1
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
2
|
Waltero C, de Abreu LA, Alonso T, Nunes-da-Fonseca R, da Silva Vaz I, Logullo C. TOR as a Regulatory Target in Rhipicephalus microplus Embryogenesis. Front Physiol 2019; 10:965. [PMID: 31417424 PMCID: PMC6684781 DOI: 10.3389/fphys.2019.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Embryogenesis is a metabolically intensive process carried out under tightly controlled conditions. The insulin signaling pathway regulates glucose homeostasis and is essential for reproduction in metazoan model species. Three key targets are part of this signaling pathway: protein kinase B (PKB, or AKT), glycogen synthase kinase 3 (GSK-3), and target of rapamycin (TOR). While the role of AKT and GSK-3 has been investigated during tick embryonic development, the role of TOR remains unknown. In this study, TOR and two other downstream effectors, namely S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), were investigated in in vitro studies using the tick embryonic cell line BME26. First, we show that exogenous insulin can stimulate TOR transcription. Second, TOR chemical inhibition led to a decrease in BME26 cell viability, loss of membrane integrity, and downregulation of S6K and 4E-BP1 transcription. Conversely, treating BME26 cells with chemical inhibitors of AKT or GSK-3 did not affect S6K and 4E-BP1 transcription, showing that TOR is specifically required to activate its downstream targets. To address the role of TOR in tick reproduction, in vivo studies were performed. Analysis of relative transcription during different stages of tick embryonic development showed different levels of transcription for TOR, and a maternal deposition of S6K and 4E-BP1 transcripts. Injection of TOR double-stranded RNA (dsRNA) into partially fed females led to a slight delay in oviposition, an atypical egg external morphology, decreased vitellin content in eggs, and decreased larval hatching. Taken together, our data show that the TOR signaling pathway is important for tick reproduction, that TOR acts as a regulatory target in Rhipicephalus microplus embryogenesis and represents a promising target for the development of compounds for tick control.
Collapse
Affiliation(s)
- Camila Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Thayná Alonso
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Centro de Biotecnologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Lu H, Mazumder M, Jaikaran ASI, Kumar A, Leis EK, Xu X, Altmann M, Cochrane A, Woolley GA. A Yeast System for Discovering Optogenetic Inhibitors of Eukaryotic Translation Initiation. ACS Synth Biol 2019; 8:744-757. [PMID: 30901519 DOI: 10.1021/acssynbio.8b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mostafizur Mazumder
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anna S. I. Jaikaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anil Kumar
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric K. Leis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Xiuling Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Altmann
- Institut für Biochemie und Molekulare Medizin, Universität Bern, Bühlstr. 28, CH-3012 Bern, Switzerland
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
4
|
Moundoyi H, Demouy J, Le Panse S, Morales J, Sarels B, Cormier P. Toward Multiscale Modeling of Molecular and Biochemical Events Occurring at Fertilization Time in Sea Urchins. Results Probl Cell Differ 2018; 65:69-89. [DOI: 10.1007/978-3-319-92486-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
5
|
Picard V, Mulner-Lorillon O, Bourdon J, Morales J, Cormier P, Siegel A, Bellé R. Model of the delayed translation of cyclin B maternal mRNA after sea urchin fertilization. Mol Reprod Dev 2016; 83:1070-1082. [PMID: 27699901 DOI: 10.1002/mrd.22746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns. The model includes two pathways for cyclin B mRNA entry into the translational machinery: one from immediately available mRNA (mRNAcyclinB) and one from mRNA activated solely after fertilization (XXmRNAcyclinB). Two coefficients, α and β, were added to fit the measured scales of global protein and cyclin B synthesis, respectively. The model was simplified to identify the synthesis parameters and to allow its simulation. The calculated parameters for activation of the specific cyclin B synthesis pathway after fertilization included a kinetic constant (ka ) of 0.024 sec-1 , for the activation of XXmRNAcyclinB, and a critical time interval (t2 ) of 42 min. The proportion of XXmRNAcyclinB form was also calculated to be largely dominant over the mRNAcyclinB form. Regulation of cyclin B biosynthesis is an example of a select protein whose translation is controlled by pathways that are distinct from housekeeping proteins, even though both involve the same cap-dependent initiation pathway. Therefore, this model should help provide insight to the signaling utilized for the biosynthesis of cyclin B and other select proteins. Mol. Reprod. Dev. 83: 1070-1082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincent Picard
- CNRS UMR 6241, Laboratoire LINA, Université de Nantes, Nantes, France.,CNRS, IRISA-UMR 6074, Campus de Beaulieu, Rennes, France.,INRIA, Centre Rennes-Bretagne Atlantique, Symbiose, Campus de Beaulieu, Rennes, France
| | - Odile Mulner-Lorillon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Jérémie Bourdon
- CNRS UMR 6241, Laboratoire LINA, Université de Nantes, Nantes, France
| | - Julia Morales
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Anne Siegel
- CNRS, IRISA-UMR 6074, Campus de Beaulieu, Rennes, France.,INRIA, Centre Rennes-Bretagne Atlantique, Symbiose, Campus de Beaulieu, Rennes, France
| | - Robert Bellé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| |
Collapse
|
6
|
Costache V, McDougall A, Dumollard R. Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 2014; 450:1175-81. [DOI: 10.1016/j.bbrc.2014.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
7
|
Laurent S, Richard A, Mulner-Lorillon O, Morales J, Flament D, Glippa V, Bourdon J, Gosselin P, Siegel A, Cormier P, Bellé R. Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive. Front Genet 2014; 5:117. [PMID: 24834072 PMCID: PMC4018528 DOI: 10.3389/fgene.2014.00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data. The first change was an 8-fold increase in the dissociation parameter (koff1) of the eIF4E:4E-BP complex. The second was an important 32.5-fold activation of the degradation mechanism of the protein 4E-BP. Additionally, the changes in both processes should occur in 5 min time interval post-fertilization. To validate the model, we checked that the kinetic of the predicted 4.2-fold increase of eIF4E:eIF4G complex concentration at fertilization matched the increase of protein synthesis experimentally observed after fertilization (6.6-fold, SD = 2.3, n = 8). The minimal model was also used to simulate changes observed after fertilization in the presence of rapamycin, a FRAP/mTOR inhibitor. The model showed that the eIF4E:4E-BP complex destabilization was impacted and surprisingly, that the mechanism of 4E-BP degradation was also strongly affected, therefore suggesting that both processes are controlled by the protein kinase FRAP/mTOR.
Collapse
Affiliation(s)
- Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Adrien Richard
- Université de Nice-Sophia Antipolis, UMR 7271, Laboratoire I3S Sophia, Antipolis, France
| | - Odile Mulner-Lorillon
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Julia Morales
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Virginie Glippa
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Jérémie Bourdon
- CNRS UMR 6241, Laboratoire LINA, Université de Nantes Nantes, France
| | - Pauline Gosselin
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Anne Siegel
- CNRS, IRISA-UMR 6074, Campus de Beaulieu Rennes, France ; INRIA, Centre Rennes - Bretagne Atlantique, Symbiose, Campus de Beaulieu Rennes, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Robert Bellé
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| |
Collapse
|
8
|
Akcakanat A, Hong DS, Meric-Bernstam F. Targeting translation initiation in breast cancer. ACTA ACUST UNITED AC 2014; 2:e28968. [PMID: 26779407 PMCID: PMC4705830 DOI: 10.4161/trla.28968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 12/23/2022]
Abstract
Over the past 20 years, a better understanding of cancer biology, screening for early detection, improved adjuvant treatment, and targeted therapies have decreased the rate of breast cancer deaths. However, resistance to treatment is common, and new approaches are needed. Deregulation of translation initiation is associated with the commencement and progression of cancer. Often, translation initiation factors are overexpressed and the related signaling pathways activated in human tumors. Recently, a significant number of inhibitors that target translation factors and pathways have become available. These inhibitors are being tested alone or in combination with chemotherapeutic agents in clinical trials. The results are varied, and it is not yet clear which drug treatments most effectively inhibit tumor growth. This review highlights the pathways and downstream effects of the activation of translation and discusses targeting the control of translation initiation as a therapeutic approach in cancer, focusing on breast cancer clinical trials.
Collapse
Affiliation(s)
- Argun Akcakanat
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics; Houston, TX USA; Department of Surgical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
9
|
Amaroli A, Ferrando S, Gagliani MC, Gallus L, Masini MA. Identification of aquaporins in eggs and early embryogenesis of the sea urchin Paracentrotus lividus. Acta Histochem 2013; 115:257-63. [PMID: 22889702 DOI: 10.1016/j.acthis.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Sea urchins are echinoderms, marine invertebrates found at the base of the deutorostome lineage, which show separate sexes and are external spawners. In the sea urchin, efficient regulation of water homeostasis is essential for many biological processes such as cellular respiration, normal fertilization and correct embryo growth. In order to clarify some of these processes, the present study reports on the identification and function of aquaporin proteins in the sea urchin. Our results show, by immunoblot, immunoelectron microscopy and immunofluorescence analysis, the presence of aquaporin1- and aquaporin3-like proteins in virgin eggs and in early embryogenesis of Paracentrotus lividus and, by using known inhibitors of aquaporin functions, the functional and relevant role of aquaporin-3 in the fertilization process. AQP3 in particular seems to play a crucial role in high velocity water flux formations involved in the detachment of the vitelline layer during the slow block of polyspermy, while the presence of AQP1 and the increase of AQP3 in the first phase of the P. lividus developmental cycle, suggest their involvement in the appropriate homeostasis for embryo development.
Collapse
|
10
|
Aberrations in translational regulation are associated with poor prognosis in hormone receptor-positive breast cancer. Breast Cancer Res 2012; 14:R138. [PMID: 23102376 PMCID: PMC4053117 DOI: 10.1186/bcr3343] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 10/17/2012] [Indexed: 12/25/2022] Open
Abstract
Introduction Translation initiation is activated in cancer through increase in eukaryotic initiation factor 4E (eIF4E), eIF4G, phosphorylated eIF4E-binding protein (p4E-BP1) and phosphorylated ribosomal protein S6 (pS6), and decreased programmed cell death protein 4 (pdcd4), a translational inhibitor. Further, translation elongation is deregulated though alterations in eukaryotic elongation factor 2 (eEF2) and eEF2 kinase (eEF2K). We sought to determine the association of these translational aberrations with clinical-pathologic factors and survival outcomes in hormone receptor-positive breast cancer. Methods Primary tumors were collected from 190 patients with Stage I to III hormone receptor-positive breast cancer. Expression of eIF4E, eIF4G, 4E-BP1, p4E-BP1 T37/46, p4E-BP1 S65, p4E-BP1 T70, S6, pS6 S235/236, pS6 S240/244, pdcd4, eEF2 and eEF2K was assessed by reverse phase protein arrays. Univariable and multivariable analyses for recurrence-free survival (RFS) and overall survival (OS) were performed. Results High eEF2, S6, pS6 S240/244, p4E-BP1 T70, and low pdcd4 were significantly associated with node positivity. Median follow-up for living patients was 96 months. High p4E-BP1 T36/47, p4E-BP1 S65, p4E-BP1 T70 and 4E-BP1 were associated with worse RFS. High p4E-BP1 T70 and pS6 S235/236, and low pdcd4, were associated with worse OS. In multivariable analysis, in addition to positive nodes, p4E-BP1 S65 remained a significant predictor of RFS (HR = 1.62, 95% CI = 1.13-2.31; P = 0.008). In addition to age, pS6 S235/236 (HR = 1.73, 95% CI = 1.03-2.90, P = 0.039), eEF2K (HR = 2.19, 95% CI = 1.35-3.56, P = 0.002) and pdcd4 (HR = 0.42, 95% CI = 0.25-0.70, P = 0.001) were associated with OS. Conclusions Increased pS6, p4E-BP1, eEF2K and decreased pdcd4 are associated with poor prognosis in hormone receptor-positive breast cancer, suggesting their role as prognostic markers and therapeutic targets.
Collapse
|
11
|
Bellé R, Pluchon PF, Cormier P, Mulner-Lorillon O. Identification of a new isoform of eEF2 whose phosphorylation is required for completion of cell division in sea urchin embryos. Dev Biol 2010; 350:476-83. [PMID: 21167828 DOI: 10.1016/j.ydbio.2010.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/12/2010] [Accepted: 12/09/2010] [Indexed: 11/29/2022]
Abstract
Elongation factor 2 (eEF2) is the main regulator of peptide chain elongation in eukaryotic cells. Using sea urchin eggs and early embryos, two isoforms of eEF2 of respectively 80 and 83 kDa apparent molecular weight have been discovered. Both isoforms were identified by immunological analysis as well as mass spectrometry, and appeared to originate from a unique post-translationally modified protein. Accompanying the net increase in protein synthesis that occurs in early development, both eEF2 isoforms underwent dephosphorylation in the 15 min period following fertilization, in accordance with the active role of dephosphorylated eEF2 in regulation of protein synthesis. After initial dephosphorylation, the major 83 kDa isoform remained dephosphorylated while the 80 kDa isoform was progressively re-phosphorylated in a cell-cycle dependent fashion. In vivo inhibition of phosphorylation of the 80 kDa isoform impaired the completion of the first cell cycle of early development implicating the involvement of eEF2 phosphorylation in the exit from mitosis.
Collapse
Affiliation(s)
- Robert Bellé
- Centre National de la Recherche Scientifique, UMR 7150 Mer & Santé, Equipe Traduction Cycle Cellulaire et Développement, Roscoff, France
| | | | | | | |
Collapse
|
12
|
Bellé R, Prigent S, Siegel A, Cormier P. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network. Mol Reprod Dev 2010; 77:257-64. [PMID: 20014323 DOI: 10.1002/mrd.21142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.
Collapse
Affiliation(s)
- Robert Bellé
- UPMC univ Paris 06, UMR 7150 Mer et santé, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique, Roscoff, France.
| | | | | | | |
Collapse
|
13
|
Sadovski O, Jaikaran ASI, Samanta S, Fabian MR, Dowling RJO, Sonenberg N, Woolley GA. A collection of caged compounds for probing roles of local translation in neurobiology. Bioorg Med Chem 2010; 18:7746-52. [PMID: 20427189 DOI: 10.1016/j.bmc.2010.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/25/2010] [Accepted: 04/01/2010] [Indexed: 01/01/2023]
Abstract
Spatially localized translation plays a vital role in the normal functioning of neuronal systems and is widely believed to be involved in both learning and memory formation. It is of central interest to understand both the phenomenon and molecular mechanisms of local translation using new tools and approaches. Caged compounds can, in principle, be used as tools to investigate local translation since optical activation of bioactive molecules can achieve both spatial and temporal resolution on the micron scale and on the order of seconds or less, respectively. Successful caging of bioactive molecules requires the identification of key functional groups in appropriate molecules and the introduction of a suitable caging moiety. Here we present the design, synthesis and testing of a collection of three caged compounds: anisomycin caged with a diethylaminocoumarin moiety and dimethoxynitrobenzyl caged versions of 4E-BP and rapamycin. Whereas caged anisomycin can be used to control general translation, caged 4E-BP serves as a probe of cap-dependent translation initiation and caged rapamycin serves a probe of the role of mTORC1 in translation initiation. In vitro translation assays demonstrate that these caging strategies, in combination with the aforementioned compounds, are effective for optical control making it likely that such strategies can successfully employed in the study of local translation in living systems.
Collapse
Affiliation(s)
- Oleg Sadovski
- Department of Chemistry, University of Toronto, 80 St. George ST., Toronto, ON, Canada M5S 3H6
| | | | | | | | | | | | | |
Collapse
|
14
|
Siemer C, Smiljakovic T, Bhojwani M, Leiding C, Kanitz W, Kubelka M, Tomek W. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development. Mol Reprod Dev 2010; 76:1208-19. [PMID: 19697362 DOI: 10.1002/mrd.21096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of gene expression at the translational level is particularly essential during developmental periods, when transcription is impaired. According to the closed-loop model of translational initiation, we have analyzed components of the 5 -mRNA cap-binding complex eIF4F (eIF4E, eIF4G, eIF4A), the eIF4E repressor 4E-BP1, and 3 -mRNA poly-(A) tail-associated proteins (PABP1 and 3, PAIP1 and 2, CPEB1, Maskin) during in vitro maturation of bovine oocytes and early embryonic development up to the 16-cell stage. Furthermore, we have elucidated the activity of distinct kinases which are potentially involved in their phosphorylation. Major phosphorylation of specific target sequences of PKA, PKB, PKC, CDKs, ATM/ATR, and MAPK were observed in M II stage oocytes. Furthermore, main changes in the abundance and/or phosphorylation of distinct mRNA-binding factors occur at the transition from M II stage oocytes to 2-cell embryos. In conclusion, the results indicate that, at the transition from oocyte to embryonic development, translational initiation is regulated by striking differences in the abundance and/or phosphorylation of 5 -end and 3 -end mRNA associated factors, mainly the poly-(A) bindings proteins PABP1 and 3, their repressor PAIP2 and a Maskin-like protein with distinct eIF4E-binding properties which prevents eIF4E/cap binding and eIF4F formation in vitro. Nevertheless, from the M II stage to 16-cell embryos a substantial amount of eIF4E and, to a lesser extent, of eIF4G was precipitated by (7)m-GTP-Separose indicating eIF4F complex formation. Therefore, it is likely that in general the reduction in PABP1 and 3 abundance represses overall translation during early embryonic development.
Collapse
Affiliation(s)
- Corinna Siemer
- Research Institute for the Biology of Farm Animals (FBN) Dummerstorf, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Oulhen N, Mulner-Lorillon O, Cormier P. eIF4E-Binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs. Mol Reprod Dev 2009; 77:83-91. [DOI: 10.1002/mrd.21110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Oulhen N, Boulben S, Bidinosti M, Morales J, Cormier P, Cosson B. A variant mimicking hyperphosphorylated 4E-BP inhibits protein synthesis in a sea urchin cell-free, cap-dependent translation system. PLoS One 2009; 4:e5070. [PMID: 19333389 PMCID: PMC2659438 DOI: 10.1371/journal.pone.0005070] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 03/03/2009] [Indexed: 12/03/2022] Open
Abstract
Background 4E-BP is a translational inhibitor that binds to eIF4E to repress cap-dependent translation initiation. This critical protein:protein interaction is regulated by the phosphorylation of 4E-BP. Hypophosphorylated 4E-BP binds to eIF4E and inhibits cap-dependent translation, whereas hyperphosphorylated forms do not. While three 4E-BP proteins exist in mammals, only one gene encoding for 4E-BP is present in the sea urchin genome. The protein product has a highly conserved core domain containing the eIF4E-binding domain motif (YxxxxLΦ) and four of the regulatory phosphorylation sites. Methodology/Principal Findings Using a sea urchin cell-free cap-dependent translation system prepared from fertilized eggs, we provide the first direct evidence that the sea urchin 4E-BP inhibits cap-dependent translation. We show here that a sea urchin 4E-BP variant, mimicking phosphorylation on four core residues required to abrogate binding to eIF4E, surprisingly maintains physical association to eIF4E and inhibits protein synthesis. Conclusions/Significance Here, we examine the involvement of the evolutionarily conserved core domain and phosphorylation sites of sea urchin 4E-BP in the regulation of eIF4E-binding. These studies primarily demonstrate the conserved activity of the 4E-BP translational repressor and the importance of the eIF4E-binding domain in sea urchin. We also show that a variant mimicking hyperphosphorylation of the four regulatory phosphorylation sites common to sea urchin and human 4E-BP is not sufficient for release from eIF4E and translation promotion. Therefore, our results suggest that there are additional mechanisms to that of phosphorylation at the four critical sites of 4E-BP that are required to disrupt binding to eIF4E.
Collapse
Affiliation(s)
- Nathalie Oulhen
- UPMC Univ Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, Bretagne, France
| | - Sandrine Boulben
- UPMC Univ Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, Bretagne, France
| | - Michael Bidinosti
- Department of Biochemistry and Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Julia Morales
- UPMC Univ Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, Bretagne, France
| | - Patrick Cormier
- UPMC Univ Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, Bretagne, France
| | - Bertrand Cosson
- UPMC Univ Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, Bretagne, France
- * E-mail:
| |
Collapse
|
17
|
Abstract
Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.
Collapse
|
18
|
Soni A, Akcakanat A, Singh G, Luyimbazi D, Zheng Y, Kim D, Gonzalez-Angulo A, Meric-Bernstam F. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 2008; 7:1782-8. [PMID: 18644990 DOI: 10.1158/1535-7163.mct-07-2357] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of translation initiation is essential for the malignant phenotype and is emerging as a potential therapeutic target. Translation is regulated by the expression of translation initiation factor 4E (eIF4E) as well as the interaction of eIF4E with eIF4E-binding proteins (e.g., 4E-BP1). Rapamycin inhibits translation initiation by decreasing the phosphorylation of 4E-BP1, increasing eIF4E/4E-BP1 interaction. However, rapamycin also inhibits S6K phosphorylation, leading to feedback loop activation of Akt. We hypothesized that targeting eIF4E directly would inhibit breast cancer cell growth without activating Akt. We showed that eIF4E is ubiquitously expressed in breast cancer cell lines. eIF4E knockdown by small interfering RNA inhibited growth in different breast cancer cell subtypes including triple-negative (estrogen receptor/progesterone receptor/HER-2-negative) cancer cells. eIF4E knockdown inhibited the growth of cells with varying total and phosphorylated 4E-BP1 levels and inhibited rapamycin-insensitive as well as rapamycin-sensitive cell lines. eIF4E knockdown led to a decrease in expression of cyclin D1, Bcl-2, and Bcl-xL. eIF4E knockdown did not lead to Akt phosphorylation but did decrease 4E-BP1 expression. We conclude that eIF4E is a promising target for breast cancer therapy. eIF4E-targeted therapy may be efficacious in a variety of breast cancer subtypes including triple-negative tumors for which currently there are no targeted therapies. Unlike rapamycin and its analogues, eIF4E knockdown is not associated with Akt activation.
Collapse
Affiliation(s)
- Alpana Soni
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Unit 444, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
20
|
Oulhen N, Salaün P, Cosson B, Cormier P, Morales J. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. J Cell Sci 2007; 120:425-34. [PMID: 17213333 DOI: 10.1242/jcs.03339] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Release of eukaryotic initiation factor 4E (eIF4E) from its translational repressor eIF4E-binding protein (4E-BP) is a crucial event for the first mitotic division following fertilization of sea urchin eggs. Finding partners of eIF4E following fertilization is crucial to understand how eIF4E functions during this physiological process. The isolation and characterization of cDNA encoding Sphaerechinus granularis eIF4G (SgIF4G) are reported. mRNA of SgIF4G is present as a single 8.5-kb transcript in unfertilized eggs, suggesting that only one ortholog exists in echinoderms. The longest open reading frame predicts a sequence of 5235 nucleotides encoding a deduced polypeptide of 1745 amino acids with a predicted molecular mass of 192 kDa. Among highly conserved domains, SgIF4G protein possesses motifs that correspond to the poly(A) binding protein and eIF4E protein-binding sites. A specific polyclonal antibody was produced and used to characterize the SgIF4G protein in unfertilized and fertilized eggs by SDS-PAGE and western blotting. Multiple differentially migrating bands representing isoforms of sea urchin eIF4G are present in unfertilized eggs. Fertilization triggers modifications of the SgIF4G isoforms and rapid formation of the SgIF4G-eIF4E complex. Whereas rapamycin inhibits the formation of the SgIF4G-eIF4E complex, modification of these SgIF4G isoforms occurs independently from the rapamycin-sensitive pathway. Microinjection of a peptide corresponding to the eIF4E-binding site derived from the sequence of SgIF4G into unfertilized eggs affects the first mitotic division of sea urchin embryos. Association of SgIF4G with eIF4E is a crucial event for the onset of the first mitotic division following fertilization, suggesting that cap-dependent translation is highly regulated during this process. This hypothesis is strengthened by the evidence that microinjection of the cap analog m(7)GDP into unfertilized eggs inhibits the first mitotic division.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Université Pierre et Marie Curie-Paris6, UMR 7150, Equipe Cycle Cellulaire et Développement and CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff CEDEX, France
| | | | | | | | | |
Collapse
|
21
|
Morales J, Mulner-Lorillon O, Cosson B, Morin E, Bellé R, Bradham CA, Beane WS, Cormier P. Translational control genes in the sea urchin genome. Dev Biol 2006; 300:293-307. [PMID: 16959243 DOI: 10.1016/j.ydbio.2006.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/25/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.
Collapse
Affiliation(s)
- Julia Morales
- Equipe Cycle Cellulaire et Développement, UMR 7150 CNRS/UPMC, Station Biologique 29680 Roscoff, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Carroll M, Dyer J, Sossin WS. Serotonin increases phosphorylation of synaptic 4EBP through TOR, but eukaryotic initiation factor 4E levels do not limit somatic cap-dependent translation in aplysia neurons. Mol Cell Biol 2006; 26:8586-98. [PMID: 16982686 PMCID: PMC1636790 DOI: 10.1128/mcb.00955-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The target of rapamycin (TOR) plays an important role in memory formation in Aplysia californica. Here, we characterize one of the downstream targets of TOR, the eukaryotic initiation factor 4E (eIF4E) binding protein (4EBP) from Aplysia. Aplysia 4EBP contains the four critical phosphorylation sites regulated by TOR as well as an N-terminal RAIP motif and a C-terminal TOS site. Aplysia 4EBP was hypophosphorylated in synaptosomes, and serotonin addition caused a rapamycin-sensitive increase in 4EBP phosphorylation both in synaptosomes and in isolated neurites. Aplysia 4EBP was regulated in a fashion similar to that of mammalian 4EBPs, binding to eIF4E when dephosphorylated and releasing eIF4E after phosphorylation. Overexpression of 4EBP in the soma of Aplysia neurons caused a specific decrease in cap-dependent translation that was rescued by concomitant overexpression of eIF4E. However, eIF4E overexpression by itself did not increase cap-dependent translation, suggesting that increasing levels of free eIF4E by phosphorylating 4EBP is not important in regulating cap-dependent translation in the cell soma. Total levels of eIF4E were also regulated by 4EBP, suggesting that 4EBP can also act as an eIF4E chaperone. These studies demonstrate the conserved nature of 4EBP regulation and its role in cap-dependent translation and suggest differential roles of 4EBP phosphorylation in the soma and synapse.
Collapse
Affiliation(s)
- Matthew Carroll
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, BT 110, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
23
|
Oulhen N, Cormier P. [eIF4E and developmental decisions: when translation drives the development]. Med Sci (Paris) 2006; 22:507-13. [PMID: 16687119 DOI: 10.1051/medsci/2006225507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Regulation of mRNA translation is an important regulatory step in gene expression. During embryonic development, mRNA translation is tightly regulated to produce the protein at the right place, at the right time. The eukaryotic initiation factor 4E (eIF4E) is a major target for the regulation of cap-dependent translation, that plays a key role during embryogenesis including gametogenesis, fertilization and establishment of embryonic axes. In this review, we describe recent advances illustrating the importance of the translational regulator eIF4E and its partners in developmental decisions. double dagger.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Station Biologique de Roscoff, Cycle Cellulaire et Développement, Unité Mer et Santé (UMR 7150), Université Pierre-et-Marie Curie (EI 37), Centre National de la Recherche Scientifique, Institut National des Sciences de l'Univers, Roscoff, France
| | | |
Collapse
|
24
|
Le Bouffant R, Cormier P, Mulner-Lorillon O, Bellé R. Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP. J Cell Biochem 2006; 99:126-32. [PMID: 16598776 DOI: 10.1002/jcb.20856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 4E-binding proteins (4E-BPs) regulate the cap-dependent eukaryotic initiation factor 4E (eIF4E). The level of 4E-BP protein is regulated during early development of sea urchin embryos. Fertilization leads to the rapid disappearance of the protein that reappears later in development. We show that two important cellular stresses, hypoxia and bleomycin prolonged checkpoint mobilization provoked the overexpression of the protein 4E-BP in developing sea urchin embryos. Hypoxia resulted after 1 h in a reversible gradual increase in the protein 4E-BP level. At 20 h, the protein 4E-BP had reached the level existing in the unfertilized eggs. Bleomycin used as a DNA-damaging agent for checkpoint activation, provoked cell cycle inhibition and after prolonged exposure (20 h), induced the expression of the protein 4E-BP. The effect of bleomycin on 4E-BP protein overexpression was dose-dependent between 0.4 and 1.2 mM. The role of the overexpression of the protein 4E-BP is discussed in relation with cellular stress responses.
Collapse
Affiliation(s)
- Ronan Le Bouffant
- Equipe Cycle Cellulaire et Développement, Unité de Recherche Mer & Santé, UMR 7150, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC), Station Biologique de Roscoff 29682 Roscoff Cedex France
| | | | | | | |
Collapse
|