1
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Menchinskaya ES, Dyshlovoy SA, Venz S, Jacobsen C, Hauschild J, Rohlfing T, Silchenko AS, Avilov SA, Balabanov S, Bokemeyer C, Aminin DL, von Amsberg G, Honecker F. Anticancer Activity of the Marine Triterpene Glycoside Cucumarioside A 2-2 in Human Prostate Cancer Cells. Mar Drugs 2023; 22:20. [PMID: 38248645 PMCID: PMC10817243 DOI: 10.3390/md22010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Despite recent advances in the treatment of metastatic castration-resistant prostate cancer (CRPC), treatment is inevitably hampered by the development of drug resistance. Thus, new drugs are urgently needed. We investigated the efficacy, toxicity, and mechanism of action of the marine triterpene glycoside cucumarioside A2-2 (CA2-2) using an in vitro CRPC model. CA2-2 induced a G2/M-phase cell cycle arrest in human prostate cancer PC-3 cells and caspase-dependent apoptosis executed via an intrinsic pathway. Additionally, the drug inhibited the formation and growth of CRPC cell colonies at low micromolar concentrations. A global proteome analysis performed using the 2D-PAGE technique, followed by MALDI-MS and bioinformatical evaluation, revealed alterations in the proteins involved in cellular processes such as metastatic potential, invasion, and apoptosis. Among others, the regulation of keratin 81, CrkII, IL-1β, and cathepsin B could be identified by our proteomics approach. The effects were validated on the protein level by a 2D Western blotting analysis. Our results demonstrate the promising anticancer activity of CA2-2 in a prostate cancer model and provide insights on the underlying mode of action.
Collapse
Affiliation(s)
- Ekaterina S. Menchinskaya
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, 17475 Greifswald, Germany;
| | - Christine Jacobsen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Aleksandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
| | - Stefan Balabanov
- Division of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
- Tumor and Breast Center Eastern Switzerland, 9016 St. Gallen, Switzerland
| |
Collapse
|
3
|
Zhu S, Hou J, Gao H, Hu Q, Kloeber JA, Huang J, Zhao F, Zhou Q, Luo K, Wu Z, Tu X, Yin P, Lou Z. SUMOylation of HNRNPA2B1 modulates RPA dynamics during unperturbed replication and genotoxic stress responses. Mol Cell 2023; 83:539-555.e7. [PMID: 36702126 PMCID: PMC9975078 DOI: 10.1016/j.molcel.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.
Collapse
Affiliation(s)
- Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
5
|
Bou G, Guo J, Liu S, Guo S, Davaakhuu G, Lv Q, Xue B, Qiao S, Lv J, Weng X, Zhao J, Zhang Y, He Y, Zhang H, Chai Z, Liu Y, Yu Y, Qu B, Sun R, Shen X, Lei L, Liu Z. OCT4 expression transactivated by GATA protein is essential for non-rodent trophectoderm early development. Cell Rep 2022; 41:111644. [DOI: 10.1016/j.celrep.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
|
6
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
7
|
Li D, Fu Z, Dong C, Song Y. Methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit-induced long intergenic non-protein coding RNA 1833 N6-methyladenosine methylation promotes the non-small cell lung cancer progression via regulating heterogeneous nuclear ribonucleoprotein A2/B1 expression. Bioengineered 2022; 13:10493-10503. [PMID: 35441574 PMCID: PMC9161889 DOI: 10.1080/21655979.2022.2061305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long intergenic non-protein coding RNA 1833 (LINC01833) exhibits elevated expression in the non-small cell lung cancer (NSCLC) tissues, while its molecular mechanism in NSCLC progression remains elusive. Herein, the proliferation, migration, invasion as well as apoptosis of NSCLC cells were assessed. The potential N6-methyladenosine (m6A) modification site was predicted by the m6aVar tool. RNA pulldown and m6A-specific immunoprecipitation assays were used to detect the interaction between LINC01833 and methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3). RNA pull-down together with mass spectrometry were performed to assess the binding relationship between LINC01833 and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) in NSCLC. Tumor xenograft mice model was established, and the tumor size and weight were measured. The results demonstrated that LINC01833 expression was elevated in NSCLC samples. Overexpression of LINC01833 promoted proliferative, migratory, and invasive abilities and inhibited HCC827 cell apoptosis. LINC01833 knockdown inhibited tumor growth in mice. LINC01833 is further demonstrated to be modulated by METTL3, which is highly expressed in NSCLC samples. In addition, RNA pulldown and m6A-specific immunoprecipitation assays indicated that LINC01833 might form a complex with HNRNPA2B1. In conclusion, m6A transferase METTL3-induced LINC01833 m6A methylation promotes NSCLC progression through modulating HNRNPA2B1 expression. Our findings indicated that LINC01833 might be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, hanxi Hospital Affiliated to Cancer Hospitalṣ Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Zejun Fu
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, hanxi Hospital Affiliated to Cancer Hospitalṣ Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Chaoqun Dong
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, hanxi Hospital Affiliated to Cancer Hospitalṣ Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, hanxi Hospital Affiliated to Cancer Hospitalṣ Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030000, China
| |
Collapse
|
8
|
Zhang M, Sun Y, Huang CP, Luo J, Zhang L, Meng J, Liang C, Chang C. Targeting the Lnc-OPHN1-5/androgen receptor/hnRNPA1 complex increases Enzalutamide sensitivity to better suppress prostate cancer progression. Cell Death Dis 2021; 12:855. [PMID: 34545067 PMCID: PMC8452728 DOI: 10.1038/s41419-021-03966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been found to play critical roles in regulating gene expression, but their function in translational control is poorly understood. We found lnc-OPHN1-5, which lies close to the androgen receptor (AR) gene on chromosome X, increased prostate cancer (PCa) Enzalutamide (Enz) sensitivity via decreasing AR protein expression and associated activity. Mechanism dissection revealed that lnc-OPHN1-5 interacted with AR-mRNA to minimize its interaction with the RNA binding protein (RBP) hnRNPA1. Suppressing lnc-OPHN1-5 expression promoted the interaction between AR-mRNA and hnRNPA1, followed by an increase of ribosome association with AR-mRNA and translation. This effect was reversed by increasing lnc-OPHN1-5 expression. Consistently, the in vivo mice model confirmed that knocking down lnc-OPHN1-5 expression in tumors significantly increased the tumor formation rate and AR protein expression compared with the control group. Furthermore, knocking down hnRNPA1 blocked/reversed shlnc-OPHN1-5-increased AR protein expression and re-sensitized cells to Enz treatment efficacy. Evidence from Enz-resistant cell lines, patient-derived xenograft (PDX) models, clinical samples, and a human PCa study accordantly suggested that patients with low expression of lnc-OPHN1-5 likely have unfavorable prognoses and probably are less sensitive to Enz treatment. In summary, targeting this newly identified lnc-OPHN1-5/AR/hnRNPA1 complex may help develop novel therapies to increase Enz treatment sensitivity for suppressing the PCa at an advanced stage.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Institute of Urology, Shenzhen University, Shenzhen, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University, Taichung, Taiwan
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Urology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Wu J, Wang S, Li X, Zhang Q, Yang J, Ma Y, Guan Z, Yang Z. Selective Anti-melanoma Effect of Phosphothioated Aptamer Encapsulated by Neutral Cytidinyl/Cationic Lipids. Front Cell Dev Biol 2021; 9:660233. [PMID: 34262898 PMCID: PMC8273494 DOI: 10.3389/fcell.2021.660233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
BC15-31 is a DNA aptamer that targets heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which plays a crucial role in the process of pre-RNA maturation and is also essential for the rapid proliferation of tumor cells. In this research, we modified BC15-31 with a phosphorothioate (PS) backbone, LNA, and 2-O-MOE to enhance its stability and target affinity. In addition, a neutral cytidinyl lipid (DNCA) and a cationic lipid (CLD) were mixed to encapsulate modified aptamers with the aim of improving their cell permeability with low toxicity. Under the DNCA/CLD package, aptamers are mainly distributed in the nucleus. A modified sequence WW-24 showed an excellent selective anti-melanoma (A375 cells, ∼25 nM, 80%) activity, targeted to both hnRNP A1 and hnRNP A2/B1 found by the BLI experiment, and induced more early and late apoptosis in vitro, which also showed stronger antitumor effect and longer accumulation time in vivo. These results provide a new strategy for further clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shuhe Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jie Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Kim MK, Choi MJ, Lee HM, Choi HS, Park YK, Ryu CJ. Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the ERK and p53/HDM2 signaling pathways to promote the survival, proliferation and migration of non‑small cell lung cancer cells. Oncol Rep 2021; 46:153. [PMID: 34109989 DOI: 10.3892/or.2021.8104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/09/2021] [Indexed: 12/09/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer‑associated mortality worldwide. Upregulation of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) has been reported in non‑small cell lung cancer (NSCLC) cells, but its contribution to NSCLC remains poorly understood. hnRNPA2/B1 is involved in carcinogenesis by interacting with a number of proteins; however, little is known about its interaction with p53. The results of the present study revealed that hnRNPA2/B1 expression levels were upregulated in NSCLC cells under tumorsphere culture conditions and cisplatin treatment compared with those in cells under the adherent condition and dimethyl sulfoxide treatment, respectively, suggesting that hnRNPA2/B1 expression is induced under stress conditions. hnRNPA2/B1 knockdown decreased the number and size of NSCLC cell colonies in a clonogenic survival assay and led to a decreased migratory potential of NSCLC cells, suggesting that hnRNPA2/B1 may promote the survival, proliferation and migration of NSCLC cells. hnRNPA2/B1 knockdown induced G0/G1 phase arrest in NSCLC cells through cyclin E degradation and phosphorylation of cyclin‑dependent kinase 2. In addition, hnRNPA2/B1 knockdown inhibited extracellular signal‑regulated kinase (ERK)1/2 phosphorylation, suggesting that hnRNPA2/B1 may promote the G1/S phase transition in NSCLC cells through ERK signaling. hnRNPA2/B1 knockdown resulted in increased expression levels of p21 and p27 in NSCLC cells, as well as p53 induction and phosphorylation. Additionally, hnRNPA2/B1 knockdown inhibited human double minute 2 protein (HDM2) stability and phosphorylation, whereas overexpression of hnRNPA2 induced the opposite effects. These results suggested that hnRNPA2/B1 may promote the survival, proliferation and migration of NSCLC cells through preventing the activation of p53, which is induced by ERK‑mediated HDM2 activation. The results of the present study also indicated that the components of the hnRNPA2/B1/ERK/p53/HDM2 signaling pathway may be novel potential molecular targets for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Mun Ju Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Young-Kwon Park
- Prevention and Management Center, Ulsan University Hospital, Ulsan 44033, Republic of Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
11
|
Ma Y, Yang L, Li R. HnRNPA2/B1 Is a Novel Prognostic Biomarker for Breast Cancer Patients. Genet Test Mol Biomarkers 2020; 24:701-707. [PMID: 32985904 DOI: 10.1089/gtmb.2020.0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is highly expressed in multiple types of tumor tissues and could potentially be used as a biomarker for the early detection of lung cancer. However, there is little evidence supporting its clinical significance as a prognostic marker in breast cancer. Materials and Methods: We retrospectively analyzed the protein expression and localization of hnRNPA2/B1 protein in breast cancer tissues and adjacent normal tissues from 50 patients with Stage II and III breast cancer who were treated at Shanxi Provincial People's Hospital from May 2018 to May 2019 using western blot, and immunofluorescent and immunohistochemical staining assays. In addition, bioinformatic analyses using the Affymetrix Human Genome database were performed to examine the mRNA levels of hnRNPA2/B1 in normal and breast cancer tissues, and to determine their correlation with the survival rates of breast cancer patients. Results: Based on the cohort of 50 patients, HnRNPA2/B1 protein was expressed in both the cytoplasm and nucleus of breast cancer cells. The protein levels of hnRNPA2/B1 in breast cancer tissues were significantly higher than those in adjacent normal tissues (p < 0.001). Furthermore, bioinformatic analyses of hnRNPA2/B1 mRNA expression levels demonstrated that they were negatively correlated with overall survival and disease-specific survival rates in breast cancer patients. Conclusion: Our study indicates that hnRNPA2/B1 could serve as a novel prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yuehong Ma
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, P.R. China
| | - Lizhu Yang
- Department of Pathology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, P.R. China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, P.R. China
| |
Collapse
|
12
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Profiling of subcellular EGFR interactome reveals hnRNP A3 modulates nuclear EGFR localization. Oncogenesis 2020; 9:40. [PMID: 32321917 PMCID: PMC7176650 DOI: 10.1038/s41389-020-0225-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
The aberrant subcellular translocation and distribution of epidermal growth factor receptor (EGFR) represent a major yet currently underappreciated cancer development mechanism in non-small cell lung cancer (NSCLC). In this study, we investigated the subcellular interactome of EGFR by using a spectral counting-based approach combined with liquid chromatography–tandem mass spectrometry to understand the associated protein networks involved in the tumorigenesis of NSCLC. A total of 54, 77, and 63 EGFR-interacting proteins were identified specifically in the cytosolic, mitochondrial, and nuclear fractions from a NSCLC cell line, respectively. Pathway analyses of these proteins using the KEGG database shown that the EGFR-interacting proteins of the cytosol and nucleus are involved in the ribosome and spliceosome pathways, respectively, while those of the mitochondria are involved in metabolizing propanoate, fatty acid, valine, leucine, and isoleucine. A selected nuclear EGFR-interacting protein, hnRNP A3, was found to modulate the accumulation of nuclear EGFR. Downregulation of hnRNP A3 reduced the nuclear accumulation of EGFR, and this was accompanied by reduced tumor growth ability in vitro and in vivo. These results indicate that variations in the subcellular translocation and distribution of EGFR within NSCLC cells could affect tumor progression.
Collapse
|
14
|
Morettin A, Bourassa J, Mahadevan K, Trinkle-Mulcahy L, Cote J. Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases. Methods 2020; 175:44-52. [PMID: 31794835 DOI: 10.1016/j.ymeth.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferase family (PRMT) is known as being the catalytic driving force for arginine methylation. This specific type of post translational modification is extensively used in biological processes, and therefore is highly relevant in the pathology of a profusion of diseases. Since altered PRMT expression or deregulation has been shown to contribute to a vast range of those diseases including cancer, their study is of great interest. Although an increasing number of substrates are being discovered for each PRMT, large scale proteomic methods can be used to identify novel interactors/substrates, further elucidating the role that PRMTs perform in physiological or disease states. Here, we describe the use of affinity purification (AP) coupled with stable isotope labeling with amino acids in cell culture (SILAC) quantitative mass spectrometry (MS) to identify protein interactors and substrates of PRMTs. We also explore the possibility of exploiting the fact most PRMTs display lower dissociation rates with their hypomethylated substrates as a strategy to increase the proportion of substrates identified in AP/MS studies.
Collapse
Affiliation(s)
- Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Bourassa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kohila Mahadevan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jocelyn Cote
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Anti-Inflammatory Action of Heterogeneous Nuclear Ribonucleoprotein A2/B1 in Patients with Autoimmune Endocrine Disorders. J Clin Med 2019; 9:jcm9010009. [PMID: 31861546 PMCID: PMC7019344 DOI: 10.3390/jcm9010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Our previous studies documented that human fibroblast-limbal stem cells (f-LSCs) possess immunosuppressive capabilities, playing a role in regulating T-cell activity. This study highlights the molecular activities by which human f-LSCs can attenuate the inflammatory responses of self-reactive peripheral blood mononuclear cells (PBMCs) collected from patients with autoimmune endocrine diseases (AEDs). Anti-CD3 activated PBMCs from twenty healthy donors and fifty-two patients with AEDs were cocultured on f-LSC monolayer. 2D-DIGE proteomic experiments, mass spectrometry sequencing and functional in vitro assays were assessed in cocultured PBMCs. We identified the downmodulation of several human heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) isoforms in healthy and AED activated PBMCs upon f-LSC interaction. The reduction of hnRNPA2/B1 protein expression largely affected the cycling ki67+, CD25+, PD-1+ reactive cells and the double marked CD8+/hnRNPA2B1+ T cell subset. Anti-PD1 blocking experiments evoked hnRNPA2/B1 overexpression, attributing putative activation function to the protein. hnRNPA2/B2 transient silencing inverted immunopolarization of the self-reactive PBMCs from AEDs toward a M2/Th2-type background. Pharmacological inhibition and co-immunoprecipitation experiments demonstrated the involvement of NF-ĸB in hnRNPA2/B activity and turnover. Our data indicate cardinal involvement of hnRNP A2/B1 protein in peripheral mechanisms of tolerance restoration and attenuation of inflammation, identifying a novel immunoplayer potentially targetable in all AEDs.
Collapse
|
16
|
Zhang ZW, Zhang HL, Yu YH, Ouyang YM, Chen ZC, He XS, He ZM. Carboxyl terminal activating region 3 of latent membrane protein 1 encoded by the Epstein‑Barr virus regulates cell proliferation and protein expression in NP69 cells. Mol Med Rep 2019; 21:720-730. [PMID: 31974609 PMCID: PMC6947836 DOI: 10.3892/mmr.2019.10859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/23/2018] [Indexed: 01/14/2023] Open
Abstract
In the present study, the mechanism by which carboxyl terminal activating region 3 (CTAR3) of latent membrane protein 1 (LMP1), encoded by the Epstein-Barr virus, regulated cell proliferation and protein expression was investigated in the nasopharyngeal epithelial cell line NP69. The deletion mutant LMP1 (LMP1Δ232-351; amino acid residues including 232–351 codons in CTAR3 deleted) was generated by polymerase chain reaction. An NP69-LMP1Δ232-351 cell line was established by retroviral infection. Finally, cell proliferation and protein expression of NP69 cells expressing LMP1Δ232-351 were examined using a cell growth curve and western blot analysis. The results demonstrated: i) The proliferation of NP69-LMP1Δ232-351 cells was significantly decreased compared with cells expressing wild type LMP1 (LMP1WT; n=3; P<0.05); ii) 17 proteins exhibited differential protein expression (>2-fold change) in NP69-LMP1Δ232-351 cells compared with NP69-LMP1WT cells; and iii) LMP1WT was involved in activating the Janus kinase 3 (JAK3) promoter and regulating the expression of JAK3 protein, while LMP1Δ232-351 was almost defective in ability to activate the JAK promoter. These results suggested that LMP1-CTAR3 may be an important functional domain for regulating cell proliferation and protein expression in nasopharyngeal epithelial cells.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Cancer Research Institute of Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan, Hengyang, Hunan 421001, P.R. China
| | - He-Liang Zhang
- Cancer Research Institute of Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan, Hengyang, Hunan 421001, P.R. China
| | - Yan-Hui Yu
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Yong-Mei Ouyang
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Zhu-Chu Chen
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Xiu-Sheng He
- Cancer Research Institute of Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Min He
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
17
|
Yang Q, Zhao J, Zhang W, Chen D, Wang Y. Aberrant alternative splicing in breast cancer. J Mol Cell Biol 2019; 11:920-929. [PMID: 31065692 PMCID: PMC6884705 DOI: 10.1093/jmcb/mjz033] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is critical for human gene expression regulation, which plays a determined role in expanding the diversity of functional proteins. Importantly, alternative splicing is a hallmark of cancer and a potential target for cancer therapeutics. Based on the statistical data, breast cancer is one of the top leading causes of cancer-related deaths in women worldwide. Strikingly, alternative splicing is closely associated with breast cancer development. Here, we seek to provide a general review of the relationship between alternative splicing and breast cancer. We introduce the process of alternative splicing and its regulatory role in cancers. In addition, we highlight the functions of aberrant alternative splicing and mutations of splicing factors in breast cancer progression. Moreover, we discuss the role of alternative splicing in cancer drug resistance and the potential of being targets for cancer therapeutics.
Collapse
Affiliation(s)
- Quan Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
18
|
Fung L, Guzman H, Sevrioukov E, Idica A, Park E, Bochnakian A, Daugaard I, Jury D, Mortazavi A, Zisoulis DG, Pedersen IM. miR-128 Restriction of LINE-1 (L1) Retrotransposition Is Dependent on Targeting hnRNPA1 mRNA. Int J Mol Sci 2019; 20:E1955. [PMID: 31010097 PMCID: PMC6515209 DOI: 10.3390/ijms20081955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
The majority of the human genome is made of transposable elements, giving rise to interspaced repeats, including Long INterspersed Element-1s (LINE-1s or L1s). L1s are active human transposable elements involved in genomic diversity and evolution; however, they can also contribute to genomic instability and diseases. L1s require host factors to complete their life cycles, whereas the host has evolved numerous mechanisms to restrict L1-induced mutagenesis. Restriction mechanisms in somatic cells include methylation of the L1 promoter, anti-viral factors and RNA-mediated processes such as small RNAs. microRNAs (miRNAs or miRs) are small non-coding RNAs that post-transcriptionally repress multiple target genes often found in the same cellular pathways. We have recently established that miR-128 functions as a novel restriction factor inhibiting L1 mobilization in somatic cells. We have further demonstrated that miR-128 functions through a dual mechanism; by directly targeting L1 RNA for degradation and indirectly by inhibiting a cellular co-factor which L1 is dependent on to transpose to new genomic locations (TNPO1). Here, we add another piece to the puzzle of the enigmatic L1 lifecycle. We show that miR-128 also inhibits another key cellular factor, hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), by significantly reducing mRNA and protein levels through direct interaction with the coding sequence (CDS) of hnRNPA1 mRNA. In addition, we demonstrate that repression of hnRNPA1 using hnRNPA1-shRNA significantly decreases de novo L1 retro-transposition and that induced hnRNPA1 expression enhances L1 mobilization. Furthermore, we establish that hnRNPA1 is a functional target of miR-128. Finally, we determine that induced hnRNPA1 expression in miR-128-overexpressing cells can partly rescue the miR-128-induced repression of L1's ability to transpose to different genomic locations. Thus, we have identified an additional mechanism by which miR-128 represses L1 retro-transposition and mediates genomic stability.
Collapse
Affiliation(s)
- Lianna Fung
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Herlinda Guzman
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Evgueni Sevrioukov
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Adam Idica
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Eddie Park
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | - Aurore Bochnakian
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Iben Daugaard
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Douglas Jury
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | - Dimitrios G Zisoulis
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Irene M Pedersen
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Li L, Yang X, Li K, Zhang G, Ma Y, Cai B, Li S, Ding H, Deng J, Nan X, Sun J, Wu Y, Shao N, Zhang L, Yang Z. d-/l-Isothymidine incorporation in the core sequence of aptamer BC15 enhanced its binding affinity to the hnRNP A1 protein. Org Biomol Chem 2019; 16:7488-7497. [PMID: 30272759 DOI: 10.1039/c8ob01454j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was reported to participate in the development of a variety of tumors. BC15 is a DNA aptamer targeting hnRNP A1. Firstly, through sequence truncation, we identified 31-mer sequence BC15-31 as the core sequence of BC15 with a strong binding affinity and high selectivity to the hnRNP A1 protein. Isothymidine (isoT) modification was then applied for the structural optimization of BC15-31, systematic modification and biological evaluation were carried out. Incorporation of isoT in the 1,3 sites at the 5'-end of BC15-31 can significantly enhance the protein affinity. Chemical modifications close to the 3'-end can greatly improve the stability of the aptamer. Furthermore, BC15-31 modified with isoT at both the 5'-end and 3'-end displayed an additive effect with enhanced bioactivity and stability at the same time. Our study strategy on BC15 provides a useful guideline for chemical modification and optimization of the aptamer for further clinical application.
Collapse
Affiliation(s)
- Liyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Heterogeneous Nuclear Ribonucleoproteins A1 and A2 Function in Telomerase-Dependent Maintenance of Telomeres. Cancers (Basel) 2019; 11:cancers11030334. [PMID: 30857208 PMCID: PMC6468650 DOI: 10.3390/cancers11030334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
The A/B subfamily of heterogeneous nuclear ribonucleoproteins (hnRNPs A/B), which includes hnRNP A1, A2/B1, and A3, plays an important role in cell proliferation. The simultaneous suppression of hnRNP A1/A2, but not the suppression of hnRNP A1 or A2 alone, has been shown to inhibit cell proliferation and induce apoptosis in cancer cells, but not in mortal normal cells. However, the molecular basis for such a differential inhibition of cell proliferation remains unknown. Here, we show that the simultaneous suppression of hnRNP A1 and hnRNP A2 resulted in dysfunctional telomeres and induced DNA damage responses in cancer cells. The inhibition of apoptosis did not alleviate the inhibition of cell proliferation nor the formation of dysfunctional telomeres in cancer cells depleted of hnRNP A1/A2. Moreover, while proliferation of mortal normal fibroblasts was not sensitive to the depletion of hnRNP A1/A2, the ectopic expression of hTERT in normal fibroblasts rendered these cells sensitive to proliferation inhibition, which was associated with the production of dysfunctional telomeres. Our study demonstrates that hnRNP A1 and A2 function to maintain telomeres in telomerase-expressing cells only, suggesting that the maintenance of functional telomeres in telomerase-expressing cancer cells employs factors that differ from those used in the telomerase-negative normal cells.
Collapse
|
21
|
Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Exp Mol Med 2019; 51:1-14. [PMID: 30755586 PMCID: PMC6372683 DOI: 10.1038/s12276-018-0200-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of HIF-1α in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of HIF-1α translation by binding to the C-terminal glycine-rich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3’-untranslated region of HIF-1α mRNA. Moreover, MO-460 suppresses HIF-1α protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxia-induced tumor survival and thus offer an avenue for the development of novel anticancer therapies. A synthetic analog of a chemical found in fruit suppresses tumor growth by targeting an RNA-binding protein (hnRNPA2B1) and preventing the production of a pro-cancer regulatory factor. Nak-Kyun Soung from the Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea, and coworkers built on their previous discovery that a compound derived from a medicinal plant metabolite can suppress the activity of hypoxia-inducible factor-1α (HIF-1α). This protein, which is involved in many aspects of cancer biology, is activated in the low-oxygen microenvironments found inside tumors. The researchers show that the compound binds to a protein that helps with the conversion of HIF-1α–encoding RNA transcripts into HIF-1α proteins. Liver cancer cells treated with the compound grew slowly and produced less HIF-1α under both normal and low-oxygen culture conditions, highlighting the potential of this anti-cancer strategy.
Collapse
|
22
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
23
|
Depletion of endogenous miRNA-378-3p increases peak cell density of CHO DP12 cells and is correlated with elevated levels of ubiquitin carboxyl-terminal hydrolase 14. J Biotechnol 2018; 288:30-40. [DOI: 10.1016/j.jbiotec.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/27/2018] [Accepted: 10/28/2018] [Indexed: 01/01/2023]
|
24
|
The Roles of Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 in Cancer and Cancer Stem Cells. Stem Cells Int 2018; 2018:4217259. [PMID: 29736175 PMCID: PMC5874980 DOI: 10.1155/2018/4217259] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/12/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. The insulin-like growth factor (IGF) 2 mRNA-binding protein (IGF2BP, IMP) family comprises three RBPs, IGF2BP1, IGF2BP2, and IGF2BP3, capable of associating with IGF2 and other transcripts and mediating their processing. IGF2BP2 represents the least understood member of this family of RBPs; however, it has been reported to participate in a wide range of physiological processes, such as embryonic development, neuronal differentiation, and metabolism. Its dysregulation is associated with insulin resistance, diabetes, and carcinogenesis and may potentially be a powerful biomarker and candidate target for relevant diseases. This review summarizes the structural features, regulation, and functions of IGF2BP2 and their association with cancer and cancer stem cells.
Collapse
|
25
|
Han J, Tang FM, Pu D, Xu D, Wang T, Li W. Mechanisms Underlying Regulation of Cell Cycle and Apoptosis by hnRNP B1 in Human Lung Adenocarcinoma A549 Cells. TUMORI JOURNAL 2018. [DOI: 10.1177/1430.15824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Juan Han
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Feng-ming Tang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dan Pu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dan Xu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Tao Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Weimin Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
26
|
Shi X, Ran L, Liu Y, Zhong SH, Zhou PP, Liao MX, Fang W. Knockdown of hnRNP A2/B1 inhibits cell proliferation, invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway. Oncol Rep 2018; 39:939-950. [PMID: 29328485 PMCID: PMC5802035 DOI: 10.3892/or.2018.6195] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/29/2017] [Indexed: 01/18/2023] Open
Abstract
Cervical cancer is currently one of the major threats to women's health. The overexpression of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as the biomarker has been investigated in various cancers. In our previous study, we found that lobaplatin induced apoptosis and cell cycle arrest via downregulation of proteins including hnRNP A2/B1 in cervical cancer cells. However, the underlying relationship between hnRNP A2/B1 and cervical cancer remained largely unknown. hnRNP A2/B1 knock-down in HeLa and CaSki cells was performed by shRNA transfection. The expression of hnRNP A2/B1 was detected by western blot and Quantitative Real-time PCR. Cell proliferation, migration, invasion and the IC50 of lobaplatin and irinotecan were determined by MTT assay, Transwell assay, Plate colony formation assay and wound healing assay. Flow cytometry was perfomed to investigate cell apoptosis and the cell cycle. The expression of PI3K, AKT, p-AKT, p21, p27, caspase-3, cleaved caspase-3 were revealed by western blot. Nude mouse xenograft model was undertaken with HeLa cells and the xenograft tumor tissue samples were analyzed for the expression of PCNA and Ki-67 by immunohistochemistry and the cell morphology was evaluated by hematoxylin and eosin (H&E). Results revealed that hnRNP A2/B1 was successfully silenced in HeLa and CaSki cells. hnRNP A2/B1 knock-down significantly induced the suppression of proliferation, migration, invasion and also enhancement of apoptosis and reduced the IC50 of lobaplatin and irinotecan. The expression of p21, p27 and cleaved caspase-3 in shRNA group were significantly upregulated and the expression of p-AKT was reduced both in vitro and in vivo. The results of immunohistochemistry showed that PCNA and Ki-67 were significantly downregulated in vivo. The growth of nude mouse xenograft tumor was significantly reduced by hnRNP A2/B1 knock-down. Taken together, these data indicate that inhibition of hnRNP A2/B1 in cervical cancer cells can inhibit cell proliferation and invasion, induce cell-cycle arrestment and trigger apoptosis via PI3K/AKT signaling pathway. In addition, after silencing hnRNP A2/B1 can increase the sensitivity of cervical cancer cells to lobaplatin and irinotecan.
Collapse
Affiliation(s)
- Xiang Shi
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Li Ran
- Department of Mammary Gland and Gynecologic Oncology, Guizhou Cancer Hospital, Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yao Liu
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shu-Huai Zhong
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ping-Ping Zhou
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ming-Xin Liao
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wen Fang
- Department of Biochemistry, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
27
|
Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment. Int J Mol Sci 2017; 19:ijms19010075. [PMID: 29283381 PMCID: PMC5796025 DOI: 10.3390/ijms19010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
A growing body of studies has documented the pathological influence of impaired alternative splicing (AS) events on numerous diseases, including cancer. In addition, the generation of alternatively spliced isoforms is frequently noted to result in drug resistance in many cancer therapies. To gain comprehensive insights into the impacts of AS events on cancer biology and therapeutic developments, this paper highlights recent findings regarding the therapeutic routes of targeting alternative-spliced isoforms and splicing regulators to treatment strategies for distinct cancers.
Collapse
|
28
|
Flodrova D, Toporova L, Lastovickova M, Macejova D, Hunakova L, Brtko J, Bobalova J. Consequences of the natural retinoid/retinoid X receptor ligands action in human breast cancer MDA-MB-231 cell line: Focus on functional proteomics. Toxicol Lett 2017; 281:26-34. [DOI: 10.1016/j.toxlet.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
29
|
Latorre E, Birar VC, Sheerin AN, Jeynes JCC, Hooper A, Dawe HR, Melzer D, Cox LS, Faragher RGA, Ostler EL, Harries LW. Small molecule modulation of splicing factor expression is associated with rescue from cellular senescence. BMC Cell Biol 2017; 18:31. [PMID: 29041897 PMCID: PMC5645932 DOI: 10.1186/s12860-017-0147-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque. Accordingly we developed a novel panel of small molecules based on resveratrol, previously suggested to alter mRNA splicing, to determine whether altered splicing factor expression had potential to influence features of replicative senescence. Results Treatment with resveralogues was associated with altered splicing factor expression and rescue of multiple features of senescence. This rescue was independent of cell cycle traverse and also independent of SIRT1, SASP modulation or senolysis. Under growth permissive conditions, cells demonstrating restored splicing factor expression also demonstrated increased telomere length, re-entered cell cycle and resumed proliferation. These phenomena were also influenced by ERK antagonists and agonists. Conclusions This is the first demonstration that moderation of splicing factor levels is associated with reversal of cellular senescence in human primary fibroblasts. Small molecule modulators of such targets may therefore represent promising novel anti-degenerative therapies. Electronic supplementary material The online version of this article (10.1186/s12860-017-0147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Vishal C Birar
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - Angela N Sheerin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - J Charles C Jeynes
- Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Amy Hooper
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Helen R Dawe
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - David Melzer
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Richard G A Faragher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - Elizabeth L Ostler
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK.
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK.
| |
Collapse
|
30
|
Chen T, Gu C, Xue C, Yang T, Zhong Y, Liu S, Nie Y, Yang H. LncRNA-uc002mbe.2 Interacting with hnRNPA2B1 Mediates AKT Deactivation and p21 Up-Regulation Induced by Trichostatin in Liver Cancer Cells. Front Pharmacol 2017; 8:669. [PMID: 28993733 PMCID: PMC5622184 DOI: 10.3389/fphar.2017.00669] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in liver carcinogenesis. We previously showed that the induction of lncRNA-uc002mbe.2 is positively associated with the apoptotic effect of trichostatin A (TSA) in hepatocellular carcinoma (HCC) cells. The current study further analyzed the role of uc002mbe.2 in TSA-induced liver cancer cell death. The level of uc002mbe.2 was markedly increased by TSA in the cytoplasm of HCC cells. Knockdown of uc002mbe.2 prohibited TSA-induced G2/M cell cycle arrest, p21 induction, and apoptosis of Huh7 cells and reversed the TSA-mediated decrease in p-AKT. RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assays revealed that TSA induced an interaction between uc002mbe.2 and heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in Huh7 cells. This interaction mediated AKT deactivation and p21 induction in liver cancer cells. In an athymic xenograft mouse model, knockdown of uc002mbe.2 significantly prohibited the TSA-mediated reduction in tumor size and weight. In addition, the ability of TSA to reduce hnRNPA2B1 and p-AKT levels and induce p21 in the xenograft tumors was prevented by uc002mbe.2 knockdown. Therefore, the interaction of uc002mbe.2 and hnRNPA2B1 in mediating AKT deactivation and p21 induction is involved in the cytostatic effect of trichostatin in liver cancer cells.
Collapse
Affiliation(s)
- Ting Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Chengxin Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Cailin Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Tao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Yun Zhong
- Guangzhou Institute of Cardiovascular DiseaseGuangzhou, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangzhou, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People's Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| |
Collapse
|
31
|
Hu Y, Sun Z, Deng J, Hu B, Yan W, Wei H, Jiang J. Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol 2017; 39:1010428317694318. [PMID: 28351333 DOI: 10.1177/1010428317694318] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence has indicated that the splicing factor hnRNPA2B1 plays a direct role in cancer development, progression, gene expression, and signal transduction. Previous studies have shown that knocking down hnRNPA2B1 in breast cancer cells induces apoptosis, but the mechanism and other functions of hnRNPA2B1 in breast cancer are unknown. The goal of this study was to investigate the biological function, clinical significance, and mechanism of hnRNPA2B1 in breast cancer. The expression of hnRNPA2B1 in 92 breast cancer and adjacent normal tissue pairs was analyzed by immunohistochemical staining. Stable clones exhibiting knockdown of hnRNPA2B1 via small hairpin RNA expression were generated using RNA interference technology in breast cancer cell lines. The effects of hnRNPA2B1 on cell proliferation were examined by MTT and EdU assay, and cellular apoptosis and the cell cycle were examined by flow cytometry. A nude mouse xenograft model was established to elucidate the function of hnRNPA2B1 in tumorigenesis in vivo. The role of hnRNPA2B1 in signaling pathways was investigated in vitro. Our data revealed that hnRNPA2B1 was overexpressed in breast cancer tissue specimens and cell lines. Knockdown of hnRNPA2B1 reduced breast cancer cell proliferation, induced apoptosis, and prolonged the S phase of the cell cycle in vitro. In addition, hnRNPA2B1 knockdown suppressed subcutaneous tumorigenicity in vivo. On a molecular level, hnRNPA2B1 knockdown decreased signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase 1/2 phosphorylation. We concluded that hnRNPA2B1 promotes the tumorigenic potential of breast cancer cells, MCF-7 and MDA-MB-231, through the extracellular-signal-regulated kinase 1/2 or signal transducer and activator of transcription 3 pathway, which may serve as a target for future therapies.
Collapse
Affiliation(s)
- Ying Hu
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zihan Sun
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jinmu Deng
- 2 Department of Mammary Gland and Thyroid Gland, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Baoquan Hu
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenting Yan
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongyi Wei
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Jiang
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Vuong NQ, Goegan P, De Rose F, Breznan D, Thomson EM, O'Brien JS, Karthikeyan S, Williams A, Vincent R, Kumarathasan P. Responses of A549 human lung epithelial cells to cristobalite and α-quartz exposures assessed by toxicoproteomics and gene expression analysis. J Appl Toxicol 2016; 37:721-731. [PMID: 27917503 PMCID: PMC5434822 DOI: 10.1002/jat.3420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/12/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022]
Abstract
In this study, we used cytotoxicity assays, proteomic and gene expression analyses to examine the difference in response of A549 cells to two silica particles that differ in physical properties, namely cristobalite (CR) and α‐quartz (Min‐U‐Sil 5, MI). Cytotoxicity assays such as lactate dehydrogenase release, 5‐bromo‐2′‐deoxyuridine incorporation and cellular ATP showed that both silica particles could cause cell death, decreased cell proliferation and metabolism in the A549 human lung epithelial cells. While cytotoxicity assays revealed little difference between CR and MI exposures, proteomic and gene expression analyses unveiled both similar and unique molecular changes in A549 cells. For instance, two‐dimensional gel electrophoresis data indicated that the expression of proteins in the cell death (e.g., ALDH1A1, HTRA2 and PRDX6) and cell proliferation (e.g., FSCN1, HNRNPAB and PGK1) pathways were significantly different between the two silica particles. Reverse transcription–polymerase chain reaction data provided additional evidence supporting the proteomic findings. Preliminary assessment of the physical differences between CR and MI suggested that the extent of surface interaction between particles and cells could explain some of the observed biological effects. However, the differential dose–response curves for some other genes and proteins suggest that other physical attributes of particulate matter can also contribute to particulate matter‐related cellular toxicity. Our results demonstrated that toxicoproteomic and gene expression analyses are sensitive in distinguishing subtle toxicity differences associated with silica particles of varying physical properties compared to traditional cytotoxicity endpoints. Copyright © 2016 Her Majesty the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. In this study, we used cytotoxicity assays, proteomic and gene expression analyses to examine the difference in response of A549 cells to two silica particles that differ in physical properties, namely cristobalite (CR) and α‐quartz (Min‐U‐Sil 5, MI). Cytotoxicity assays such as lactate dehydrogenase release, 5‐bromo‐2'‐deoxyuridine incorporation and cellular ATP showed that both silica particles could cause cell death, decreased cell proliferation and metabolism in the A549 human lung epithelial cells. While cytotoxicity assays revealed little difference between CR and MI exposures, proteomic and gene expression analyses unveiled both similar and unique molecular changes in A549 cells.
Collapse
Affiliation(s)
- Ngoc Q Vuong
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.,Department of Biochemistry, Faculty of Science, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Patrick Goegan
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Francesco De Rose
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Dalibor Breznan
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Errol M Thomson
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Julie S O'Brien
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Subramanian Karthikeyan
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Biostatistics Section, Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Renaud Vincent
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.,Department of Biochemistry, Faculty of Science, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Premkumari Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
33
|
Zhang X, Hua L, Yan D, Zhao F, Liu J, Zhou H, Liu J, Wu M, Zhang C, Chen Y, Chen B, Hu B. Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncol Rep 2016; 36:3456-3464. [PMID: 27748915 DOI: 10.3892/or.2016.5167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022] Open
|
34
|
Xuan Y, Wang J, Ban L, Lu JJ, Yi C, Li Z, Yu W, Li M, Xu T, Yang W, Tang Z, Tang R, Xiao X, Meng S, Chen Y, Liu Q, Huang W, Guo W, Cui X, Deng W. hnRNPA2/B1 activates cyclooxygenase-2 and promotes tumor growth in human lung cancers. Mol Oncol 2015; 10:610-24. [PMID: 26774881 DOI: 10.1016/j.molonc.2015.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 12/23/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in tumor cells and has been regarded as a hallmarker for cancers, but the excise regulatory mechanism of COX-2 in tumorigenesis remains largely unknown. Here, we pulled down and identified a novel COX-2 regulator, heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), which could specifically bind to COX-2 core promoter and regulate tumor growth in non-small-cell lung cancers (NSCLCs). Knockdown of hnRNPA2/B1 by shRNA or siRNA downregulated COX-2 expression and prostaglandin E2 (PGE2) production, and suppressed tumor cell growth in NSCLC cells in vitro and in vivo. Conversely, overexpression of hnRNPA2/B1 up-regulated the levels of COX-2 and PGE2 and promoted tumor cell growth. We also showed that hnRNPA2/B1 expression was positively correlated with COX-2 expression in NSCLC cell lines and tumor tissues, and the up-regulated expression of hnRNPA2/B1 and COX-2 predicted worse prognosis in NSCLC patients. Furthermore, we demonstrated that the activation of COX-2 expression by hnRNPA2/B1 was mediated through the cooperation with p300, a transcriptional co-activator, in NSCLC cells. The hnRNPA2/B1 could interact with p300 directly and be acetylated by p300. Exogenous overexpression of p300, but not its histone acetyltransferase (HAT) domain deletion mutation, augmented the acetylation of hnRNPA2/B1 and enhanced its binding on COX-2 promoter, thereby promoted COX-2 expression and lung cancer cell growth. Collectively, our results demonstrate that hnRNPA2/B1 promotes tumor cell growth by activating COX-2 signaling in NSCLC cells and imply that the hnRNPA2/B1/COX-2 pathway may be a potential therapeutic target for human lung cancers.
Collapse
Affiliation(s)
- Yang Xuan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Liying Ban
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Jian-Jun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Canhui Yi
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Zhenglin Li
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Wendan Yu
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Mei Li
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Tingting Xu
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Wenjing Yang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Zhipeng Tang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Ranran Tang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Songshu Meng
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Yiming Chen
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, PR China
| | - Wei Guo
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Xiaonan Cui
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, PR China.
| |
Collapse
|
35
|
Herman S, Fischer A, Presumey J, Hoffmann M, Koenders MI, Escriou V, Apparailly F, Steiner G. Inhibition of Inflammation and Bone Erosion by RNA Interference-Mediated Silencing of Heterogeneous Nuclear RNP A2/B1 in Two Experimental Models of Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:2536-46. [DOI: 10.1002/art.39223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Jessy Presumey
- INSERM, U844, University Hospital of Montpellier and University of Montpellier I; Montpellier France
| | | | | | - Virginie Escriou
- INSERM, U1022, CNRS, UMR8151, Paris Descartes University, and Chimie ParisTech; Paris France
| | - Florence Apparailly
- INSERM, U844, University Hospital of Montpellier and University of Montpellier I; Montpellier France
| | | |
Collapse
|
36
|
Yu C, Guo J, Liu Y, Jia J, Jia R, Fan M. Oral squamous cancer cell exploits hnRNP A1 to regulate cell cycle and proliferation. J Cell Physiol 2015; 230:2252-61. [PMID: 25752295 DOI: 10.1002/jcp.24956] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common human malignant tumor with high mortality. So far, the molecular pathogenesis of OSCC remains largely unclear. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an important multi-function splicing factor and closely related to tumorigenesis. hnRNP A1 is overexpressed in various tumors, and promotes aerobic glycolysis and elongation of telomere, but the function of hnRNP A1 in cell cycle and proliferation remains unclear. We found that hnRNP A1 was overexpressed in OSCC tissues, and was required for the growth of OSCC cells. Moreover, hnRNP A1 was highly expressed in the G2/M cell cycle phase. Knockdown of hnRNP A1 induced G2/M arrest. DNA microarray assay result showed that hnRNP A1 regulated the expression of a number of target genes associated with G2/M phase. Moreover, hnRNP A1 controlled the alternative splicing of CDK2 exon 5. These findings suggested that hnRNP A1 plays key roles in the regulation of cell cycle progression and pathogenesis of OSCC.
Collapse
Affiliation(s)
- Cheng Yu
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jihua Guo
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Yu Liu
- College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Jun Jia
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Rong Jia
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Mingwen Fan
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
37
|
Qu XH, Liu JL, Zhong XW, Li XI, Zhang QG. Insights into the roles of hnRNP A2/B1 and AXL in non-small cell lung cancer. Oncol Lett 2015; 10:1677-1685. [PMID: 26622731 DOI: 10.3892/ol.2015.3457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022] Open
Abstract
Lung cancer has long been one of the most serious types of malignant tumor, and is associated with high incidence and mortality rates. Despite advancements in the comprehensive treatment of the disease, particularly with targeted therapeutic agents, there has been little improvement in the 5-year survival rates of patients. One of the leading causes of mortality in lung cancer is the lack of effective early diagnostic criteria. On this basis, the present study aimed to identify an index with potential in the early diagnosis and prognosis of lung cancer. The current study determined the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 and AXL proteins in non-small cell lung cancer (NSCLC) tumor samples, and performed prognostic analysis of the collected clinical data to identify any association. In addition, RNA interference was performed to silence the expression of hnRNP A2/B1, allowing evaluation of its molecular and cellular functions, and determination of the mechanism of hnRNP A2/B1 in NSCLC by means of AXL mediation. It was identified that the positive expression rate of hnRNP A2/B1 and AXL proteins were significantly higher in NSCLC compared with paracancerous lung tissues (P<0.05). Furthermore, the expression of hnRNP A2/B1 protein was correlated with the expression AXL. Thus, the expression of hnRNP A2/B1 and AXL protein are factors affecting prognosis in patients with NSCLC. Of these, hnRNP A2/B1 appears to be an independent risk factor.
Collapse
Affiliation(s)
- Xiao-Han Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jin-Lu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110034, P.R. China
| | - Xin-Wen Zhong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - X I Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qi-Gang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7:388-401. [PMID: 25948865 DOI: 10.1093/jmcb/mjv027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.
Collapse
Affiliation(s)
- Marco Silipo
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
39
|
Choi HS, Lee HM, Jang YJ, Kim CH, Ryu CJ. Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition. Stem Cells 2015; 31:2647-58. [PMID: 23495120 DOI: 10.1002/stem.1366] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023]
Abstract
Self-renewal and pluripotency of human embryonic stem cells (hESCs) are a complex biological process for maintaining hESC stemness. However, the molecular mechanisms underlying these special properties of hESCs are not fully understood. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a multifunctional RNA-binding protein whose expression is related to cell proliferation and carcinogenesis. In this study, we found that hnRNP A2/B1 expression was localized to undifferentiated hESCs and decreased upon differentiation of hESCs. hnRNP A2/B1 knockdown reduced the number of alkaline phosphatase-positive colonies in hESCs and led to a decrease in the expression of pluripotency-associated transcription factors OCT4, NANOG, and SOX2, indicating that hnRNP A2/B1 is essential for hESC self-renewal and pluripotency. hnRNP A2/B1 knockdown increased the expression of gene markers associated with the early development of three germ layers, and promoted the process of epithelial-mesenchymal transition, suggesting that hnRNP A2/B1 is required for maintaining the undifferentiated and epithelial phenotypes of hESCs. hnRNP A2/B1 knockdown inhibited hESC proliferation and induced cell cycle arrest in the G0/G1 phase before differentiation via degradation of cyclin D1, cyclin E, and Cdc25A. hnRNP A2/B1 knockdown increased p27 expression and induced phosphorylation of p53 and Chk1, suggesting that hnRNP A2/B1 also regulates the G1/S transition of hESC cell cycle through the control of p27 expression and p53 and Chk1 activity. Analysis of signaling molecules further revealed that hnRNP A2/B1 regulated hESC proliferation in a PI3K/Akt-dependent manner. These findings provide for the first time mechanistic insights into how hnRNP A2/B1 regulates hESC self-renewal and pluripotency.
Collapse
Affiliation(s)
- Hong Seo Choi
- Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, Korea
| | | | | | | | | |
Collapse
|
40
|
Effects of hnRNP A2/B1 Knockdown on Inhibition of Glioblastoma Cell Invasion, Growth and Survival. Mol Neurobiol 2015; 53:1132-1144. [PMID: 25586062 DOI: 10.1007/s12035-014-9080-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) plays an important role in influence of pre-messenger RNA (pre-mRNA) processing and mRNA metabolism and transportation in cells. Increasing evidence indicates that hnRNP A2/B1 played an important role in development and progression of various human cancers. Forty cases of normal and human glioma tissue samples were analyzed using immunohistochemistry to reveal the expression of hnRNP A2/B1 protein in the samples. Then, knockdown of hnRNP A2/B1 expression induced by RNA interference (RNAi) method was used to analyze the role of hnRNP A2/B1 in glioblastoma cell viability, adhesion, migration, invasion, and chemoresistance for temozolomide (TMZ). The data showed that hnRNP A2/B1 protein was overexpressed in glioma tissue specimens and associated with advanced glioma grades. Knockdown of hnRNP A2/B1 could reduce glioblastoma cell viability, adhesion, migration, invasion, and chemoresistance for TMZ capacity, but induced tumor cells to apoptosis and reactive oxygen species (ROS) generation in glioma U251 and SHG44 cells. Molecularly, hnRNP A2/B1 knockdown reduced expression of phospho-STAT3 and MMP-2. Detection of hnRNP A2/B1 expression may be useful as a biomarker for prediction of glioma progression and knockdown of hnRNP A2/B1 expression as a novel strategy in future control of glioblastoma in clinic.
Collapse
|
41
|
Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol 2015; 2:e970955. [PMID: 27308389 PMCID: PMC4905244 DOI: 10.4161/23723548.2014.970955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 04/18/2023]
Abstract
In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing.
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
- Correspondence to: Rotem Karni;
| |
Collapse
|
42
|
TAOKA Y, MATSUMOTO K, OHASHI K, MINAMIDA S, HAGIWARA M, NAGI S, SAITO T, KODERA Y, IWAMURA M. Protein expression profile related to cisplatin resistance in bladder cancer cell lines detected by two-dimensional gel electrophoresis . Biomed Res 2015; 36:253-61. [DOI: 10.2220/biomedres.36.253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshinori TAOKA
- Department of Urology, Kitasato University School of Medicine
| | | | - Kazuya OHASHI
- Department of Physics, Kitasato University School of Science
| | - Satoru MINAMIDA
- Department of Urology, Kitasato University School of Medicine
| | | | - Shoji NAGI
- Department of Urology, Kitasato University School of Medicine
| | - Tatsuya SAITO
- Department of Physics, Kitasato University School of Science
| | - Yoshio KODERA
- Department of Physics, Kitasato University School of Science
| | | |
Collapse
|
43
|
Yeh YM, Chen CY, Huang PR, Hsu CW, Wu CC, Wang TCV. Proteomic analyses of genes regulated by heterogeneous nuclear ribonucleoproteins A/B in Jurkat cells. Proteomics 2014; 14:1357-66. [PMID: 24634410 DOI: 10.1002/pmic.201300549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 11/06/2022]
Abstract
Several lines of evidence suggest that hnRNPs A/B (hnRNPs A1, A2/B1, and A3) play an important role in proliferation, although the functional overlap among members of hnRNPs A/B remains largely unknown. In this study, we have employed RNAi knockdown and proteomic approaches to investigate the biological functions of hnRNPs A/B. Depletion of hnRNP A2, but not A1 or A3, produced a significant inhibition of cellular proliferation in Jurkat cells. Analysis of the proteomes in the cells depleted for hnRNP A1, A2, or A3 has identified a total of 167 differentially expressed proteins in the depleted cells. Network analysis of the proteins altered in the cells depleted for hnRNP A2 revealed that the biological processes likely affected by these proteins are related to cell cycle, cytoskeleton rearrangement, and transcription regulation. Indeed, we have confirmed that the level of RhoA and CrkL was selectively reduced in the cells depleted of hnRNP A2, but not in the cells depleted for hnRNP A1 or A3. Therefore, we suggest that the reduced proliferation observed in the cells depleted of hnRNP A2 may result from its effects on cell adhesion processes in the Jurkat cells.
Collapse
Affiliation(s)
- Yuan-Ming Yeh
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Chang HY, Hor SY, Lim KP, Zain RB, Cheong SC, Rahman MA, Karsani SA. Oral cancer secretome: identification of cancer-associated proteins. Electrophoresis 2014; 34:2199-208. [PMID: 23712713 DOI: 10.1002/elps.201300126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022]
Abstract
This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.
Collapse
Affiliation(s)
- Hong-Yun Chang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
45
|
Karsani SA, Saihen NA, Zain RB, Cheong SC, Abdul Rahman M. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins. Proteome Sci 2014; 12:3. [PMID: 24422745 PMCID: PMC3974152 DOI: 10.1186/1477-5956-12-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/07/2014] [Indexed: 12/03/2022] Open
Abstract
Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins.
Collapse
Affiliation(s)
- Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
46
|
Mulnix RE, Pitman RT, Retzer A, Bertram C, Arasi K, Crees Z, Girard J, Uppada SB, Stone AL, Puri N. hnRNP C1/C2 and Pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang. Onco Targets Ther 2013; 7:23-32. [PMID: 24379680 PMCID: PMC3872271 DOI: 10.2147/ott.s54575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Experimental disruption of the telomere overhang induces a potent DNA damage response and is the target of newly emerging cancer therapeutics. Introduction of T-oligo, an eleven-base oligonucleotide homologous to the 3′-telomeric overhang, mimics telomere disruption and induces DNA damage responses through activation of p53, p73, p95/Nbs1, E2F1, pRb, and other DNA damage response proteins. ATM (ataxia telangiectasia mutated) was once thought to be the primary driver of T-oligo-induced DNA damage responses; however, recent experiments have highlighted other key proteins that may also play a significant role. Methods To identify proteins associated with T-oligo, MM-AN cells were treated with biotinylated T-oligo or complementary oligonucleotide, cell lysates were run on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis), and the protein bands observed after treatment of cells with T-oligo or complementary oligonucleotide were analyzed using mass spectrometry. To study the effect of T-oligo on expression of hnRNP C1/C2 (heterogeneous nuclear ribonucleoprotein C1 and C2) and purine-rich element binding proteins (Pur proteins), cells were treated with T-oligo, and immunoblotting experiments were performed. To determine their role in senescence, cells were treated with shRNA (short hairpin ribonucleic acid) against these proteins, and senescence was studied using the senescence associated beta-galactosidase assay. Results Using mass spectrometry, RNA-binding hnRNP C1/C2 and DNA-binding Pur proteins were found to associate with T-oligo. hnRNP C1/C2 exhibited increased expression (3.6–12.0-fold) in non-small-cell lung cancer (NSCLC) and in melanoma cells (4.5–5.2-fold), and Pur proteins exhibited increased expression of 2.2-fold in NSCLC and 2.0-fold in melanoma cells after T-oligo treatment. Experimental knockdown of hnRNP C1/C2 and Pur-beta completely abrogated T-oligo induced senescence in both MU melanoma and H358 NSCLC cells. Additionally, knockdown of Pur-beta prevented T-oligo-induced phosphorylation of p53, hypophosphorylation of pRb, and upregulation of E2F1, p21, and p53. Conclusion These novel findings highlight proteins essential to T-oligo’s anticancer effects that may be of interest in telomere biology and cancer therapeutics.
Collapse
Affiliation(s)
- Richard E Mulnix
- Department of Biomedical Sciences, University of Illinois at Chicago, Rockford, IL, USA
| | - Ryan T Pitman
- Department of Biomedical Sciences, University of Illinois at Chicago, Rockford, IL, USA
| | - Allison Retzer
- College of Medicine, University of Illinois at Chicago, Rockford, IL, USA
| | - Ceyda Bertram
- Department of Biomedical Sciences, University of Illinois at Chicago, Rockford, IL, USA
| | - Kavin Arasi
- College of Medicine, University of Illinois at Chicago, Rockford, IL, USA
| | - Zachary Crees
- College of Medicine, University of Illinois at Chicago, Rockford, IL, USA
| | - Jennifer Girard
- College of Medicine, University of Illinois at Chicago, Rockford, IL, USA
| | | | - Amanda L Stone
- Department of Biomedical Sciences, University of Illinois at Chicago, Rockford, IL, USA
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois at Chicago, Rockford, IL, USA
| |
Collapse
|
47
|
Romero-Garcia S, Prado-Garcia H, Lopez-Gonzalez JS. Transcriptional analysis of hnRNPA0, A1, A2, B1, and A3 in lung cancer cell lines in response to acidosis, hypoxia, and serum deprivation conditions. Exp Lung Res 2013; 40:12-21. [DOI: 10.3109/01902148.2013.856049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013; 13:577-91. [PMID: 24004957 DOI: 10.1016/j.mito.2013.08.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca(2+)/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
49
|
Abstract
Aplasia cutis congenita (ACC) manifests with localized skin defects at birth of unknown cause, mostly affecting the scalp vertex. Here, genome-wide linkage analysis and exome sequencing was used to identify the causative mutation in autosomal dominant ACC. A heterozygous Arg-to-His missense mutation (p.R930H) in the ribosomal GTPase BMS1 is identified in ACC that is associated with a delay in 18S rRNA maturation, consistent with a role of BMS1 in processing of pre-rRNAs of the small ribosomal subunit. Mutations that affect ribosomal function can result in a cell cycle defect and ACC skin fibroblasts with the BMS1 p.R930H mutation show a reduced cell proliferation rate due to a p21-mediated G1/S phase transition delay. Unbiased comparative global transcript and proteomic analyses of ACC fibroblasts with this mutation confirm a central role of increased p21 levels for the ACC phenotype, which are associated with downregulation of heterogenous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich splicing factors (SRSFs). Functional enrichment analysis of the proteomic data confirmed a defect in RNA post-transcriptional modification as the top-ranked cellular process altered in ACC fibroblasts. The data provide a novel link between BMS1, the cell cycle, and skin morphogenesis. Elucidating the pathomechanisms in congenital diseases of the skin provides the opportunity to learn what cellular processes are important during embryonic development of the skin structures. Aplasia cutis congenita (ACC) manifests with localized skin defects, most commonly affecting the scalp skin. Here, global proteomic and transcriptional analyses are combined with genome-wide linkage and exome sequencing approaches to identify the molecular mechanisms involved in ACC. A mutation in the ribosomal GTPase BMS1 is identified in ACC that affects 18S rRNA maturation. This mutation is associated with a p21-mediated G1/S phase transition delay during the cell cycle that inhibits cell proliferation. The findings are consistent with mutations in ribosomal disorders that result in nucleolar stress and a G1/S phase transition delay. Thus, mutations in BMS1 can affect the formation of a highly proliferative tissue during development, such as the rapidly expanding scalp epidermis.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
50
|
Guo R, Li Y, Ning J, Sun D, Lin L, Liu X. HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells. PLoS One 2013; 8:e62729. [PMID: 23658645 PMCID: PMC3639176 DOI: 10.1371/journal.pone.0062729] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/25/2013] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous nuclear ribonucleoparticule A1/A2 (hnRNP A1/A2) and splicing factor 2/alternative splicing factor (SF2/ASF) are pivotal for precursor messenger RNA (pre-mRNA) splicing. Interferon regulatory factor-3 (IRF-3) plays critical roles in host defense against viral and microbial infection. Truncated IRF-3 proteins resulting from alternative splicing have been identified and characterized as functional antagonists to full-length IRF-3. In this study, we examined the molecular mechanism for splicing regulation of IRF-3 pre-mRNA and first reported the regulatory effect of hnRNP A1/A2 and SF2/ASF on IRF-3 splicing and activation. RNA interference-mediated depletion of hnRNP A1/A2 or SF2/ASF in human non-small cell lung cancer (NSCLC) cells increased exclusion of exons 2 and 3 of IRF-3 gene and reduced expression levels of IRF-3 protein and IRF-3 downstream effector molecules interferon-beta and CXCL10/IP-10. In addition, direct binding of hnRNP A1 and SF2/ASF to specific binding motifs in IRF-3 intron 1 was confirmed by RNA electrophoretic mobility shift assay. Subsequent minigene splicing assay showed that IRF-3 minigenes with mutated hnRNPA 1/A2 or SF2/ASF binding motifs increased exclusion of exons 2 and 3. Moreover, knockdown of hnRNP A1/A2 or SF2/ASF in NSCLC cells reinforced phytohemagglutinin-induced tumor necrosis factor-alpha release by peripheral blood mononuclear cells (PBMC) but suppressed that of interleukin-10 in NSCLC/PBMC co-cultures. Taken together, our results suggest that specific knockdown for hnRNP A1/A2 or SF2/ASF increase exclusion of exons 2 and 3 of IRF-3 pre-mRNA and influence immunomodulatory functions of human NSCLC cells.
Collapse
Affiliation(s)
- Rong Guo
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital, Beijing Cancer Hospital, Beijing Institute for Cancer Research, Beijing, China
| | - Jinying Ning
- Department of Cell Biology, Crown Bioscience Incorporation (Beijing), Beijing, China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Lianjun Lin
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
- * E-mail:
| |
Collapse
|