1
|
Zhang Q, Liang H, Zhao X, Zheng L, Li Y, Gong J, Zhu Y, Jin Y, Yin Y. PTENε suppresses tumor metastasis through regulation of filopodia formation. EMBO J 2021; 40:e105806. [PMID: 33755220 PMCID: PMC8126949 DOI: 10.15252/embj.2020105806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENβ. Here, we report the identification of PTENε (also named as PTEN5), a novel N‐terminal‐extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5′UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Liang
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yunqiao Li
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Jingjing Gong
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yizhang Zhu
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China.,Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Loughran G, Jungreis I, Tzani I, Power M, Dmitriev RI, Ivanov IP, Kellis M, Atkins JF. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J Biol Chem 2018; 293:4434-4444. [PMID: 29386352 PMCID: PMC5868278 DOI: 10.1074/jbc.m117.818526] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid-long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor.
Collapse
Affiliation(s)
- Gary Loughran
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and
| | - Ioanna Tzani
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Michael Power
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and
| | - John F Atkins
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, .,Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330
| |
Collapse
|
3
|
Liang H, Chen X, Yin Q, Ruan D, Zhao X, Zhang C, McNutt MA, Yin Y. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun 2017; 8:14771. [PMID: 28332494 PMCID: PMC5376652 DOI: 10.1038/ncomms14771] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
PTEN is a critical tumour suppressor that is frequently mutated in human cancer. We have previously identified a CUG initiated PTEN isoform designated PTENα, which functions in mitochondrial bioenergetics. Here we report the identification of another N-terminal extended PTEN isoform, designated PTENβ. PTENβ translation is initiated from an AUU codon upstream of and in-frame with the AUG initiation sequence for canonical PTEN. We show that the Kozak context and a downstream hairpin structure are critical for this alternative initiation. PTENβ localizes predominantly in the nucleolus, and physically associates with and dephosphorylates nucleolin, which is a multifunctional nucleolar phosphoprotein. Disruption of PTENβ alters rDNA transcription and promotes ribosomal biogenesis, and this effect can be reversed by re-introduction of PTENβ. Our data show that PTENβ regulates pre-rRNA synthesis and cellular proliferation. These results demonstrate the complexity of the PTEN protein family and the diversity of its functions.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cong Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Michael A. McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
4
|
Das S, Das B. eIF4G—an integrator of mRNA metabolism? FEMS Yeast Res 2016; 16:fow087. [DOI: 10.1093/femsyr/fow087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/14/2022] Open
|
5
|
Tzani I, Ivanov IP, Andreev DE, Dmitriev RI, Dean KA, Baranov PV, Atkins JF, Loughran G. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biol 2016; 6:rsob.150203. [PMID: 27249819 PMCID: PMC4892431 DOI: 10.1098/rsob.150203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Abundant evidence for translation within the 5' leaders of many human genes is rapidly emerging, especially, because of the advent of ribosome profiling. In most cases, it is believed that the act of translation rather than the encoded peptide is important. However, the wealth of available sequencing data in recent years allows phylogenetic detection of sequences within 5' leaders that have emerged under coding constraint and therefore allow for the prediction of functional 5' leader translation. Using this approach, we previously predicted a CUG-initiated, 173 amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a systematic experimental analysis of translation events in the PTEN 5' leader identifies at least two additional non-AUG-initiated PTEN proteoforms that are expressed in most human cell lines tested. The most abundant extended PTEN proteoform initiates at a conserved AUU codon and extends the canonical AUG-initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms tested retain the ability to downregulate the PI3K pathway. We also provide evidence for the translation of two conserved AUG-initiated upstream open reading frames within the PTEN 5' leader that control the ratio of PTEN proteoforms.
Collapse
Affiliation(s)
- Ioanna Tzani
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitri E Andreev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Kellie A Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Abstract
ATP-binding cassette 50 (ABC50; also known as ABCF1) binds to eukaryotic initiation factor 2 (eIF2) and is required for efficient translation initiation. An essential step of this process is accurate recognition and selection of the initiation codon. It is widely accepted that the presence and movement of eIF1, eIF1A and eIF5 are key factors in modulating the stringency of start-site selection, which normally requires an AUG codon in an appropriate sequence context. In the present study, we show that expression of ABC50 mutants, which cannot hydrolyse ATP, decreases general translation and relaxes the discrimination against the use of non-AUG codons at translation start sites. These mutants do not appear to alter the association of key initiation factors to 40S subunits. The stringency of start-site selection can be restored through overexpression of eIF1, consistent with the role of that factor in enhancing stringency. The present study indicates that interfering with the function of ABC50 influences the accuracy of initiation codon selection.
Collapse
|
7
|
Attar-Schneider O, Drucker L, Zismanov V, Tartakover-Matalon S, Lishner M. Targeting eIF4GI translation initiation factor affords an attractive therapeutic strategy in multiple myeloma. Cell Signal 2014; 26:1878-87. [DOI: 10.1016/j.cellsig.2014.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
|
8
|
Joncourt R, Eberle AB, Rufener SC, Mühlemann O. Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms. PLoS One 2014; 9:e104391. [PMID: 25148142 PMCID: PMC4141738 DOI: 10.1371/journal.pone.0104391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD), which is best known for degrading mRNAs with premature termination codons (PTCs), is thought to be triggered by aberrant translation termination at stop codons located in an environment of the mRNP that is devoid of signals necessary for proper termination. In mammals, the cytoplasmic poly(A)-binding protein 1 (PABPC1) has been reported to promote correct termination and therewith antagonize NMD by interacting with the eukaryotic release factors 1 (eRF1) and 3 (eRF3). Using tethering assays in which proteins of interest are recruited as MS2 fusions to a NMD reporter transcript, we show that the three N-terminal RNA recognition motifs (RRMs) of PABPC1 are sufficient to antagonize NMD, while the eRF3-interacting C-terminal domain is dispensable. The RRM1-3 portion of PABPC1 interacts with eukaryotic initiation factor 4G (eIF4G) and tethering of eIF4G to the NMD reporter also suppresses NMD. We identified the interactions of the eIF4G N-terminus with PABPC1 and the eIF4G core domain with eIF3 as two genetically separable features that independently enable tethered eIF4G to inhibit NMD. Collectively, our results reveal a function of PABPC1, eIF4G and eIF3 in translation termination and NMD suppression, and they provide additional evidence for a tight coupling between translation termination and initiation.
Collapse
Affiliation(s)
- Raphael Joncourt
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrea B. Eberle
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland
| | - Simone C. Rufener
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Jongjitwimol J, Feng M, Zhou L, Wilkinson O, Small L, Baldock R, Taylor DL, Smith D, Bowler LD, Morley SJ, Watts FZ. The S. pombe translation initiation factor eIF4G is Sumoylated and associates with the SUMO protease Ulp2. PLoS One 2014; 9:e94182. [PMID: 24818994 PMCID: PMC4018355 DOI: 10.1371/journal.pone.0094182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/13/2014] [Indexed: 12/03/2022] Open
Abstract
SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively.
Collapse
Affiliation(s)
- Jirapas Jongjitwimol
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Min Feng
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Oliver Wilkinson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lauren Small
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Robert Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Deborah L. Taylor
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Duncan Smith
- Paterson Institute for Cancer Research, The University of Manchester, Manchester, United Kingdom
| | - Lucas D. Bowler
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Simon J. Morley
- Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Felicity Z. Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Coldwell MJ, Cowan JL, Vlasak M, Mead A, Willett M, Perry LS, Morley SJ. Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: a reappraisal of translation initiation during mitosis. Cell Cycle 2013; 12:3615-28. [PMID: 24091728 DOI: 10.4161/cc.26588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Translation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells). Using synchronized HeLa cells released from a double thymidine block (G 1/S boundary) or the Cdk1 inhibitor, RO3306 (G 2/M boundary), we have systematically re-addressed this dogma. Using FACS analysis and pulse labeling of proteins with labeled methionine, we now show that translation rates do not slow as cells enter mitosis. This study is complemented by studies employing confocal microscopy, which show enrichment of translation initiation factors at the microtubule organizing centers, mitotic spindle, and midbody structure during the final steps of cytokinesis, suggesting that translation is maintained during mitosis. Furthermore, we show that inhibition of translation in response to extended times of exposure to nocodazole reflects increased eIF2α phosphorylation, disaggregation of polysomes, and hyperphosphorylation of selected initiation factors, including novel Cdk1-dependent N-terminal phosphorylation of eIF4GII. Our work suggests that effects on translation in nocodazole-arrested cells might be related to those of the treatment used to synchronize cells rather than cell cycle status.
Collapse
Affiliation(s)
- Mark J Coldwell
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon. Biochem J 2012; 448:1-11. [DOI: 10.1042/bj20111765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During the initiation stage of eukaryotic mRNA translation, the eIF4G (eukaryotic initiation factor 4G) proteins act as an aggregation point for recruiting the small ribosomal subunit to an mRNA. We previously used RNAi (RNA interference) to reduce expression of endogenous eIF4GI proteins, resulting in reduced protein synthesis rates and alterations in the morphology of cells. Expression of EIF4G1 cDNAs, encoding different isoforms (f–a) which arise through selection of alternative initiation codons, rescued translation to different extents. Furthermore, overexpression of the eIF4GII paralogue in the eIF4GI-knockdown background was unable to restore translation to the same extent as eIF4GIf/e isoforms, suggesting that translation events governed by this protein are different. In the present study we show that multiple isoforms of eIF4GII exist in mammalian cells, arising from multiple promoters and alternative splicing events, and have identified a non-canonical CUG initiation codon which extends the eIF4GII N-terminus. We further show that the rescue of translation in eIF4GI/eIF4GII double-knockdown cells by our novel isoforms of eIF4GII is as robust as that observed with either eIF4GIf or eIF4GIe, and more than that observed with the original eIF4GII. As the novel eIF4GII sequence diverges from eIF4GI, these data suggest that the eIF4GII N-terminus plays an alternative role in initiation factor assembly.
Collapse
|
12
|
Davey NE, Cowan JL, Shields DC, Gibson TJ, Coldwell MJ, Edwards RJ. SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Res 2012; 40:10628-41. [PMID: 22977176 PMCID: PMC3510515 DOI: 10.1093/nar/gks854] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large portions of higher eukaryotic proteomes are intrinsically disordered, and abundant evidence suggests that these unstructured regions of proteins are rich in regulatory interaction interfaces. A major class of disordered interaction interfaces are the compact and degenerate modules known as short linear motifs (SLiMs). As a result of the difficulties associated with the experimental identification and validation of SLiMs, our understanding of these modules is limited, advocating the use of computational methods to focus experimental discovery. This article evaluates the use of evolutionary conservation as a discriminatory technique for motif discovery. A statistical framework is introduced to assess the significance of relatively conserved residues, quantifying the likelihood a residue will have a particular level of conservation given the conservation of the surrounding residues. The framework is expanded to assess the significance of groupings of conserved residues, a metric that forms the basis of SLiMPrints (short linear motif fingerprints), a de novo motif discovery tool. SLiMPrints identifies relatively overconstrained proximal groupings of residues within intrinsically disordered regions, indicative of putatively functional motifs. Finally, the human proteome is analysed to create a set of highly conserved putative motif instances, including a novel site on translation initiation factor eIF2A that may regulate translation through binding of eIF4E.
Collapse
Affiliation(s)
- Norman E Davey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Localization of ribosomes and translation initiation factors to talin/beta3-integrin-enriched adhesion complexes in spreading and migrating mammalian cells. Biol Cell 2010; 102:265-76. [PMID: 19929852 DOI: 10.1042/bc20090141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION The spatial localization of translation can facilitate the enrichment of proteins at their sites of function while also ensuring that proteins are expressed in the proximity of their cognate binding partners. RESULTS Using human embryonic lung fibroblasts and employing confocal imaging and biochemical fractionation techniques, we show that ribosomes, translation initiation factors and specific RNA-binding proteins localize to nascent focal complexes along the distal edge of migrating lamellipodia. 40S ribosomal subunits appear to associate preferentially with beta3 integrin in focal adhesions at the leading edges of spreading cells, with this association strongly augmented by a synergistic effect of cell engagement with a mixture of extracellular matrix proteins. However, both ribosome and initiation factor localizations do not require de novo protein synthesis. CONCLUSIONS Taken together, these findings demonstrate that repression, complex post-transcriptional regulation and modulation of mRNA stability could potentially be taking place along the distal edge of migrating lamellipodia.
Collapse
|
14
|
Sukarieh R, Sonenberg N, Pelletier J. Nuclear assortment of eIF4E coincides with shut-off of host protein synthesis upon poliovirus infection. J Gen Virol 2010; 91:1224-8. [DOI: 10.1099/vir.0.018069-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
15
|
Ma S, Bhattacharjee RB, Bag J. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J 2008; 276:552-70. [DOI: 10.1111/j.1742-4658.2008.06803.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Oulhen N, Salaün P, Cosson B, Cormier P, Morales J. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. J Cell Sci 2007; 120:425-34. [PMID: 17213333 DOI: 10.1242/jcs.03339] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Release of eukaryotic initiation factor 4E (eIF4E) from its translational repressor eIF4E-binding protein (4E-BP) is a crucial event for the first mitotic division following fertilization of sea urchin eggs. Finding partners of eIF4E following fertilization is crucial to understand how eIF4E functions during this physiological process. The isolation and characterization of cDNA encoding Sphaerechinus granularis eIF4G (SgIF4G) are reported. mRNA of SgIF4G is present as a single 8.5-kb transcript in unfertilized eggs, suggesting that only one ortholog exists in echinoderms. The longest open reading frame predicts a sequence of 5235 nucleotides encoding a deduced polypeptide of 1745 amino acids with a predicted molecular mass of 192 kDa. Among highly conserved domains, SgIF4G protein possesses motifs that correspond to the poly(A) binding protein and eIF4E protein-binding sites. A specific polyclonal antibody was produced and used to characterize the SgIF4G protein in unfertilized and fertilized eggs by SDS-PAGE and western blotting. Multiple differentially migrating bands representing isoforms of sea urchin eIF4G are present in unfertilized eggs. Fertilization triggers modifications of the SgIF4G isoforms and rapid formation of the SgIF4G-eIF4E complex. Whereas rapamycin inhibits the formation of the SgIF4G-eIF4E complex, modification of these SgIF4G isoforms occurs independently from the rapamycin-sensitive pathway. Microinjection of a peptide corresponding to the eIF4E-binding site derived from the sequence of SgIF4G into unfertilized eggs affects the first mitotic division of sea urchin embryos. Association of SgIF4G with eIF4E is a crucial event for the onset of the first mitotic division following fertilization, suggesting that cap-dependent translation is highly regulated during this process. This hypothesis is strengthened by the evidence that microinjection of the cap analog m(7)GDP into unfertilized eggs inhibits the first mitotic division.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Université Pierre et Marie Curie-Paris6, UMR 7150, Equipe Cycle Cellulaire et Développement and CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff CEDEX, France
| | | | | | | | | |
Collapse
|
17
|
Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM. Functional analysis of individual binding activities of the scaffold protein eIF4G. J Biol Chem 2006; 282:1695-708. [PMID: 17130132 DOI: 10.1074/jbc.m602780200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.
Collapse
Affiliation(s)
- Tracey M Hinton
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Coldwell MJ, Morley SJ. Specific isoforms of translation initiation factor 4GI show differences in translational activity. Mol Cell Biol 2006; 26:8448-60. [PMID: 16982693 PMCID: PMC1636793 DOI: 10.1128/mcb.01248-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) expressed from DNA vectors to silence the expression of eIF4GI in HeLa cells. Here we show that reduced levels of specific mRNA and eIF4GI isoforms in HeLa cells promoted aberrant morphology and a partial inhibition of translation. The latter reflected dephosphorylation of 4E-BP1 and decreased eIF4F complex levels, with no change in eIF2alpha phosphorylation. Expression of siRNA-resistant Myc-tagged eIF4GI isoforms has allowed us to show that the different isoforms exhibit significant differences in their ability to restore translation rates. Here we quantify the efficiency of eIF4GI promoter usage in mammalian cells and demonstrate that even though the longest isoform of eIF4GI (eIF4GIf) was relatively poorly expressed when reintroduced, it was more efficient at promoting the translation of cellular mRNAs than the more highly expressed shorter isoforms used in previous functional studies.
Collapse
Affiliation(s)
- Mark J Coldwell
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | |
Collapse
|
19
|
Willett M, Flint SA, Morley SJ, Pain VM. Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts. Exp Cell Res 2006; 312:2942-53. [PMID: 16822502 DOI: 10.1016/j.yexcr.2006.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/22/2006] [Accepted: 05/30/2006] [Indexed: 11/16/2022]
Abstract
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin.
Collapse
Affiliation(s)
- Mark Willett
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
20
|
Dobrikova EY, Grisham RN, Kaiser C, Lin J, Gromeier M. Competitive translation efficiency at the picornavirus type 1 internal ribosome entry site facilitated by viral cis and trans factors. J Virol 2006; 80:3310-21. [PMID: 16537598 PMCID: PMC1440366 DOI: 10.1128/jvi.80.7.3310-3321.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroviruses (EVs) overcome their host cells by usurping the translation machinery to benefit viral gene expression. This is accomplished through alternative translation initiation in a cap-independent manner at the viral internal ribosomal entry site (IRES). We have investigated the role of cis- and trans-acting viral factors in EV IRES translation in living cells. We observed that considerable portions of the viral genome, including the 5'-proximal open reading frame and the 3' untranslated region, contribute to stimulation of IRES-mediated translation. With the IRES in proper context, translation via internal initiation in uninfected cells is as efficient as at capped messages with short, unstructured 5' untranslated regions. IRES function is enhanced in cells infected with the EV coxsackievirus B3, but the related poliovirus has no significant stimulatory activity. This differential is due to the inherent properties of their 2A protease and is not coupled to 2A-mediated proteolytic degradation of the eukaryotic initiation factor 4G. Our results suggest that the efficiency of alternative translation initiation at EV IRESs depends on a properly configured template rather than on targeted alterations of the host cell translation machinery.
Collapse
Affiliation(s)
- Elena Y Dobrikova
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Connolly EP, Thuillier V, Rouy D, Bouétard G, Schneider RJ. Inhibition of Cap-initiation complexes linked to a novel mechanism of eIF4G depletion in acute myocardial ischemia. Cell Death Differ 2006; 13:1586-94. [PMID: 16439989 DOI: 10.1038/sj.cdd.4401854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational control in the rat heart was characterized during acute myocardial ischemia introduced by left coronary artery ligature. Within 10 min of ischemia, eukaryotic (eIF)4E binds to its negative regulator, eIF4E-binding protein-1 (4E-BP1), but the levels of 4E-BP1 are insufficient to disrupt cap-dependent mRNA initiation complexes. However, by 1 h of ischemia, the abundance of the cap-initiation complex protein eIF4G is reduced by relocalization into TIAR protein complexes, triggering 4E-BP1 sequestration of eIF4E and disruption of cap-dependent mRNA initiation complexes. As the heart begins to fail at 6 h, proteolysis of eIF4G is observed, resulting in its depletion and accompanied by limited destruction of 4E-BP1 and eIF4E. eIF4G proteolysis and modest loss of 4E-BP1 are associated with caspase-3 activation and induction of cardiomyocyte apoptotic and necrotic death. Acute heart ischemia therefore downregulates cap-dependent translation through eIF4E sequestration triggered by eIF4G depletion.
Collapse
Affiliation(s)
- E P Connolly
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
22
|
DeGracia DJ, Rafols JA, Morley SJ, Kayali F. Immunohistochemical mapping of total and phosphorylated eukaryotic initiation factor 4G in rat hippocampus following global brain ischemia and reperfusion. Neuroscience 2006; 139:1235-48. [PMID: 16530975 DOI: 10.1016/j.neuroscience.2006.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 02/07/2023]
Abstract
Partial proteolysis and phosphorylation of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) occur in reperfused brain, but the contribution of eIF4G alterations to brain injury has not been established. A component of the complex delivering mRNA to the small ribosomal subunit, eIF4G is also found in stress granules. Stress granules sequester inactive 48S preinitiation complexes during stress-induced translation arrest. We performed double-labeling immunofluorescence histochemistry for total or ser 1108 phosphorylated eIF4G and the stress granule component T-cell internal antigen following normothermic, 10 min cardiac arrest-induced global brain ischemia and up to 4 h reperfusion in the rat. In cornu ammonis (Ammon's horn; CA) 1 at 90 min and 4 h reperfusion, eIF4G staining transformed from a homogeneous to an aggregated distribution. The number of eIF4G-containing stress granules differed between CA1 and CA3 during reperfusion. In hippocampal pyramidal neurons, phosphorylated eIF4G appeared exclusively in stress granules. Supragranular interneurons of the dentate gyrus showed a large increase in cytoplasmic eIF4G(P) following reperfusion. Immunoblot analysis with antisera against different portions of eIF4G showed a large increase in phosphorylated C-terminal eIF4G fragments, suggesting these accumulate in the cytoplasm of dentate gyrus interneurons. Thus, altered eIF4G subcellular compartmentalization may contribute to prolonged translation arrest in CA1 pyramidal neurons. Accumulation of phosphorylated eIF4G fragments may contribute to the vulnerability of dentate interneurons. Ischemia and reperfusion invoke different translational control responses in distinct hippocampal neuron populations, which may contribute to the differential ischemic vulnerabilities of these cells.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
23
|
Buenz EJ, Howe CL. Picornaviruses and cell death. Trends Microbiol 2005; 14:28-36. [PMID: 16337385 DOI: 10.1016/j.tim.2005.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/07/2005] [Accepted: 11/21/2005] [Indexed: 11/21/2022]
Abstract
Members of the picornavirus family, including poliovirus and foot-and-mouth disease virus, are widespread pathogens of humans and domestic animals. Recent global developments in the resurgence of poliovirus infection and in the control of foot-and-mouth disease infection highlight the problems caused by the ability of picornaviruses to alter the apoptotic machinery of host cells and establish persistent infections. Despite the medical, economic and social impact of this family of viruses, little information exists that integrates the mechanisms of cell death and damage induced by related family members. Fortunately, examination of the reported roles and functions of individual viral proteins from multiple picornaviruses makes it possible to surmise canonical functions for these proteins. This review analyzes the canonical function of picornavirus proteins involved in the alteration of apoptotic homeostasis in infected host cells.
Collapse
Affiliation(s)
- Eric J Buenz
- Molecular Neuroscience Program, Department of Neurology, Department of Neuroscience, RO_GU_04_12_NR, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
24
|
Morley SJ, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Differ 2005; 12:571-84. [PMID: 15900314 DOI: 10.1038/sj.cdd.4401591] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have identified several mechanistic links between the regulation of translation and the process of apoptosis. Rates of protein synthesis are controlled by a wide range of agents that induce cell death, and in many instances, the changes that occur to the translational machinery precede overt apoptosis and loss of cell viability. The two principal ways in which factors required for translational activity are modified prior to and during apoptosis involve (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. In this review, we summarise the principal targets for such regulation, with particular emphasis on polypeptide chain initiation factors eIF2 and eIF4G and the eIF4E-binding proteins. We indicate how the functions of these factors and of other proteins with which they interact may be altered as a result of activation of apoptosis and we discuss the potential significance of such changes for translational control and cell growth regulation.
Collapse
Affiliation(s)
- S J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | |
Collapse
|
25
|
Clemens MJ. Translational control in virus-infected cells: models for cellular stress responses. Semin Cell Dev Biol 2004; 16:13-20. [PMID: 15659335 DOI: 10.1016/j.semcdb.2004.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein synthesis is regulated at the translational level by a variety of mechanisms in virus-infected cells. Viruses often induce the shut-off of host translation in order to favour the expression of their own genetic information, but cells possess a number of strategies for counteracting such effects of infection. Important regulatory mechanisms include the phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF2, RNA degradation mediated by the 2'5'-oligoadenylate/RNase L system, control of availability of the cap-binding protein eIF4E by its interaction with the 4E-binding proteins and specific proteolytic cleavage of several key initiation factors. Most of these mechanisms are also utilised in uninfected cells in response to a variety of physiological stresses and during the early stages of apoptosis. Thus, mechanisms of translational control during virus infection can provide models for the cellular stress responses observed in a wide range of other circumstances.
Collapse
Affiliation(s)
- Michael J Clemens
- Translational Control Group, Biochemistry and Immunology, Department of Basic Medical Sciences, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
26
|
Cowan JL, Morley SJ. The proteasome inhibitor, MG132, promotes the reprogramming of translation in C2C12 myoblasts and facilitates the association of hsp25 with the eIF4F complex. ACTA ACUST UNITED AC 2004; 271:3596-611. [PMID: 15317596 DOI: 10.1111/j.0014-2956.2004.04306.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation initiation factor (eIF) 4E, is regulated by modulating both its phosphorylation and its availability to interact with the scaffold protein, eIF4G, to form the mature eIF4F complex. Here we show that treatment of C2C12 myoblasts with the proteasomal inhibitor, MG132 (N-carbobenzoxyl-Leu-Leu-leucinal), resulted in an early decrease in protein synthesis rates followed by a partial recovery, reflecting the reprogramming of translation. The early inhibition of protein synthesis was preceded by a transient increase in eIF2alpha phosphorylation, followed by a sustained increase in eIF4E phosphorylation. Inhibition of eIF4E phosphorylation with CGP57380 failed to prevent translational reprogramming or the moderate decrease in eIF4F complexes at later times. Prolonged incubation with MG132 resulted in the increased expression of heat shock protein (hsp)25, alphaB-crystallin and hsp70, with a population of hsp25 associating with the eIF4F complex in a p38 mitogen-activated protein kinase-dependent manner. Under these conditions, eIF4GI, and to a lesser extent eIF4E, re-localized from a predominantly cytoplasmic distribution to a more perinuclear and granular staining. Although MG132 had little effect on the colocalization of eIF4E and eIF4GI, it promoted the SB203580-sensitive association of eIF4GI and hsp25, an effect not observed with alphaB-crystallin. Addition of recombinant hsp25 to an in vitro translation assay resulted in stimulation of on-going translation and a moderate decrease in de novo translation, indicating that this modified eIF4F complex containing hsp25 has a role to play in recovery of mRNA translation following cellular stress.
Collapse
Affiliation(s)
- Joanne L Cowan
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | |
Collapse
|
27
|
Lejeune F, Ranganathan AC, Maquat LE. eIF4G is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol 2004; 11:992-1000. [PMID: 15361857 DOI: 10.1038/nsmb824] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 08/03/2004] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) in mammalian cells targets cap-binding protein 80 (CBP80)-bound mRNA during or after a pioneer round of translation. It is unknown whether eukaryotic translation initiation factor 4G (eIF4G) functions in the pioneer round. We show that baculovirus-produced CBP80 and CBP20 independently interact with eIF4GI. The interactions between eIF4G and the heterodimer CBP80/20 suggest that eIF4G has a function in the pioneer initiation complex rather than merely a presence during remodeling to the steady-state complex. First, NMD is inhibited upon eIF4G cleavage by HIV-2 or poliovirus 2A protease. Second, eIF4GI coimmunopurifies with pre-mRNA, indicating that it associates with transcripts before the pioneer round. Third, eIF4G immunopurifies with Upf NMD factors and eIF4AIII, which are constituents of the pioneer translation initiation complex. We propose a model in which eIF4G serves to connect CBP80/20 with other initiation factors during the pioneer round of translation.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York, 14642 USA
| | | | | |
Collapse
|
28
|
Chiu SY, Lejeune F, Ranganathan AC, Maquat LE. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev 2004; 18:745-54. [PMID: 15059963 PMCID: PMC387415 DOI: 10.1101/gad.1170204] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bulk of cellular proteins derive from the translation of eukaryotic translation initiation factor (eIF)4E-bound mRNA. However, recent studies of nonsense-mediated mRNA decay (NMD) indicate that cap-binding protein (CBP)80-bound mRNA, which is a precursor to eIF4E-bound mRNA, can also be translated during a pioneer round of translation. Here, we report that the pioneer round, which can be assessed by measuring NMD, is not inhibited by 4E-BP1, which is known to inhibit steady-state translation by competing with eIF4G for binding to eIF4E. Therefore, at least in this way, the pioneer round of translation is distinct from steady-state translation. eIF4GI, poly(A)-binding protein (PABP)1, eIF3, eIF4AI, and eIF2alpha coimmunopurify with both CBP80 and eIF4E, which suggests that each factor functions in both modes of translation. Consistent with roles for PABP1 and eIF2alpha in the pioneer round of translation, PABP-interacting protein 2, which is known to destabilize PABP1 binding to poly(A) and inhibit steady-state translation, as well as inactive eIF2alpha, which is also known to inhibit steady-state translation, also inhibit NMD. Polysome profiles indicate that CBP80-bound mRNAs are translated less efficiently than their eIF4E-bound counterparts.
Collapse
Affiliation(s)
- Shang-Yi Chiu
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|