1
|
Doll NM, Nowack MK. Endosperm cell death: roles and regulation in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4346-4359. [PMID: 38364847 PMCID: PMC7616292 DOI: 10.1093/jxb/erae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Double fertilization in angiosperms results in the formation of a second zygote, the fertilized endosperm. Unlike its embryo sibling, the endosperm is a transient structure that eventually undergoes developmentally controlled programmed cell death (PCD) at specific time points of seed development or germination. The nature of endosperm PCD exhibits a considerable diversity, both across different angiosperm taxa and within distinct endosperm tissues. In endosperm-less species, PCD might cause central cell degeneration as a mechanism preventing the formation of a fertilized endosperm. In most other angiosperms, embryo growth necessitates the elimination of surrounding endosperm cells. Nevertheless, complete elimination of the endosperm is rare and, in most cases, specific endosperm tissues persist. In mature seeds, these persisting cells may be dead, such as the starchy endosperm in cereals, or remain alive to die only during germination, like the cereal aleurone or the endosperm of castor beans. In this review, we explore current knowledge surrounding the cellular, molecular, and genetic aspects of endosperm PCD, and the influence environmental stresses have on PCD processes. Overall, this review provides an exhaustive overview of endosperm PCD processes in angiosperms, shedding light on its diverse mechanisms and its significance in seed development and seedling establishment.
Collapse
Affiliation(s)
- Nicolas M. Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
2
|
Nowicka A, Ferková Ľ, Said M, Kovacik M, Zwyrtková J, Baroux C, Pecinka A. Non-Rabl chromosome organization in endoreduplicated nuclei of barley embryo and endosperm tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2527-2541. [PMID: 36705553 DOI: 10.1093/jxb/erad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 06/06/2023]
Abstract
Rabl organization is a type of interphase chromosome arrangement with centromeres and telomeres clustering at opposite nuclear poles. Here, we analyzed nuclear morphology and chromosome organization in cycling and endoreduplicated nuclei isolated from embryo and endosperm tissues of developing barley seeds. We show that endoreduplicated nuclei have an irregular shape, less sister chromatid cohesion at 5S rDNA loci, and a reduced amount of centromeric histone CENH3. While the chromosomes of the embryo and endosperm nuclei are initially organized in Rabl configuration, the centromeres and telomeres are intermingled within the nuclear space in the endoreduplicated nuclei with an increasing endoreduplication level. Such a loss of chromosome organization suggests that Rabl configuration is introduced and further reinforced by mitotic divisions in barley cell nuclei in a tissue- and seed age-dependent manner.
Collapse
Affiliation(s)
- Anna Nowicka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ľuboslava Ferková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Baroux C, Schubert V. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods Mol Biol 2018; 1675:537-589. [PMID: 29052212 DOI: 10.1007/978-1-4939-7318-7_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
4
|
Wegel E. Fluorescence In Situ Hybridization in Oat. Methods Mol Biol 2018; 1536:3-21. [PMID: 28132139 DOI: 10.1007/978-1-4939-6682-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This chapter describes methods to detect gene loci or gene transcripts by fluorescence labeling. Fluorescence in situ hybridization (FISH) can be used to identify the positions of genes or BACs or the distribution of repetitive sequences on metaphase chromosomes as well as the identification of alien chromosomes. It enables the identification of gene loci and active transcription sites in interphase nuclei and also the localization of cellular transcripts. The protocols here deal with the production of DNA and RNA probes, the preparation of oat metaphase spreads and root tissue sections, the subsequent hybridization, post-hybridization washes, and detection by immunofluorescence.
Collapse
Affiliation(s)
- Eva Wegel
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
5
|
Baroux C, Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:160-76. [PMID: 26031902 PMCID: PMC4502977 DOI: 10.1111/tpj.12890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 05/05/2023]
Abstract
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZollikerstrasse 107, 8008, Zürich, Switzerland
- *For correspondence (e-mail )
| | - Daphné Autran
- Institut de Recherche pour le Développement (UMR DIADE 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier911 avenue Agropolis, 34000, Montpellier, France
| |
Collapse
|
6
|
Yuan Z, Liu M, Ouyang Y, Zeng X, Hao M, Zhang L, Ning S, Yan Z, Liu D. The detection of a de novo allele of the Glu-1Dx gene in wheat-rye hybrid offspring. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2173-2182. [PMID: 25119869 DOI: 10.1007/s00122-014-2370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
This study provides a link between a de novo gene and novel phenotype in wheat-rye hybrids that can be used as a model for induced de novo genetic variation. Wide hybridization can produce de novo DNA variation that may cause novel phenotypes. However, there is still a lack of specific links between changed genes and novel phenotypes in wide hybrids. The well-studied high-molecular-weight glutenin subunit (HMW-GS) genes in tribe Triticeae provide a useful model for addressing this issue. In this study, we investigated the feasibility of a wheat-rye hybridization method for inducing de novo phenotypes using the Glu-1Dx2.2 subunit as an example. We developed three hexaploid wheat lines with normal fertility and a Glu-1Dx2.2 variant, named Glu-1Dx2.2 (v) , derived from three F1 hybrids. The wild-type Glu-1Dx2.2 has two direct repeats of 295 bp length separated by an intervening 101 bp in its central repetitive region. In the mutant Glu-1Dx2.2 (v) , one copy of the repeats and the intervening sequence were deleted, probably through homology-dependent illegitimate recombination (IR). This study provides a direct link between a de novo allele and novel phenotype. Our results indicate that the wheat-rye method may be a useful tool to induce de novo genetic variations that broaden the genetic diversity for wheat improvement.
Collapse
Affiliation(s)
- Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schubert V. RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet Genome Res 2014; 143:69-77. [PMID: 25060696 DOI: 10.1159/000365233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic genes. In mammalian nuclei, RNAPII is mainly localized in relatively few distinct transcription factories. In this study--applying super-resolution microscopy--it is shown that in plants, inactive (non-phosphorylated) and active (phosphorylated) RNAPII modifications compose distinct 'transcription networks' within the euchromatin. These reticulate structures sometimes attach to each other, but they are absent from heterochromatin and nucleoli. The global RNAPII distribution within nuclei is not influenced by interphase chromatin organization such as Rabl (rye) versus non-Rabl (Arabidopsis thaliana) orientation. Replication of sister chromatids without cell division causes endopolyploidy, a phenomenon widespread in plants and animals. Endopolyploidy raises the number of gene copies per nucleus. Here, it is shown that the amounts of active and inactive RNAPII enzymes in differentiated 2-32C leaf nuclei of A. thaliana proportionally increase with rising endopolyploidy. Thus, increasing the transcriptional activity of cells and tissues seems to be an important function of endopolyploidy.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
8
|
Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 2012; 121:369-87. [PMID: 22476443 DOI: 10.1007/s00412-012-0367-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
The spatial chromatin organisation and molecular interactions within and between chromatin domains and chromosome territories (CTs) are essential for fundamental processes such as replication, transcription and DNA repair via homologous recombination. To analyse the distribution and interaction of whole CTs, centromeres, (sub)telomeres and ~100-kb interstitial chromatin segments in endopolyploid nuclei, specific FISH probes from Arabidopsis thaliana were applied to 2-64C differentiated leaf nuclei. Whereas CTs occupy a distinct and defined volume of the nucleus and do not obviously intermingle with each other in 2-64C nuclei, ~100-kb sister chromatin segments within these CTs become more non-cohesive with increasing endopolyploidy. Centromeres, preferentially located at the nuclear periphery, may show ring- or half-moon like shapes in 2C and 4C nuclei. Sister centromeres tend to associate up to the 8C level. From 16C nuclei on, they become progressively separated. The higher the polyploidy level gets, the more separate chromatids are present. Due to sister chromatid separation in highly endopolyploid nuclei, the centromeric histone variant CENH3, the 180-bp centromeric repeats and pericentromeric heterochromatin form distinct subdomains at adjacent but not intermingling positions. The (sub)telomeres are frequently associated with each other and with the nucleolus and less often with centromeres. The extent of chromatid separation and of chromatin decondensation at subtelomeric chromatin segments varies between chromosome arms. A mainly random distribution and similar shapes of CTs even at higher ploidy levels indicate that in general no substantial CT reorganisation occurs during endopolyploidisation. Non-cohesive sister chromatid regions at chromosome arms and at the (peri)centromere are accompanied by a less dense chromatin conformation in highly endopolyploid nuclei. We discuss the possible function of this conformation in comparison to transcriptionally active regions at insect polytene chromosomes.
Collapse
|
9
|
Schubert I, Shaw P. Organization and dynamics of plant interphase chromosomes. TRENDS IN PLANT SCIENCE 2011; 16:273-81. [PMID: 21393049 DOI: 10.1016/j.tplants.2011.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 05/23/2023]
Abstract
Eukaryotic chromosomes occupy distinct territories within interphase nuclei. The arrangement of chromosome territories (CTs) is important for replication, transcription, repair and recombination processes. Our knowledge about interphase chromatin arrangement is mainly based on results from in situ labeling approaches. The phylogenetic affiliation of a species, cell cycle, differentiation status and environmental factors are all likely to influence interphase nuclear architecture. In this review we survey current data about relative positioning of CTs, somatic pairing of homologs, and sister chromatid alignment in meristematic and differentiated tissues, using data derived mainly from Arabidopsis thaliana, wheat (Triticum aestivum) and their relatives. We discuss morphological constraints and epigenetic impacts on nuclear architecture, the evolutionary stability of CT arrangements, and alterations of nuclear architecture during transcription and repair.
Collapse
Affiliation(s)
- Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D06466 Gatersleben, Germany.
| | | |
Collapse
|
10
|
Tessadori F. [Heterochromatin, a plastic component in the nucleus of Arabidopsis thaliana cells]. Biol Aujourdhui 2010; 204:189-97. [PMID: 20950562 DOI: 10.1051/jbio/2010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Indexed: 11/15/2022]
Abstract
The cytogenetic observation of the nucleus of Arabidopsis thaliana, a plant member of the brassicaceae family, reveals a simple organization of the nuclear content. Indeed, the nuclear volume is occupied by two distinct and easily distinguishable forms of chromatin: a large fraction of relatively decondensed and transcriptionnally active euchromatin surrounds about ten conspicuous regions, the chromocenters, which contain most repeated and highly condensed heterochromatic sequences. Remarkably, during the development of A. thaliana or when the plant is exposed to certain environmental variations, dramatic changes in the appearance, the size or the presence of the chromocenters occur. A number of cytogenetic studies have not only characterized the genomic sequences accommodated in the chromocenters, but have also established the dynamics of their assembly and disruption. Moreover, various endogenous and exogenous factors involved in the presence and the size of chromocenters were recently identified. Taken together, these studies carried out in A. thaliana suggest that heterochromatin is a truly "malleable" fraction of the genome whose dynamic organization is not controlled only by epigenetic marks and whose importance in nuclear function goes beyond merely grouping together non-coding genomic sequences.
Collapse
|
11
|
Wegel E, Koumproglou R, Shaw P, Osbourn A. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. THE PLANT CELL 2009; 21:3926-36. [PMID: 20040536 PMCID: PMC2814510 DOI: 10.1105/tpc.109.072124] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/29/2009] [Accepted: 12/04/2009] [Indexed: 05/18/2023]
Abstract
Transcription-related chromatin decondensation has been studied in mammals for clusters of structurally and/or functionally related genes that are coordinately regulated (e.g., the homeobox locus in mice and the major histocompatability complex locus in humans). Plant genes have generally been considered to be randomly distributed throughout the genome, although several examples of metabolic gene clusters for synthesis of plant defense compounds have recently been discovered. Clustering provides for genetic linkage of genes that together confer a selective advantage and may also facilitate coordinate regulation of gene expression by enabling localized changes in chromatin structure. Here, we use cytological methods to investigate components of a metabolic gene cluster for synthesis of developmentally regulated defense compounds (avenacins) in diploid oat (Avena strigosa). Our experiments reveal that expression of the avenacin gene cluster is associated with cell type-specific chromatin decondensation, providing new insights into regulation of gene clusters in plants. Importantly, chromatin decondensation could be visualized not only at the large-scale level but down to the single gene level. We further show that the avenacin and sterol pathways are likely to be inversely regulated at the level of transcription.
Collapse
Affiliation(s)
- Eva Wegel
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rachil Koumproglou
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
12
|
Abstract
Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.
Collapse
Affiliation(s)
- Jim M Dunwell
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
13
|
Prieto P, Moore G, Shaw P. Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2007; 2:1831-8. [PMID: 17641652 DOI: 10.1038/nprot.2007.265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the application of fluorescence in situ hybridization (FISH) to three-dimensionally (3D) preserved tissue sections derived from intact plant structures such as roots or florets. The method is based on the combination of vibratome sectioning with confocal microscopy. The protocol provides an excellent tool to investigate chromosome organization in plant nuclei in all cell types and has been used on tissues of both monocot and dicot plant species. The visualization of 3D well-preserved tissues means that cell types can be confidently identified. For example, meiocytes can be clearly identified at all stages of meiosis and can be imaged in the context of their surrounding maternal tissue. FISH can be used to localize centromeres, telomeres, repetitive regions as well as unique regions, and total genomic DNAs can be used as probes to visualize chromosomes or chromosome segments. The method can be adapted to RNA FISH and can be combined with immunofluorescence labeling. Once the desired plant material is sectioned, which depends on the number of samples, the protocol that we present here can be carried out within 3 d.
Collapse
Affiliation(s)
- Pilar Prieto
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
14
|
Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 2007; 120:1200-8. [PMID: 17376962 DOI: 10.1242/jcs.000026] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromocenters in Arabidopsis thaliana are discrete nuclear domains of mainly pericentric heterochromatin. They are characterized by the presence of repetitive sequences, methylated DNA and dimethylated histone H3K9. Here we show that dedifferentiation of specialized mesophyll cells into undifferentiated protoplasts is accompanied by the disruption of chromocenter structures. The dramatic reduction of heterochromatin involves the decondensation of all major repeat regions, also including the centromeric 180 bp tandem repeats. Only the 45S rDNA repeat remained in a partly compact state in most cells. Remarkably, the epigenetic indicators for heterochromatin, DNA methylation and H3K9 dimethylation, did not change upon decondensation. Furthermore, the decondensation of pericentric heterochromatin did not result in transcriptional reactivation of silent genomic elements. The decondensation process was reversible upon prolonged culturing. Strikingly, recondensation of heterochromatin into chromocenters is a stepwise process. Compaction of the tandemly arranged 45S rDNA regions occurs first, followed by the centromeric 180 bp and the 5S rDNA repeats and finally the dispersed repeats, including transposons. The sequence of reassembly seems to be correlated to the size of the repeat domains. Our results indicate that different types of pericentromeric repeats form different types of heterochromatin, which subsequently merge to form a chromocenter.
Collapse
Affiliation(s)
- Federico Tessadori
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Kruislaan 318, 1098SM Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. PLANT METHODS 2006; 2:18. [PMID: 17081287 PMCID: PMC1635696 DOI: 10.1186/1746-4811-2-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 11/02/2006] [Indexed: 05/08/2023]
Abstract
Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
Collapse
Affiliation(s)
- Ana Paula Santos
- Plant Genetic Engineering Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| | - Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - George C Allen
- Plant Transformation Laboratory (PTL), Departments of Crop Science and Horticultural Science, Campus Box 7550, North Carolina State University, Raleigh, NC 27695, USA
| | - William F Thompson
- Plant Gene Expression Laboratory, Campus Box 7550, North Carolina State University Raleigh, NC 27695, USA
| | - Eva Stoger
- Institute for Molecular Biotechnology, RWTH Aachen, 52074 Aachen, Germany
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| |
Collapse
|
16
|
Jiang J, Gill BS. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 2006; 49:1057-68. [PMID: 17110986 DOI: 10.1139/g06-076] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH), which allows direct mapping of DNA sequences on chromosomes, has become the most important technique in plant molecular cytogenetics research. Repetitive DNA sequence can generate unique FISH patterns on individual chromosomes for karyotyping and phylogenetic analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method to develop physical maps in plant species. FISH on extended DNA fibers provides a high-resolution mapping approach to analyze large DNA molecules and to characterize large genomic loci. FISH-based physical mapping provides a valuable complementary approach in genome sequencing and map-based cloning research. We expect that FISH will continue to play an important role in relating DNA sequence information to chromosome biology. FISH coupled with immunoassays will be increasingly used to study features of chromatin at the cytological level that control expression and regulation of genes.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
17
|
Wegel E, Shaw P. Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 2005; 114:331-7. [PMID: 16075283 DOI: 10.1007/s00412-005-0015-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 12/12/2022]
Abstract
Chromatin in the interphase nucleus is dynamic, decondensing where genes are activated and condensing where they are silenced. Local chromatin remodelling to a more open structure during gene activation is followed by changes in nucleosome distribution through the action of the transcriptional machinery. This leads to chromatin expansion and looping out of whole genomic regions. Such chromatin loops can extend beyond the chromosome territory. As several studies point to the location of transcription sites inside chromosome territories as well as at their periphery, extraterritorial loops cannot simply be a mechanism for making transcribed genes accessible to the transcriptional machinery and must occur for other reasons. The level of decondensation within an activated region varies greatly and probably depends on the density of activated genes and the number of engaged RNA polymerases. Genes that are silenced during development form a more closed chromatin structure. Specific histone modifications are correlated with gene activation and silencing, and silenced genes may become associated with heterochromatin protein 1 homologues or with polycomb group complexes. Several levels of chromatin packaging are found in the nucleus relating to the different functions of and performed by active genes; euchromatic and heterochromatic regions and the models explaining higher-order chromatin structure are still disputed.
Collapse
Affiliation(s)
- Eva Wegel
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | |
Collapse
|