reflection fluorescence microscopy (TIRF) to excite fluorophores that lie within 100 nm of the plasma membrane. TIRF is particularly powerful when combined with electrophysiology so that ion channel activity can be related simultaneously to the local subplasma membrane and bulk average [Ca(2+)](c). Together these techniques provide a better understanding of the local modulation and control of Ca(2+) signals.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Strathclyde University, Glasgow, UK
| | | | | | | |
Collapse
|
13
|
Zhao Y, Graeff R, Lee HC. Roles of cADPR and NAADP in pancreatic cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:719-29. [PMID: 22677461 DOI: 10.1093/abbs/gms044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are Ca(2+)-mobilizing nucleotides that were discovered in the late 1980s. Two decades of investigations have built up a considerable understanding about these two molecules that are related because both are derived from pyridine nucleotides and known to be generated by CD38/ADP-ribosyl cyclases. cADPR has been shown to target the ryanodine receptors in the endoplasmic reticulum whereas NAADP stimulates the two-pore channels in the endo-lysosomes. Accumulating results indicate that cADPR and NAADP are second messenger molecules mediating Ca(2+) signaling activated by a wide range of agonists. This article reviews what is known about these two molecules, especially regarding their signaling roles in the pancreatic cells.
Collapse
Affiliation(s)
- Yongjuan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
14
|
LI YM, JI GJ. Evolution in Research of Ryanodine Receptors and Its Subtype 2 Regulators*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
16
|
Morgan AJ, Galione A. Investigating cADPR and NAADP in intact and broken cell preparations. Methods 2008; 46:194-203. [PMID: 18852050 DOI: 10.1016/j.ymeth.2008.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022] Open
Abstract
The body of literature characterizing cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca2+-mobilizing second messengers is growing apace. However, their unique properties may, for the uninitiated, make them difficult to work with. This article reviews many of the available techniques (and associated pitfalls) for investigating these nucleotide messengers, predominantly focusing upon optical techniques using fluorescent reporters to measure Ca2+ in the cytosol as well as Ca2+ or pH within the lumen of intracellular organelles.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxon OX1 3QT, UK.
| | | |
Collapse
|
17
|
Abstract
Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs.
Collapse
|
18
|
Abstract
Smooth muscle cells (SMC) make up the muscular portion of the gastrointestinal (GI) tract from the distal oesophagus to the internal anal sphincter. Coordinated contractions of these cells produce the motor patterns of GI motility. Considerable progress was made during the last 20 years to understand the basic mechanisms controlling excitation-contraction (E-C) coupling. The smooth muscle motor is now understood in great molecular detail, and much has been learned about the mechanisms that deliver and recover Ca2+ during contractions. The majority of Ca2+ that initiates contractions comes from the external solution and is supplied by voltage-dependent Ca2+ channels (VDCC). VDCC are regulated largely by the effects of K+ and non-selective cation conductances (NSCC) on cell membrane potential and excitability. Ca2+ entry is supplemented by release of Ca2+ from IP(3) receptor-operated stores and by mechanisms that alter the sensitivity of the contractile apparatus to changes in cytoplasmic Ca2+. Molecular studies of the regulation of smooth muscle have been complicated by the plasticity of SMC and difficulties in culturing these cells without dramatic phenotypic changes. Major questions remain to be resolved regarding the details of E-C coupling in human GI smooth muscles. New discoveries regarding molecular expression that give GI smooth muscle their unique properties, the phenotypic changes that occur in SMC in GI motor disorders, tissue engineering approaches to repair or replace defective muscular regions, and molecular manipulations of GI smooth muscles in animals models and in cell culture will be topics for exciting investigations in the future.
Collapse
Affiliation(s)
- K M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
19
|
Morita K, Saida M, Morioka N, Kitayama T, Akagawa Y, Dohi T. Cyclic ADP-ribose mediates formyl methionyl leucyl phenylalanine (fMLP)-induced intracellular Ca(2+) rise and migration of human neutrophils. J Pharmacol Sci 2008; 106:492-504. [PMID: 18344610 DOI: 10.1254/jphs.fp0072083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Although cyclic ADP-ribose (cADPR), a novel Ca(2+)-mobilizing mediator, is suggested to be involved in the functions of neutrophils in rodents, its role in human neutrophils remains unclear. The present study examined the ability of cADPR to mobilize Ca(2+) and mediate formyl methionyl leucyl phenylalanine (fMLP)-stimulated increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and migration in human neutrophils. cADPR induced Ca(2+) release from digitonin-permeabilized neutrophils, and the release was blocked by 8Br-cADPR, an antagonist of cADPR. Immunophilin ligands, FK506 and rapamycin, but not cyclosporine A, inhibited cADPR-induced Ca(2+) release. 8Br-cADPR partially reduced fMLP-induced [Ca(2+)](i) rise and abolished the rise in combination with 2APB, an IP(3)-receptor antagonist. Anti-CD38Ab and NADase that interfere with cADPR formation, reduced the fMLP-induced [Ca(2+)](i) rise. When beta-NAD(+), a substrate of ADP-ribosyl cyclase, and cADPR were added to the medium, the former gradually increased [Ca(2+)](i) and the latter potentiated the fMLP-induced [Ca(2+)](i) rise. The beta-NAD(+)-induced [Ca(2+)](i) rise in Ca(2+)-free medium was inhibited by anti-CD38Ab, 8Br-cADPR, FK506, ruthenium red, and thapsigargin. mRNAs of nucleoside transporter (NT), ENT1, ENT2, CNT, and CNT3 were expressed in neutrophils; and their inhibitors, inosine, uridine, and s-(4-nitrobenzyl)-6-thioinosine, reduced the [Ca(2+)](i) rise induced by beta-NAD(+) and fMLP. fMLP-timulated migration was inhibited by the removal of Ca(2+) from the medium or by the addition of 8Br-cADPR, anti-CD38Ab, NADase, and NT inhibitors. These results suggest that cADPR was synthesized extracellularly by CD38, transported into the cells through NTs, and then Ca(2+) was mobilized by FK506-binding protein-dependent process. This process may be involved in fMLP-induced intracellular Ca(2+) signaling and migration in human neutrophils.
Collapse
Affiliation(s)
- Katsuya Morita
- Department of Dental Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Wray S, Shmygol A. Role of the calcium store in uterine contractility. Semin Cell Dev Biol 2007; 18:315-20. [PMID: 17601757 DOI: 10.1016/j.semcdb.2007.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
This article assesses the nature of the sarcoplasmic reticulum (SR) in uterine smooth muscle. Modern imagining techniques have revealed new information about the location and density of Ca storage and release. Release mechanisms, including IP(3) and Ca itself, via ryanodine receptors (RyR), as well as possible roles for cyclic ADP ribose, and the contribution of the SR to relaxation are detailed. The role of the SR Ca-ATPase in both decay of the Ca transient and maintaining Ca homeostasis is reviewed. Recent data on the role of local Ca signals from the SR in contributing to membrane excitability and contractility are discussed, along with interactions with ion channels in lipid microdomains.
Collapse
Affiliation(s)
- Susan Wray
- University of Liverpool, Department of Physiology, Crown Street, Liverpool L69 3BX, United Kingdom.
| | | |
Collapse
|
21
|
McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 2006; 40:461-93. [PMID: 17069885 DOI: 10.1016/j.ceca.2006.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.
Collapse
Affiliation(s)
- John G McCarron
- Department of Physiology and Pharmacology, University of Strathclyde, SIPBS, Glasgow, UK.
| | | | | | | | | |
Collapse
|
22
|
Morita K, Kitayama T, Kitayama S, Dohi T. Cyclic ADP-ribose requires FK506-binding protein to regulate intracellular Ca2+ dynamics and catecholamine release in acetylcholine-stimulated bovine adrenal chromaffin cells. J Pharmacol Sci 2006; 101:40-51. [PMID: 16648664 DOI: 10.1254/jphs.fp0050991] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The present study was undertaken to elucidate whether cyclic ADP-ribose (cADPR) mediates the amplification of Ca2+ signaling and catecholamine release via the involvement of FK506-binding proteins (FKBPs)/ryanodine receptor (RyR) in bovine adrenal chromaffin cells. cADPR induced Ca2+ release in digitonin-permeabilized chromaffin cells and this was blocked by FK506 and rapamycin, ligands for FKBPs; 8Br-cADPR, a competitive antagonist for cADPR; and antibody for FKBP12/12.6, while it was enhanced by cyclosporin A. Ryanodine-induced Ca2+ release was not affected by 8Br-cADPR and was remarkably enhanced by FK506, rapamycin, cyclosporin A, and cADPR. FK506 binds to FKBP12.6 and removes it from RyRs, but cADPR did not affect the binding between FKBP12.6 and RyR. In intact chromaffin cells, 8Br-cADPR, FK506, and rapamycin, but not cyclosporin A attenuated the sustained intracellular free Ca2+ concentration ([Ca2+]i) rise induced by acetylcholine (ACh). 8Br-cADPR, FK506, and SK&F 96365 reduced the Mn2+ entry stimulated with ACh only when Ca2+ was present in the extracellular medium. 8Br-cADPR, FK506, and rapamycin concentration-dependently inhibited the ACh-induced catecholamine (CA) release. Here, we present evidence that FKBP12.6 associated with RyR may be required for Ca2+ release induced by cADPR in bovine adrenal chromaffin cells. cADPR-mediated Ca2+ release from endoplasmic reticulum in ACh-stimulated chromaffin cells is coupled with Ca2+ influx through the plasma membrane which is essential for ACh-stimulated CA release.
Collapse
Affiliation(s)
- Katsuya Morita
- Department of Dental Pharmacology, Division of Integrated Medical Science, Hiroshima University Graduate School of Biomedical Sciences, Kasumi, Japan
| | | | | | | |
Collapse
|
23
|
Evans AM, Wyatt CN, Kinnear NP, Clark JH, Blanco EA. Pyridine nucleotides and calcium signalling in arterial smooth muscle: from cell physiology to pharmacology. Pharmacol Ther 2005; 107:286-313. [PMID: 16005073 DOI: 10.1016/j.pharmthera.2005.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
It is generally accepted that the mobilisation of intracellular Ca2+ stores plays a pivotal role in the regulation of arterial smooth muscle function, paradoxically during both contraction and relaxation. However, the spatiotemporal pattern of different Ca2+ signals that elicit such responses may also contribute to the regulation of, for example, differential gene expression. These findings, among others, demonstrate the importance of discrete spatiotemporal Ca2+ signalling patterns and the mechanisms that underpin them. Of fundamental importance in this respect is the realisation that different Ca2+ storing organelles may be selected by the discrete or coordinated actions of multiple Ca2+ mobilising messengers. When considering such messengers, it is generally accepted that sarcoplasmic reticulum (SR) stores may be mobilised by the ubiquitous messenger inositol 1,4,5 trisphosphate. However, relatively little attention has been paid to the role of Ca2+ mobilising pyridine nucleotides in arterial smooth muscle, namely, cyclic adenosine diphosphate-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review will therefore focus on these novel mechanisms of calcium signalling and their likely therapeutic potential.
Collapse
Affiliation(s)
- A Mark Evans
- Division of Biomedical Sciences, School of Biology, Bute Building, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK.
| | | | | | | | | |
Collapse
|
24
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2005; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
25
|
Fritz N, Macrez N, Mironneau J, Jeyakumar LH, Fleischer S, Morel JL. Ryanodine receptor subtype 2 encodes Ca2+ oscillations activated by acetylcholine via the M2 muscarinic receptor/cADP-ribose signalling pathway in duodenum myocytes. J Cell Sci 2005; 118:2261-70. [PMID: 15870112 DOI: 10.1242/jcs.02344] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterized the signalling pathway activated by acetylcholine that encodes Ca2+ oscillations in rat duodenum myocytes. These oscillations were observed in intact myocytes after removal of external Ca2+, in permeabilized cells after abolition of the membrane potential and in the presence of heparin (an inhibitor of inositol 1,4,5-trisphosphate receptors) but were inhibited by ryanodine, indicating that they are dependent on Ca2+ release from intracellular stores through ryanodine receptors. Ca2+ oscillations were selectively inhibited by methoctramine (a M2 muscarinic receptor antagonist). The M2 muscarinic receptor-activated Ca2+ oscillations were inhibited by 8-bromo cyclic adenosine diphosphoribose and inhibitors of adenosine diphosphoribosyl cyclase (ZnCl2 and anti-CD38 antibody). Stimulation of ADP-ribosyl cyclase activity by acetylcholine was evaluated in permeabilized cells by measuring the production of cyclic guanosine diphosphoribose (a fluorescent compound), which resulted from the cyclization of nicotinamide guanine dinucleotide. As duodenum myocytes expressed the three subtypes of ryanodine receptors, an antisense strategy revealed that the ryanodine receptor subtype 2 alone was required to initiate the Ca2+ oscillations induced by acetylcholine and also by cyclic adenosine diphosphoribose and rapamycin (a compound that induced uncoupling between 12/12.6 kDa FK506-binding proteins and ryanodine receptors). Inhibition of cyclic adenosine diphosphoribose-induced Ca2+ oscillations, after rapamycin treatment, confirmed that both compounds interacted with the ryanodine receptor subtype 2. Our findings show for the first time that the M2 muscarinic receptor activation triggered Ca2+ oscillations in duodenum myocytes by activation of the cyclic adenosine diphosphoribose/FK506-binding protein/ryanodine receptor subtype 2 signalling pathway.
Collapse
Affiliation(s)
- Nicolas Fritz
- Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR 5017, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Bai N, Lee HC, Laher I. Emerging role of cyclic ADP-ribose (cADPR) in smooth muscle. Pharmacol Ther 2004; 105:189-207. [PMID: 15670626 DOI: 10.1016/j.pharmthera.2004.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a naturally occurring cyclic nucleotide and represents a novel class of endogenous Ca(2+) messengers implicated in the regulation of the gating properties of ryanodine receptors (RyRs). This action of cADPR occurs independently from the inositol-1,4,5-trisphosphate (IP(3)) receptor. The regulation of intracellular Ca(2+) release is a fundamental element of cellular Ca(2+) homeostasis since a number of smooth muscle functions (tone, proliferation, apoptosis, and gene expression) are modulated by intracellular Ca(2+) concentration ([Ca(2+)](i)). There has been a surge in the efforts aimed at understanding the mechanisms of cADPR-mediated Ca(2+) mobilization and its impact on smooth muscle function. This review summarizes the proposed roles of cADPR in the regulation of smooth muscle tone.
Collapse
Affiliation(s)
- Ni Bai
- Department of Pharmacology and Therapeutics, University of British Columbia Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|