Behrendt M, Keiser M, Hoch M, Naim HY. Impaired trafficking and subcellular localization of a mutant lactase associated with congenital lactase deficiency.
Gastroenterology 2009;
136:2295-303. [PMID:
19208354 DOI:
10.1053/j.gastro.2009.01.041]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS
Congenital lactase deficiency (CLD) is a cause of disaccharide intolerance and malabsorption characterized by watery diarrhea in infants fed breast milk or lactose-containing formulas. The molecular basis of CLD is unknown. Mutations in the coding region of the brush border enzyme lactase phlorizin hydrolase (LPH) were found to cause CLD in a study of 19 Finnish families. We analyzed the effects of one of these mutations, G1363S, on LPH folding, trafficking, and function.
METHODS
We introduced a mutation into the LPH complementary DNA that resulted in the amino acid substitution G1363S. The mutant gene was transiently expressed in COS-1 cells, and the effects were assessed at the protein, structural, and subcellular levels.
RESULTS
The mutant protein LPH-G1363S was misfolded and could not exit the endoplasmic reticulum. Interestingly, the mutation creates an additional N-glycosylation site that is characteristic of a temperature-sensitive protein. The intracellular transport and enzymatic activity, but not correct folding, of LPH-G1363S were partially restored by expression at 20 degrees C. However, a form of LPH that contains the mutations G1363S and N1361A, which eliminates the N-glycosylation site, did not restore the features of wild-type LPH. Thus, the additional glycosyl group is not required for the LPH-G1363S defects.
CONCLUSIONS
This is the first characterization, at the molecular and subcellular levels, of a mutant form of LPH that is involved in the pathogenesis of CLD. Mutant LPH accumulates predominantly in the endoplasmic reticulum but can partially mature at a permissive temperature; these features are unique for a protein involved in a carbohydrate malabsorption defect implicating LPH.
Collapse