1
|
Balder P, Jones C, Coward K, Yeste M. Sperm chromatin: Evaluation, epigenetic signatures and relevance for embryo development and assisted reproductive technology outcomes. Eur J Cell Biol 2024; 103:151429. [PMID: 38905808 DOI: 10.1016/j.ejcb.2024.151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Sperm chromatin is distinct from somatic cell chromatin, as a result of extensive remodeling during the final stages of spermatogenesis. In this process, the majority of histones is replaced with protamines. The chromatin is consequently highly condensed and inert, which facilitates protection of the DNA. The sperm epigenomic landscape is shaped by histone retention, histone and protamine modification, DNA methylation, and RNAs. In recent years, sperm chromatin integrity and its epigenetic marks have been increasingly studied, and the constitution of sperm chromatin is steadily being uncovered. This growing body of research prompts assessment of the frequently overlooked involvement of sperm in fertility and embryonic development. Moreover, numerous endogenous and exogenous factors are known to affect sperm chromatin, which may in turn impact the reproductive success. Concerns have been raised about the effects of assisted reproductive technology (ART) on the sperm epigenome, embryonic development and offspring health. This review examines the structure and epigenetic signatures of sperm chromatin in the context of fertility and early embryonic development. Additionally, sperm chromatin evaluation and causes of aberrant integrity are outlined. Building on the knowledge discussed in the current review, future research should aim to elucidate the intricate relationship between all aspects of sperm chromatin and embryo development. This could lead to the uncovering of new targets for treating infertility, as well as the acquisition of much needed insights into the possible reciprocal association between ART and sperm chromatin integrity.
Collapse
Affiliation(s)
- Pauline Balder
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain.
| |
Collapse
|
2
|
Cassuto NG, Ogal N, Assou S, Ruoso L, Rogers EJ, Monteiro MJ, Thomas D, Siffroi JP, Rouen A. Different Nuclear Architecture in Human Sperm According to Their Morphology. Genes (Basel) 2024; 15:464. [PMID: 38674398 PMCID: PMC11049835 DOI: 10.3390/genes15040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Human sperm parameters serve as a first step in diagnosing male infertility, but not in determining the potential for successful pregnancy during assisted reproductive technologies (ARTs) procedures. Here, we investigated the relationship between sperm head morphology at high magnification, based on strict morphologic criteria, and the nuclear architecture analyzed by fluorescence in situ hybridization (FISH). We included five men. Two of them had an elevated high-magnification morphology score of 6 points (Score 6) indicating high fertility potential, whereas three had a low score of 0 points (Score 0), indicating low fertility potential. We used FISH to study the inter-telomeric distance and the chromosomal territory area of chromosome 1 (Chr. 1). We then compared these two parameters between subjects with high and low scores. FISH data analysis showed that the inter-telomeric distance (ITD) and chromosomal territory area (CTA) of Chr. 1 were significantly higher in subjects with low scores (score 0) than high scores (score 6). Our results suggest that (i) there is a link between nuclear architecture and sperm head abnormalities, particularly vacuoles; and (ii) it is possible to select spermatozoa with normal nuclear architecture, which might indirectly explain the positive ART outcomes observed with this technique.
Collapse
Affiliation(s)
- Nino-Guy Cassuto
- ART Unit, Drouot Laboratory, 75009 Paris, France; (L.R.); (M.-J.M.); (D.T.)
| | - Nesrine Ogal
- Department of Medical Genetics, Armand-Trousseau Hospital, AP-HP, INSERM Unit U933, Sorbonne University, 75012 Paris, France; (N.O.); (E.-J.R.); (J.-P.S.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, University Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| | - Lea Ruoso
- ART Unit, Drouot Laboratory, 75009 Paris, France; (L.R.); (M.-J.M.); (D.T.)
| | - Eli-Jonathan Rogers
- Department of Medical Genetics, Armand-Trousseau Hospital, AP-HP, INSERM Unit U933, Sorbonne University, 75012 Paris, France; (N.O.); (E.-J.R.); (J.-P.S.)
| | | | - Daniel Thomas
- ART Unit, Drouot Laboratory, 75009 Paris, France; (L.R.); (M.-J.M.); (D.T.)
| | - Jean-Pierre Siffroi
- Department of Medical Genetics, Armand-Trousseau Hospital, AP-HP, INSERM Unit U933, Sorbonne University, 75012 Paris, France; (N.O.); (E.-J.R.); (J.-P.S.)
| | - Alexandre Rouen
- Maternity of Bluets, Medically Assisted Reproduction Service, 75012 Paris, France
- AP-HP, Hôtel-Dieu, Sleep and Vigilance Center, Université Paris Cité, VIFASOM, ERC 7330, 75010 Paris, France
| |
Collapse
|
3
|
Viñolas-Vergés E, Yeste M, Garriga F, Bonet S, Mateo-Otero Y, Ribas-Maynou J. An intracellular, non-oxidative factor activates in vitro chromatin fragmentation in pig sperm. Biol Res 2023; 56:53. [PMID: 37876007 PMCID: PMC10594720 DOI: 10.1186/s40659-023-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In vitro incubation of epididymal and vas deferens sperm with Mn2+ induces Sperm Chromatin Fragmentation (SCF), a mechanism that causes double-stranded breaks in toroid-linker regions (TLRs). Whether this mechanism, thought to require the participation of topoisomerases and/or DNAses and thus far only described in epididymal mouse sperm, can be triggered in ejaculated sperm is yet to be elucidated. The current study aimed to determine if exposure of pig ejaculated sperm to divalent ions (Mn2+ and Mg2+) activates SCF, and whether this has any impact on sperm function and survival. For this purpose, sperm DNA integrity was evaluated through the Comet assay and Pulsed Field Gel Electrophoresis (PFGE); sperm motility and agglutination were assessed with computer assisted sperm analysis (CASA); and sperm viability and levels of total reactive oxygen species (ROS) and superoxides were determined through flow cytometry. RESULTS Incubation with Mn2+/Ca2+ activated SCF in a dose-dependent (P < 0.05) albeit not time-dependent manner (P > 0.05); in contrast, Mg2+/Ca2+ only triggered SCF at high concentrations (50 mM). The PFGE revealed that, when activated by Mn2+/Ca2+ or Mg2+/Ca2+, SCF generated DNA fragments of 33-194 Kb, compatible with the size of one or multiple toroids. Besides, Mn2+/Ca2+ affected sperm motility in a dose-dependent manner (P < 0.05), whereas Mg2+/Ca2+ only impaired this variable at high concentrations (P < 0.05). While this effect on motility was concomitant with an increase of agglutination, neither viability nor ROS levels were affected by Mn2+/Ca2+ or Mg2+/Ca2+ treatments. CONCLUSION Mn2+/Ca2+ and Mn2+/Ca2+ were observed to induce SCF in ejaculated sperm, resulting in DNA cleavage at TLRs. The activation of this mechanism by an intracellular, non-oxidative factor sheds light on the events taking place during sperm cell death.
Collapse
Affiliation(s)
- Estel Viñolas-Vergés
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), S08010, Barcelona, Spain.
| | - Ferran Garriga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| |
Collapse
|
4
|
Martinez G, Cappetta D, Telesca M, Urbanek K, Castaldo G, Dhellemmes M, Mele VG, Chioccarelli T, Porreca V, Barbotin AL, Boursier A, Guillou F, Coutton C, Brouillet S, De Angelis A, Berrino L, Pierantoni R, Cobellis G, Chianese R, Manfrevola F. Cytochalasin D restores nuclear size acting on F-actin and IZUMO1 localization in low-quality spermatozoa. Int J Biol Sci 2023; 19:2234-2255. [PMID: 37151878 PMCID: PMC10158014 DOI: 10.7150/ijbs.77166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/16/2023] [Indexed: 05/09/2023] Open
Abstract
In spermatozoa, the nuclear F-actin supports the acroplaxome, a subacrosomal structure involved in the correct exposure of several acrosomal membrane proteins; among them, the glycoprotein IZUMO1 is the major protein involved in sperm-oocyte fusion. Nuclear F-actin is also involved in sperm head shaping and chromosome compartmentalization. To date, few notions regarding the bivalent role of F-actin on sperm chromatin organization and IZUMO1 positioning have been reported. In our work, we characterized subcellular organization of F-actin in human high- and low-quality spermatozoa (A- and B-SPZ), respectively, showing that F-actin over-expression in sperm head of B-SPZ affected IZUMO1 localization. A correct IZUMO1 repositioning following in vitro induction of F-actin depolymerization, by cytochalasin D treatment, occurred. Interestingly, F-actin depolymerization was also associated with a correct acrosome repositioning, thus to favor a proper acrosome reaction onset, with changes in sperm nuclear size parameters and histone acetylation rate reaching high-quality conditions. In conclusion, the current work shows a key role of F-actin in the control of IZUMO1 localization as well as chromatin remodeling and acetylation events.
Collapse
Affiliation(s)
- Guillaume Martinez
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, 38000 Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via A. Pansini 5, 80131 Naples, Italy
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via A. Pansini 5, 80131 Naples, Italy
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Magali Dhellemmes
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Anne-Laure Barbotin
- CHU Lille, Institute de Biologie de la Reproduction-Spermiologie-CECOS, F-59000, Lille, France
| | - Angèle Boursier
- CHU Lille, Institute de Biologie de la Reproduction-Spermiologie-CECOS, F-59000, Lille, France
| | - Florian Guillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Charles Coutton
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, 38000 Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
| | - Sophie Brouillet
- Université de Montpellier, EmbryoPluripotency, DEFE, INSERM 1203, Hôpital Arnaud de Villeneuve, CHRU Saint-Eloi, 80 Avenue Augustin Fliche, CEDEX 05, 34295 Montpellier, France
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
- ✉ Corresponding author: Prof. Rosanna Chianese, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy. Tel. Number: +39 081 5667528;
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
5
|
Ribas-Maynou J, Nguyen H, Valle R, Wu H, Yeste M, Ward WS. Sperm degradation after vasectomy follows a sperm chromatin fragmentation dependent mechanism causing DNA breaks in the toroid linker regions. Mol Hum Reprod 2022; 29:6656359. [PMID: 35929777 PMCID: PMC9422300 DOI: 10.1093/molehr/gaac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Vasectomy is a widely used surgical technique creating an obstructive azoospermia. Although sperm cannot be ejaculated, the testis maintains sperm production in vasectomized males. The continuous accumulation of sperm deposited in the epididymis and the vas deferens fraction necessarily need to be degraded and eliminated. While the elimination process is carried out by granulomas that form after vasectomy, the detailed mechanisms of sperm degradation are still not known. The aim was to assess whether sperm chromatin fragmentation (SCF), a mechanism that degrades the entire sperm genome at the toroid linker regions (TLRs), is activated after vasectomy in sperm cells. We vasectomized mice and evaluated the presence of TLR-specific double-strand breaks through pulsed-field gel electrophoresis and the Comet assay at 1, 2 and 3 weeks after surgery. Results for DNA damage (Olive tail moment) at single-cell level showed an increase of double-strand breaks after vasectomy for vas deferens sperm after 1, 2 and 3 weeks postvasectomy (21.78 ± 2.29; 19.71 ± 1.79 and 32.59 ± 1.81, respectively), compared to mock surgery (7.04 ± 1.03; 10.10 ± 1.29 and 8.64 ± 0.85, respectively; P < 0.001). Similar findings were obtained for cauda epididymis sperm (P < 0.001), but not for caput epididymis (P > 0.05). Pulsed-field gel electrophoresis showed the presence of double-stranded breaks between 15 and 145 kb, indicating that DNA breaks were produced mainly in the sperm TLRs. Results presented here suggest that SCF is a mechanism activated in vas deferens after vasectomy to degrade sperm DNA when they cannot be ejaculated, preventing their function.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hieu Nguyen
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Raquel Valle
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| | - W Steven Ward
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Obstetrics, Gynecology & Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
6
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
7
|
Olszewska M, Kordyl O, Kamieniczna M, Fraczek M, Jędrzejczak P, Kurpisz M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. Int J Mol Sci 2022; 23:ijms23094516. [PMID: 35562907 PMCID: PMC9099774 DOI: 10.3390/ijms23094516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| | - Oliwia Kordyl
- Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| |
Collapse
|
8
|
Abstract
Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Hieu Nguyen
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - W. Steven Ward
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
9
|
Turner KJ, Watson EM, Skinner BM, Griffin DK. Telomere Distribution in Human Sperm Heads and Its Relation to Sperm Nuclear Morphology: A New Marker for Male Factor Infertility? Int J Mol Sci 2021; 22:ijms22147599. [PMID: 34299219 PMCID: PMC8306796 DOI: 10.3390/ijms22147599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility is a problem affecting an increasing number of couples worldwide. Currently, marker tests for male factor infertility are complex, highly technical and relatively subjective. Up to 40% of cases of male factor infertility are currently diagnosed as idiopathic therefore, there is a clear need for further research into better ways of diagnosing it. Changes in sperm telomere length have been associated with infertility and closely linked to DNA damage and fragmentation, which are also known to be related to infertility. However, telomere distribution is a parameter thus far underexplored as an infertility marker. Here, we assessed morphological parameters of sperm nuclei in fertile control and male factor infertile cohorts. In addition, we used 2D and 3D fluorescence in situ hybridization (FISH) to compare telomere distribution between these two groups. Our findings indicate that the infertile cohort sperm nuclei were, on average, 2.9% larger in area and showed subtle differences in sperm head height and width. Telomeres were mainly distributed towards the periphery of the nuclei in the control cohort, with diminishing telomere signals towards the center of the nuclei. Sperm nuclei of infertile males, however, had more telomere signals towards the center of the nuclei, a finding supported by 3D imaging. We conclude that, with further development, both morphology and telomere distribution may prove useful investigative tools in the fertility clinic.
Collapse
Affiliation(s)
- Kara J. Turner
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
| | - Eleanor M. Watson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Benjamin M. Skinner
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
- Correspondence:
| |
Collapse
|
10
|
Ribas-Maynou J, Garcia-Bonavila E, Hidalgo CO, Catalán J, Miró J, Yeste M. Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements. Front Cell Dev Biol 2021; 9:669182. [PMID: 33996825 PMCID: PMC8120241 DOI: 10.3389/fcell.2021.669182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Sperm present a highly particular DNA condensation that is acquired during their differentiation. Protamines are key elements for DNA condensation. However, whereas the presence of protamine 1 (P1) is conserved across mammalian species, that of protamine 2 (P2) has evolved differentially, existing only few species that use both protamines for sperm DNA condensation. In addition, altered P1/P2 ratios and alterations in the expression of P1 have previously been associated to infertility and DNA damage disorders. On the other hand, different methods evaluating DNA integrity, such as Sperm Chromatin Dispersion (SCD) and Comet tests, need a previous complete DNA decondensation to properly assess DNA breaks. Related with this, the present study aims to analyze the resilience of sperm DNA to decodensation in different eutherian mammals. Sperm samples from humans, horses, cattle, pigs and donkeys were used. Samples were embedded in low melting point agarose and treated with lysis solutions to induce DNA decondensation and formation of sperm haloes. The treatment consisted of three steps: (1) incubation in SDS + DTT for 30 min; (2) incubation in DTT + NaCl for 30 min; and (3) incubation in DTT + NaCl with or without proteinase K for a variable time of 0, 30, or 180 min. How incubation with the third lysis solution (with or without proteinase K) for 0, 30, and 180 min affected DNA decondensation was tested through analyzing core and halo diameters in 50 sperm per sample. Halo/core length ratio was used as an indicator of complete chromatin decondensation. While incubation time with the third lysis solution had no impact on halo/core length ratios in species having P1 and P2 (human, equine and donkey), DNA decondensation of pig and cattle sperm, which only present P1, significantly (P < 0.05) increased following incubation with the third lysis solution for 180 min. In addition, the inclusion of proteinase K was found to accelerate DNA decondensation. In conclusion, longer incubations in lysis solution including proteinase K lead to higher DNA decondensation in porcine and bovine sperm. This suggests that tests intended to analyze DNA damage, such as halo or Comet assays, require complete chromatin deprotamination to achieve high sensitivity in the detection of DNA breaks.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Estela Garcia-Bonavila
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Carlos O Hidalgo
- Department of Animal Selection and Reproduction, Regional Agrifood Research and Development Service of Asturias (SERIDA), Gijón, Spain
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
11
|
Oxidative Stress in Male Infertility: Causes, Effects in Assisted Reproductive Techniques, and Protective Support of Antioxidants. BIOLOGY 2020; 9:biology9040077. [PMID: 32290152 PMCID: PMC7235998 DOI: 10.3390/biology9040077] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
The spermatozoon is a highly specialized cell, whose main function is the transport of the intact male genetic material into the oocyte. During its formation and transit throughout male and female reproductive tracts, sperm cells are internally and externally surrounded by reactive oxygen species (ROS), which are produced from both endogenous and exogenous sources. While low amounts of ROS are known to be necessary for crucial physiological sperm processes, such as acrosome reaction and sperm-oocyte interaction, high levels of those species underlie misbalanced antioxidant-oxidant molecules, generating oxidative stress (OS), which is one of the most damaging factors that affect sperm function and lower male fertility potential. The present work starts by reviewing the different sources of oxidative stress that affect sperm cells, continues by summarizing the detrimental effects of OS on the male germline, and discusses previous studies addressing the consequences of these detrimental effects on natural pregnancy and assisted reproductive techniques effectiveness. The last section is focused on how antioxidants can counteract the effects of ROS and how sperm fertilizing ability may benefit from these agents.
Collapse
|
12
|
Czubaszek M, Andraszek K, Banaszewska D. Influence of the age of the individual on the stability of boar sperm genetic material. Theriogenology 2019; 147:176-182. [PMID: 31767186 DOI: 10.1016/j.theriogenology.2019.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 02/02/2023]
Abstract
Routine evaluation of the sperm of livestock animals involves detection of morphological abnormalities. However, most sperm defects that reduce fertilizing capacity are a result of anomalies in spermatogenesis. The aim of the study was to evaluate the effect of a boar's age on the stability of the genetic material of its sperm. The age of the boar was found to have a significant effect on sperm DNA stability and chromatin structure. The highest percentage of spermatozoa with DNA fragmentation was found in the oldest group of boars (0,61%), while the highest proportion of spermatozoa with abnormal histone retention (8,01%) and protamination (9,78%) was found in the youngest group of boars. Aniline blue (AB), chromomycin A3 (CMA3) and acridine orange (AO) staining should be routinely used in individuals used for artificial insemination especially young animals at the start of their exploitation for breeding, as well as older individuals with an age-related decrease in the stability of genetic material. Earlier diagnosis based on additional tests would allow for stricter selection and elimination of males with fertility disorders from breeding, to be replaced by breeders of full value. It was also demonstrated that all three staining methods mentioned above can be used in classical morphological analysis, because they clearly distinguish the sperm head from the background of the slide. Chromomycin staining clearly reveals the midpiece and thus can be used as a specific staining method for its evaluation. Staining with aniline blue is a fast and simple test whose result can be analysed under a light microscope. This staining technique can be recommended for use at insemination stations.
Collapse
Affiliation(s)
- Magdalena Czubaszek
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Institute of Bioengineering and Animal Breeding, 14 Prusa Str, 08-110, Siedlce, Poland
| | - Katarzyna Andraszek
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Institute of Bioengineering and Animal Breeding, 14 Prusa Str, 08-110, Siedlce, Poland.
| | - Dorota Banaszewska
- Department of Breeding Methods and Poultry Breeding, Siedlce University of Natural Sciences and Humanities, Institute of Bioengineering and Animal Breeding, 14 Prusa Str, 08-110, Siedlce, Poland
| |
Collapse
|
13
|
Xavier MJ, Nixon B, Roman SD, Scott RJ, Drevet JR, Aitken RJ. Paternal impacts on development: identification of genomic regions vulnerable to oxidative DNA damage in human spermatozoa. Hum Reprod 2019; 34:1876-1890. [DOI: 10.1093/humrep/dez153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
STUDY QUESTION
Do all regions of the paternal genome within the gamete display equivalent vulnerability to oxidative DNA damage?
SUMMARY ANSWER
Oxidative DNA damage is not randomly distributed in mature human spermatozoa but is instead targeted, with particular chromosomes being especially vulnerable to oxidative stress.
WHAT IS KNOWN ALREADY
Oxidative DNA damage is frequently encountered in the spermatozoa of male infertility patients. Such lesions can influence the incidence of de novo mutations in children, yet it remains to be established whether all regions of the sperm genome display equivalent susceptibility to attack by reactive oxygen species.
STUDY DESIGN, SIZE, DURATION
Human spermatozoa obtained from normozoospermic males (n = 8) were split into equivalent samples and subjected to either hydrogen peroxide (H2O2) treatment or vehicle controls before extraction of oxidized DNA using a modified DNA immunoprecipitation (MoDIP) protocol. Specific regions of the genome susceptible to oxidative damage were identified by next-generation sequencing and validated in the spermatozoa of normozoospermic males (n = 18) and in patients undergoing infertility evaluation (n = 14).
PARTICIPANTS/MATERIALS, SETTING, METHODS
Human spermatozoa were obtained from normozoospermic males and divided into two identical samples prior to being incubated with either H2O2 (5 mm, 1 h) to elicit oxidative stress or an equal volume of vehicle (untreated controls). Alternatively, spermatozoa were obtained from fertility patients assessed as having high basal levels of oxidative stress within their spermatozoa. All semen samples were subjected to MoDIP to selectively isolate oxidized DNA, prior to sequencing of the resultant DNA fragments using a next-generation whole-genomic sequencing platform. Bioinformatic analysis was then employed to identify genomic regions vulnerable to oxidative damage, several of which were selected for real-time quantitative PCR (qPCR) validation.
MAIN RESULTS AND THE ROLE OF CHANCE
Approximately 9000 genomic regions, 150–1000 bp in size, were identified as highly vulnerable to oxidative damage in human spermatozoa. Specific chromosomes showed differential susceptibility to damage, with chromosome 15 being particularly sensitive to oxidative attack while the sex chromosomes were protected. Susceptible regions generally lay outside protamine- and histone-packaged domains. Furthermore, we confirmed that these susceptible genomic sites experienced a dramatic (2–15-fold) increase in their burden of oxidative DNA damage in patients undergoing infertility evaluation compared to normal healthy donors.
LIMITATIONS, REASONS FOR CAUTION
The limited number of samples analysed in this study warrants external validation, as do the implications of our findings. Selection of male fertility patients was based on high basal levels of oxidative stress within their spermatozoa as opposed to specific sub-classes of male factor infertility.
WIDER IMPLICATIONS OF THE FINDINGS
The identification of genomic regions susceptible to oxidation in the male germ line will be of value in focusing future analyses into the mutational load carried by children in response to paternal factors such as age, the treatment of male infertility using ART and paternal exposure to environmental toxicants.
STUDY FUNDING/COMPETING INTEREST(S)
Project support was provided by the University of Newcastle’s (UoN) Priority Research Centre for Reproductive Science. M.J.X. was a recipient of a UoN International Postgraduate Research Scholarship. B.N. is the recipient of a National Health and Medical Research Council of Australia Senior Research Fellowship. Authors declare no conflict of interest.
Collapse
Affiliation(s)
- M J Xavier
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - B Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - S D Roman
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Drug Development, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - R J Scott
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - J R Drevet
- GReD Laboratory, CNRS UMR6293—INSERM U1103—Clermont Université, Clermont-Ferrand, France
| | - R J Aitken
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
14
|
Ioannou D, Tempest HG. Human Sperm Chromosomes: To Form Hairpin-Loops, Or Not to Form Hairpin-Loops, That Is the Question. Genes (Basel) 2019; 10:genes10070504. [PMID: 31277336 PMCID: PMC6678829 DOI: 10.3390/genes10070504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genomes are non-randomly organized within the interphase nucleus; and spermatozoa are proposed to have a unique hairpin-loop configuration, which has been hypothesized to be critical for the ordered exodus of the paternal genome following fertilization. Recent studies suggest that the hairpin-loop model of sperm chromatin organization is more segmentally organized. The purpose of this study is to examine the 3D organization and hairpin-loop configurations of chromosomes in human spermatozoa. METHODS Three-color sperm-fluorescence in-situ hybridization was utilized against the centromeres, and chromosome p- and q-arms of eight chromosomes from five normozoospermic donors. Wide-field fluorescence microscopy and 3D modelling established the radial organization and hairpin-loop chromosome configurations in spermatozoa. RESULTS All chromosomes possessed reproducible non-random radial organization (p < 0.05) and formed discrete hairpin-loop configurations. However, chromosomes preferentially formed narrow or wide hairpin-loops. We did not find evidence to support the existence of a centralized chromocenter(s) with centromeres being more peripherally localized than one or both of their respective chromosome arms. CONCLUSION This provides further evidence to support a more segmental organization of chromatin in the human sperm nucleus. This may be of significance for fertilization and early embryogenesis as specific genomic regions are likely to be exposed, remodeled, and activated first, following fertilization.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Helen G Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
15
|
Reconstruction of bovine spermatozoa substances distribution and morphological differences between Holstein and Korean native cattle using three-dimensional refractive index tomography. Sci Rep 2019; 9:8774. [PMID: 31217533 PMCID: PMC6584538 DOI: 10.1038/s41598-019-45174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Measurements of the three-dimensional (3D) structure of spermatozoon are crucial for the study of developmental biology and for the evaluation of in vitro fertilization. Here, we present 3D label-free imaging of individual spermatozoon and perform quantitative analysis of bovine, porcine, and mouse spermatozoa morphologies using refractive index tomography. Various morphological and biophysical properties were determined, including the internal structure, volume, surface area, concentration, and dry matter mass of individual spermatozoon. Furthermore, Holstein cows and Korean native cattle spermatozoa were systematically analyzed and revealed significant differences in spermatozoa head length, head width, midpiece length, and tail length between the two breeds. This label-free imaging approach provides a new technique for understanding the physiology of spermatozoa.
Collapse
|
16
|
Wiland E, Olszewska M, Huleyuk N, Chernykh VB, Kurpisz M. The effect of Robertsonian translocations on the intranuclear positioning of NORs (nucleolar organizing regions) in human sperm cells. Sci Rep 2019; 9:2213. [PMID: 30778082 PMCID: PMC6379386 DOI: 10.1038/s41598-019-38478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
Only a few studies have described sperm chromosome intranuclear positioning changes in men with reproductive failure and an incorrect somatic karyotype. We studied the influence of Robertsonian translocations on the acrocentric chromosome positioning in human sperm cells. The basis of the analysis was the localization of NORs (nucleolar organizing regions) in sperm nuclei from three Robertsonian translocation carriers, namely, rob(13;22), rob(13;15) and rob(13;14), with a known meiotic segregation pattern. All three carriers presented with a similar percentage of genetically normal sperm cells (i.e., approximately 40%). To visualize NORs, we performed 2D-FISH with directly labelled probes. We used the linear and radial topologies of the nucleus to analyse the NORs distribution. We found an affected positioning of NORs in each case of the Robertsonian translocations. Moreover, the NORs tended to group, most often in two clusters. Both in Robertsonian carriers and control sperm cells, NORs mostly colocalized in the medial areas of the nuclei. In the case of the Roberstonian carriers, NORs were mostly concentrated in the peripheral part of the medial area, in contrast to control sperm cells in which the distribution was more dispersed towards the internal area.
Collapse
Affiliation(s)
- Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - Vyacheslav B Chernykh
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
17
|
Olszewska M, Wiland E, Huleyuk N, Fraczek M, Midro AT, Zastavna D, Kurpisz M. Chromosome (re)positioning in spermatozoa of fathers and sons - carriers of reciprocal chromosome translocation (RCT). BMC Med Genomics 2019; 12:30. [PMID: 30709354 PMCID: PMC6359769 DOI: 10.1186/s12920-018-0470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Non-random chromosome positioning has been observed in the nuclei of several different tissue types, including human spermatozoa. The nuclear arrangement of chromosomes can be altered in men with decreased semen parameters or increased DNA fragmentation and in males with chromosomal numerical or structural aberrations. An aim of this study was to determine whether and how the positioning of nine chromosome centromeres was (re)arranged in the spermatozoa of fathers and sons – carriers of the same reciprocal chromosome translocation (RCT). Methods Fluorescence in situ hybridization (FISH) was applied to analyse the positioning of sperm chromosomes in a group of 13 carriers of 11 RCTs, including two familial RCT cases: t(4;5) and t(7;10), followed by analysis of eight control individuals. Additionally, sperm chromatin integrity was evaluated using TUNEL and Aniline Blue techniques. Results In the analysed familial RCT cases, repositioning of the chromosomes occurred in a similar way when compared to the data generated in healthy controls, even if some differences between father and son were further observed. These differences might have arisen from various statuses of sperm chromatin disintegration. Conclusions Nuclear topology appears as another aspect of epigenetic genomic regulation that may influence DNA functioning. We have re-documented that chromosomal positioning is defined in control males and that a particular RCT is reflected in the individual pattern of chromosomal topology. The present study examining the collected RCT group, including two familial cases, additionally showed that chromosomal factors (karyotype and hyperhaploidy) have superior effects, strongly influencing the chromosomal topology, when confronted with sperm chromatin integrity components (DNA fragmentation or chromatin deprotamination). Electronic supplementary material The online version of this article (10.1186/s12920-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Nataliya Huleyuk
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Alina T Midro
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, PO Box 22, 15-089, Bialystok, Poland
| | - Danuta Zastavna
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine.,Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959, Rzeszow, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
18
|
Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biol Reprod 2018; 100:318-330. [DOI: 10.1093/biolre/ioy215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon (FCT-UNL), Campus Caparica, Caparica, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S- Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| |
Collapse
|
19
|
Chromosome positioning and male infertility: it comes with the territory. J Assist Reprod Genet 2018; 35:1929-1938. [PMID: 30229502 DOI: 10.1007/s10815-018-1313-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 01/30/2023] Open
Abstract
The production of functional spermatozoa through spermatogenesis requires a spatially and temporally highly regulated gene expression pattern, which in case of alterations, leads to male infertility. Changes of gene expression by chromosome anomalies, gene variants, and epigenetic alterations have been described as the main genetic causes of male infertility. Recent molecular and cytogenetic approaches have revealed that higher order chromosome positioning is essential for basic genome functions, including gene expression. This review addresses this issue by exposing well-founded evidences which support that alterations on the chromosome topology in spermatogenetic cells leads to defective sperm function and could be considered as an additional genetic cause of male infertility.
Collapse
|
20
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
21
|
Chagin V, Zalensky A, Nazarov I, Mudrak O. Preferable location of chromosomes 1, 29, and X in bovine spermatozoa. AIMS GENETICS 2018; 5:113-123. [PMID: 31435516 PMCID: PMC6698578 DOI: 10.3934/genet.2018.2.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
Chromosome positioning in sperm nucleus may have a functional significance by influencing the sequence of post-fertilization events. In this study we present data on preferential locations of chromosomes 1, 29 and X in Bos taurus spermatozoa. Here we demonstrate that the position of X chromosome in the sperm nucleus is more restricted as compared to the position of chromosome 1, which is about of the same size. Our data support the concept of the functional significance of genome architecture in male germline cells.
Collapse
Affiliation(s)
- Vadim Chagin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andrei Zalensky
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
| | - Igor Nazarov
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Olga Mudrak
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
22
|
Ioannou D, Tempest HG. Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel. Syst Biol Reprod Med 2018; 64:518-534. [DOI: 10.1080/19396368.2017.1421278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- IVF Florida Reproductive Associates, Margate, FL, USA
| | - Helen G. Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
23
|
Stachecka J, Walczak A, Kociucka B, Ruszczycki B, Wilczyński G, Szczerbal I. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes. Histochem Cell Biol 2017; 149:113-126. [PMID: 29134302 DOI: 10.1007/s00418-017-1618-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres showed no significant changes when compared to undifferentiated and mature fat cells. In addition, the presence of a low number of PML bodies was characteristic of the studied porcine mesenchymal stem cell adipogenesis system. It has been shown that the arrangement of selected components of nuclear architecture was very similar in MSCs derived from different sources, whereas adipocyte differentiation involves nuclear reorganization. This study adds new data on nuclear organization during adipogenesis using the pig as a model organism.
Collapse
Affiliation(s)
- Joanna Stachecka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Agnieszka Walczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Beata Kociucka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Błażej Ruszczycki
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Grzegorz Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
24
|
Potential selection of genetically balanced spermatozoa based on the hypo-osmotic swelling test in chromosomal rearrangement carriers. Reprod Biomed Online 2017; 35:372-378. [DOI: 10.1016/j.rbmo.2017.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022]
|
25
|
Arifulin EA, Bragina EE, Kurilo LF, Sheval EV. High-throughput analysis of TUNEL-stained sperm using image cytometry. Cytometry A 2017; 91:854-858. [PMID: 28678382 DOI: 10.1002/cyto.a.23164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 01/06/2023]
Affiliation(s)
- E. A. Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University; Moscow 119992 Russian Federation
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St; Moscow 117198 Russian Federation
| | - E. E. Bragina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University; Moscow 119992 Russian Federation
- Federal State Budgetary Institution “Research Centre for Medical Genetics”; Moscow Russian Federation
| | - L. F. Kurilo
- Federal State Budgetary Institution “Research Centre for Medical Genetics”; Moscow Russian Federation
| | - E. V. Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University; Moscow 119992 Russian Federation
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif; Paris France
| |
Collapse
|
26
|
Karimian M, Colagar AH. Association of C677T transition of the human methylenetetrahydrofolate reductase (MTHFR) gene with male infertility. Reprod Fertil Dev 2017; 28:785-94. [PMID: 25412139 DOI: 10.1071/rd14186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/24/2014] [Indexed: 01/10/2023] Open
Abstract
The human methylenetetrahydrofolate reductase (MTHFR) gene encodes one of the key enzymes in folate metabolism. This gene is located on chromosome 1 (1p36.3), which has 12 exons. The aim of the present study was to investigate the possible association of the two (C677T and A1298C) polymorphisms of this gene with male infertility. In a case-control study, 250 blood samples were collected from IVF centres in Sari and Babol (Iran): 118 samples were from oligospermic men and 132 were from controls. Two single nucleotide polymorphisms of the MTHFR genotype were detected using polymerase chain reaction-restriction fragment length polymorphism. There was no association found between the A1298C variant and male infertility. However, carriers of the 677T allele (CT and TT genotypes) were at a higher risk of infertility than individuals with other genotypes (odds ratio 1.84; 95% confidence interval 1.11-3.04; P=0.0174). Structural analysis of human MTHFR flavoprotein showed that C677T transition played an important role in the change in affinity of the MTHFR-Flavin adenine dinucleotide binding site. Based on our results, we suggest that C677T transition in MTHFR may increase the risk of male infertility, and detection of the C677T polymorphism biomarker may be helpful in the screening of idiopathic male infertility.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-95447, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-95447, Iran
| |
Collapse
|
27
|
Champroux A, Torres-Carreira J, Gharagozloo P, Drevet JR, Kocer A. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016; 26:17. [PMID: 28031843 PMCID: PMC5175393 DOI: 10.1186/s12610-016-0044-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023] Open
Abstract
Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.
Collapse
Affiliation(s)
- A. Champroux
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - J. Torres-Carreira
- Centro Universitário Rio Preto, UNIRP, Rodovia Br153, Km 69, CEP15093-450 São José do Rio Preto, São Paulo Brazil
| | - P. Gharagozloo
- CellOxess LLC, 830 Bear Tavern Road, Ewing, NJ 08628 USA
| | - J. R. Drevet
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - A. Kocer
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| |
Collapse
|
28
|
Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage. Sci Rep 2016; 6:31614. [PMID: 27558650 PMCID: PMC4997348 DOI: 10.1038/srep31614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022] Open
Abstract
Several studies have shown that the 'poor' sperm DNA quality appears to be an important factor affecting male reproductive ability. In the case of sperm cells from males with the correct somatic karyotype but with deficient spermatogenesis, resulting in a high degree of sperm DNA fragmentation, we observed changes in the preferential topology of the chromosome 7, 9, 15, 18, X and Y centromeres. The changes occurred in radial localization and may have been directly linked to the sperm chromatin damage. This conclusion is mainly based on a comparison of FISH signals that were observed simultaneously in the TUNEL-positive and TUNEL-negative sperm cells. The analyzed cells originated from the same ejaculated sample and FISH was performed on the same slides, after in situ TUNEL reaction. Based on the observed changes and previous data, it appears that the sperm nucleus architecture can be disrupted by a variety of factors and has a negative influence on spermatogenesis at the same time. Often, these factors coexist (e.g. chromosomal translocations, aneuploidies, a higher DNA fragmentation, abnormal seminology), but no direct correlations between the factors were observed.
Collapse
|
29
|
Abstract
The paternal contribution to fertilization and embryogenesis is frequently overlooked as the spermatozoon is often considered to be a silent vessel whose only function is to safely deliver the paternal genome to the maternal oocyte. In this article, we hope to demonstrate that this perception is far from the truth. Typically, infertile men have been unable to conceive naturally (or through regular IVF), and therefore, a perturbation of the genetic integrity of sperm heads in infertile males has been under-considered. The advent of intracytoplasmic sperm injection (ICSI) however has led to very successful treatment of male factor infertility and subsequent widespread use in IVF clinics worldwide. Until recently, little concern has been raised about the genetic quality of sperm in ICSI patients or the impact genetic aberrations could have on fertility and embryogenesis. This review highlights the importance of chromatin packaging in the sperm nucleus as essential for the establishment and maintenance of a viable pregnancy.
Collapse
|
30
|
Olszewska M, Wanowska E, Kishore A, Huleyuk N, Georgiadis AP, Yatsenko AN, Mikula M, Zastavna D, Wiland E, Kurpisz M. Genetic dosage and position effect of small supernumerary marker chromosome (sSMC) in human sperm nuclei in infertile male patient. Sci Rep 2015; 5:17408. [PMID: 26616419 PMCID: PMC4663790 DOI: 10.1038/srep17408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/28/2015] [Indexed: 11/12/2022] Open
Abstract
Chromosomes occupy specific distinct areas in the nucleus of the sperm cell that may be altered in males with disrupted spermatogenesis. Here, we present alterations in the positioning of the human chromosomes 15, 18, X and Y between spermatozoa with the small supernumerary marker chromosome (sSMC; sSMC+) and spermatozoa with normal chromosome complement (sSMC−), for the first time described in the same ejaculate of an infertile, phenotypically normal male patient. Using classical and confocal fluorescent microscopy, the nuclear colocalization of chromosomes 15 and sSMC was analyzed. The molecular cytogenetic characteristics of sSMC delineated the karyotype as 47,XY,+der(15)(pter->p11.2::q11.1->q11.2::p11.2->pter)mat. Analysis of meiotic segregation showed a 1:1 ratio of sSMC+ to sSMC− spermatozoa, while evaluation of sperm aneuploidy status indicated an increased level of chromosome 13, 18, 21 and 22 disomy, up to 7 × (2.7 − 15.1). Sperm chromatin integrity assessment did not reveal any increase in deprotamination in the patient’s sperm chromatin. Importantly, we found significant repositioning of chromosomes X and Y towards the nuclear periphery, where both chromosomes were localized in close proximity to the sSMC. This suggests the possible influence of sSMC/XY colocalization on meiotic chromosome division, resulting in abnormal chromosome segregation, and leading to male infertility in the patient.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Elzbieta Wanowska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Archana Kishore
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Andrew P Georgiadis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Alexander N Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Mariya Mikula
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
31
|
Sá R, Cunha M, Rocha E, Barros A, Sousa M. Sperm DNA fragmentation is related to sperm morphological staining patterns. Reprod Biomed Online 2015; 31:506-15. [PMID: 26278809 DOI: 10.1016/j.rbmo.2015.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
In this prospective comparative study, sperm DNA fragmentation (sDNAfrag) was compared at each step of a sequential semen preparation, with semen parameters according to their degree of severity. At each step (fractions) of the sequential procedure, sDNAfrag was determined: fresh (Raw), after gradient centrifugation, washing, and swim-up (SU) for 70 infertile men enrolled in intracytoplasmic sperm injection cycles. sDNAfrag significantly (P = 0.04; P < 0.0001) decreased throughout the steps of semen preparation, with centrifugation and washing not increasing it. A negative correlation to sperm motility was observed in Raw and SU fractions, and a higher sDNAfrag was observed in samples with lower semen quality. Our results confirm that the steps of the sequential procedure do not compromise sperm DNA integrity and progressively decreased sDNAfrag regardless of the sperm abnormality and that semen parameters with lower quality present higher sDNAfrag. Four distinct patterns were observed, of which the entire sperm head staining was the pattern most expressed in all studied fractions. Additionally, the sperm head gene-rich region staining pattern was reduced by the procedure. This suggests that pattern quantification might be a useful adjunct when performing sDNAfrag testing for male infertility.
Collapse
Affiliation(s)
- Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal.
| | - Mariana Cunha
- Centre for Reproductive Genetics Prof. Alberto Barros (CGR-ABarros), 4100-009 Porto, Portugal
| | - Eduardo Rocha
- Department of Microscopy, Laboratory of Histology and Embryology, ICBAS-UP, 4050-313 Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros (CGR-ABarros), 4100-009 Porto, Portugal; Department of Genetics, Faculty of Medicine, UP, 4200-319 Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
| |
Collapse
|
32
|
Rouen A, Lavillaureix A, Hyon C, Heide S, Clède S, Balet R, Kott E, Cassuto NG, Siffroi JP. Nuclear volume differences between balanced and unbalanced spermatozoa in chromosomal translocation carriers. Reprod Biomed Online 2015; 30:290-5. [DOI: 10.1016/j.rbmo.2014.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
33
|
Noblanc A, Kocer A, Drevet JR. Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge. Basic Clin Androl 2014; 24:6. [PMID: 26779341 PMCID: PMC4715350 DOI: 10.1186/2051-4190-24-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Spermatozoa are the smallest and most cyto-differentiated mammalian cells. From a somatic cell-like appearance at the beginning of spermatogenesis, the male germ cell goes through a highly sophisticated process to reach its final organization entirely devoted to its mission which is to deliver the paternal genome to the oocyte. In order to fit the paternal DNA into the tiny spermatozoa head, complete chromatin remodeling is necessary. This review essentially focuses on present knowledge of this mammalian sperm nucleus compaction program. Particular attention is given to most recent advances that concern the specific organization of mammalian sperm chromatin and its potential weaknesses. Emphasis is placed on sperm DNA oxidative damage that may have dramatic consequences including infertility, abnormal embryonic development and the risk of transmission to descendants of an altered paternal genome.
Collapse
Affiliation(s)
- Anais Noblanc
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| |
Collapse
|
34
|
Chromosome size, morphology, and gene density determine bivalent positioning in metaphase I human spermatocytes. Fertil Steril 2014; 101:818-24. [DOI: 10.1016/j.fertnstert.2013.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/18/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
|
35
|
Seo JH, Seo BB. A new approach of successful denaturation of human sperm chromatin without undergoing decondensation treatment. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Alçada-Morais S, Sousa AP, Paiva A, Almeida-Santos T, Ramalho-Santos J. Anterior positioning of sex chromosomes on the head of human sperm sorted using visible wavelengths. Syst Biol Reprod Med 2013; 59:223-6. [DOI: 10.3109/19396368.2013.787129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Alladin N, Moskovtsev SI, Russell H, Kenigsberg S, Lulat AGM, Librach CL. The three-dimensional image analysis of the chromocenter in motile and immotile human sperm. Syst Biol Reprod Med 2013; 59:146-52. [PMID: 23445178 DOI: 10.3109/19396368.2013.772679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromosomes in human spermatozoa are arranged non-randomly with the centromeres of non-homologous chromosomes forming a chromocenter. We have compared motile and immotile sperm populations in normozoospermic patients to determine if there is any dissimilarity in the formation of the chromocenter and the nuclear position of chromosome 17. Based on the differences between motile and immotile populations, we propose for the 'optimal' nuclear organization to be defined as containing 1 to 3 chromocenter(s) with central radial and median longitudinal position for the centromere of chromosome 17. By this definition, 42% of motile spermatozoa had 'optima' nuclei, in comparison to 25% of immotile spermatozoa (P < 0.05). Immotile spermatozoa exhibited a greater disruption in the formation of the chromocenter, altered position of the centromere of chromosome 17, and were more prone to chemical decondensation, resulting in higher nuclear and chromocenter volumes. The altered topology of the chromosomes might lead to the disruption of the sequence of events involved in fertilization and early embryonic development.
Collapse
|
38
|
Mudrak OS, Nazarov IB, Jones EL, Zalensky AO. Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement. PLoS One 2012; 7:e52944. [PMID: 23300830 PMCID: PMC3531364 DOI: 10.1371/journal.pone.0052944] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022] Open
Abstract
The intranuclear positioning of chromosomes (CHRs) is a well-documented fact; however, mechanisms directing such ordering remain unclear. Unlike somatic cells, human spermatozoa contain distinct spatial markers and have asymmetric nuclei which make them a unique model for localizing CHR territories and matching peri-centromere domains. In this study, we established statistically preferential longitudinal and lateral positioning for eight CHRs. Both parameters demonstrated a correlation with the CHR gene densities but not with their sizes. Intranuclear non-random positioning of the CHRs was found to be driven by a specific linear order of centromeres physically interconnected in continuous arrays. In diploid spermatozoa, linear order of peri-centromeres was identical in two genome sets and essentially matched the arrangement established for haploid cells. We propose that the non-random longitudinal order of CHRs in human spermatozoa is generated during meiotic stages of spermatogenesis. The specific arrangement of sperm CHRs may serve as an epigenetic basis for differential transcription/replication and direct spatial CHR organization during early embryogenesis.
Collapse
Affiliation(s)
- Olga S Mudrak
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia.
| | | | | | | |
Collapse
|
39
|
Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosome Res 2012; 20:875-87. [DOI: 10.1007/s10577-012-9323-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 01/06/2023]
|
40
|
Xia X, Cai H, Qin S, Xu C. Histone acetylase inhibitor curcumin impairs mouse spermiogenesis-an in vitro study. PLoS One 2012; 7:e48673. [PMID: 23144926 PMCID: PMC3492465 DOI: 10.1371/journal.pone.0048673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
In the previous study, we unraveled the unique “erasure strategy” during the mouse spermiogenesis. Chromatin associated proteins sequentially disassociated from the spermatid chromosome, which led to the termination of transcription in elongating spermatids. By this process, a relatively naïve paternal chromatin was generated, which might be essential for the zygotic development. We supposed the regulation of histone acetylation played an important role throughout this “erasure” process. In order to verify this hypothesis, we treated mouse spermatids in vitro by histone acetylase (HAT) inhibitor Curcumin. Our results showed an inhibiting effect of Curcumin on the growth of germ cell line in a dose-dependent manner. Accordingly, the apoptosis of primary haploid spermtids was increased by Curcumin treatment. As expected, the acetylated histone level was downregulated. Furthermore, we found the transcription in spermatids ceased in advance, the dynamics of chromatin associated factors was disturbed by Curcumin treatment. The regulation of histone acetylation should be one of the core reprogramming mechanisms during the spermiogenesis. The reproductive toxicity of Curcumin needs to be thoroughly investigated, which is crucial for its further clinical application.
Collapse
Affiliation(s)
- Xiaoyu Xia
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Heng Cai
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Shixiao Qin
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Chen Xu
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Perdrix A, Travers A, Clatot F, Sibert L, Mitchell V, Jumeau F, Macé B, Rives N. Modification of chromosomal architecture in human spermatozoa with large vacuoles. Andrology 2012; 1:57-66. [DOI: 10.1111/j.2047-2927.2012.00016.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Affiliation(s)
- A. Perdrix
- Biology Laboratory - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Rouen University Hospital; Rouen Cedex; France
| | - A. Travers
- Biology Laboratory - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Rouen University Hospital; Rouen Cedex; France
| | - F. Clatot
- Department of Oncology; Henry Becquerel Center; Rouen; France
| | - L. Sibert
- Biology Laboratory - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Rouen University Hospital; Rouen Cedex; France
| | - V. Mitchell
- Department of Reproductive Biology - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Lille University Medical Center; Lille; France
| | - F. Jumeau
- Department of Reproductive Biology - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Lille University Medical Center; Lille; France
| | - B. Macé
- Biology Laboratory - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Rouen University Hospital; Rouen Cedex; France
| | - N. Rives
- Biology Laboratory - CECOS; EA 4308 “Spermatogenesis and male gamete quality”; Rouen University Hospital; Rouen Cedex; France
| |
Collapse
|
42
|
Ribas-Maynou J, García-Peiró A, Fernandez-Encinas A, Amengual MJ, Prada E, Cortés P, Navarro J, Benet J. Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One 2012; 7:e44679. [PMID: 23028579 PMCID: PMC3444447 DOI: 10.1371/journal.pone.0044679] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
It is known that sperm samples from recurrent pregnancy loss (RPL) couples have an increase in their sperm DNA fragmentation (SDF), but no studies have been performed in order to identify differences between single stranded SDF (ssSDF) and double stranded SDF (dsSDF) in these patients. This could be relevant because the type of DNA damage could have different effects. Semen samples were classified attending their clinical status: 25 fertile donors and 20 RPL patients with at least two unexplained first trimester miscarriages. SDF was analysed using alkaline and neutral Comet assay, SCD test and pulsed-field gel electrophoresis (PFGE), and ROC analysis including data from 105 more infertile patients (n = 150) was performed to establish predictive threshold values. SDF for alkaline and neutral Comet, and the SCD test was analysed in these categories of individuals. Data revealed the presence of two subgroups within fertile donors. The values obtained were 21.10±9.13, 23.35±10.45 and 12.31±4.31, respectively, for fertile donors with low values for both ssSDF and dsSDF; 27.86±12.64, 80.69±12.67 and 12.43±5.22, for fertile donors with low ssSDF and high dsSDF; and 33.61±15.50, 84.64±11.28 and 19.28±6.05, for unexplained RPL patients, also showing a low ssSDF and high dsSDF profile. This latter profile was seen in 85% of unexplained RPL and 33% of fertile donors, suggesting that it may be associated to a male risk factor for undergoing RPL. ROC analysis regarding recurrent miscarriage set the cut-off value at 77.50% of dsDNA SDF. PFGE for low ssSDF and high dsSDF profile samples and positive controls treated with DNase, to induce dsDNA breaks, showed a more intense band of about 48 kb, which fits the toroid model of DNA compaction in sperm, pointing out that some nuclease activity may be affecting their sperm DNA in RPL patients. This work identifies a very specific SDF profile related to the paternal risk of having RPL.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Agustín García-Peiró
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Fernandez-Encinas
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria José Amengual
- UDIAT, Centre Diagnòstic. Corporació Sanitària Parc Taulí. Sabadell. Institut Universitari Parc Taulí – UAB, Sabadell, Spain
| | - Elena Prada
- Servei de Ginecologia, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Pilar Cortés
- Departament de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joaquima Navarro
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Benet
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
43
|
Ioannou D, Fonseka KGL, Meershoek EJ, Thornhill AR, Abogrein A, Ellis M, Griffin DK. Twenty-four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organisation. Chromosome Res 2012; 20:447-60. [DOI: 10.1007/s10577-012-9294-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 12/21/2022]
|
44
|
Arifulin EA, Bragina EE, Zamyatnina VA, Volkova EG, Sheval’ EV, Golyshev SA, Kintsurashvili LN, Kir’yanov GI, Prusov AN, Polyakov VY. Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodelling in differentiating human spermatids. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360411050031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Cassuto NG, Le Foll N, Chantot-Bastaraud S, Balet R, Bouret D, Rouen A, Bhouri R, Hyon C, Siffroi JP. Sperm fluorescence in situ hybridization study in nine men carrying a Robertsonian or a reciprocal translocation: relationship between segregation modes and high-magnification sperm morphology examination. Fertil Steril 2011; 96:826-32. [DOI: 10.1016/j.fertnstert.2011.07.1143] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/11/2011] [Accepted: 07/26/2011] [Indexed: 11/30/2022]
|
46
|
Pérez-Cerezales S, Gutiérrez-Adán A, Martínez-Páramo S, Beirão J, Herráez M. Altered gene transcription and telomere length in trout embryo and larvae obtained with DNA cryodamaged sperm. Theriogenology 2011; 76:1234-45. [DOI: 10.1016/j.theriogenology.2011.05.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/06/2011] [Accepted: 05/17/2011] [Indexed: 12/18/2022]
|
47
|
Ioannou D, Meershoek EJ, Christopikou D, Ellis M, Thornhill AR, Griffin DK. Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis. Chromosome Res 2011; 19:741-53. [PMID: 21947956 DOI: 10.1007/s10577-011-9238-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
Organisation of chromosome territories in interphase nuclei has been studied in many systems and positional alterations have been associated with disease phenotypes (e.g. laminopathies, cancer) in somatic cells. Altered nuclear organisation is also reported in developmental processes such as mammalian spermatogenesis where a "chromocentre" model is proposed with the centromeres and sex chromosomes repositioning to the nuclear centre. The purpose of this study was to test the hypothesis that alterations in nuclear organisation of human spermatozoa are associated with defects upstream in spermatogenesis (as manifest in certain infertility phenotypes). The nuclear address of (peri-) centromeric loci for 18 chromosomes (1-4, 6-12, 15-18, 20, X and Y) was assayed in 20 males using established algorithms for 3D extrapolations of 2D data. The control group comprised 10 fertile sperm donors while the test group was 10 patients with severely compromised semen parameters including high sperm aneuploidy. All loci examined in the control group adopted defined, interior positions thus providing supporting evidence for the presence of a chromocentre and interior sex chromosome territories. In the test group however there were subtle alterations in the nuclear address for certain centromeres in individual patients and, when all patient results were pooled, some different nuclear addresses were observed for chromosomes 3, 6, 12 and 18. Considering the extensive impairment of spermatogenesis in the test group (evidenced by compromised semen parameters and increased chromosome abnormalities), the observed differences in nuclear organisation for centromeric loci compared to the controls were modest. A defined pattern of nuclear reorganisation of centromeric loci in sperm heads therefore appears to be a remarkably robust process, even if spermatogenesis is severely compromised.
Collapse
Affiliation(s)
- Dimitris Ioannou
- School of Biosciences, University of Kent, Canterbury CT27NJ, UK
| | | | | | | | | | | |
Collapse
|
48
|
Crha I, Zakova J, Huser M, Ventruba P, Lousova E, Pohanka M. Digital holographic microscopy in human sperm imaging. J Assist Reprod Genet 2011; 28:725-9. [PMID: 21667103 DOI: 10.1007/s10815-011-9584-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The aim of this study was to use digital holographic microscopy (DHM) in human sperm imaging and compare quantitative phase contrast of sperm heads in normozoospermia (NZ) and oligoasthenozoospermia (OAT). METHODS DHM spermatozoa imaging and repeated quantitative phase shift evaluation were used. Five NZ and 5 OAT samples were examined. Semen samples were examined by semen analysis and processed for DHM. Main outcome measures were maximum phase shift value of the sperm heads. Differences of the phase shift and in NZ and OAT samples were statistically tested. RESULTS In NZ samples median phase shifts were in the range 2.72-3.21 rad and 2.00-2.15 in OAT samples. Differences among individual samples were statistically significant (p < 0.001) in both groups. Median phase shift according to sperm count was 2.90 rad in NZ samples and 2.00 rad in OAT samples. This difference was statistically significant (p < 0.001). CONCLUSION Quantitative evaluation of the phase shift by DHM could provide new information on the exact structure and composition of the sperm head. At present, this technique is not established for clinical utility.
Collapse
Affiliation(s)
- Igor Crha
- Department of Gynecology and Obstetrics, Faculty of Medicine, Masaryk University, and Faculty Hospital, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
49
|
Andraszek K, Smalec E. The use of silver nitrate for the identification of spermatozoon structure in selected mammals. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas10052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Andraszek, K. and Smalec, E. 2011. The use of silver nitrate for the identification of spermatozoon structure in selected mammals. Can. J. Anim. Sci. 91: 239–246. The spermatozoon is one of the most diversified cell types, and the chromatin of the haploid spermatozoon genome is essentially different from that of the somatic cell as regards its chemical composition, structure and function. Although the structure of spermatozoon chromatin has crucial importance for fertilization and embryo development, standard staining techniques are still predominantly used for identifying semen quality and the assessment of spermatozoa is most often limited to detecting irregularities in their morphological structure. The aim of the present research was to evaluate the usefulness of silver nitrate staining for assessing spermatozoon morphology and identifying spermatozoon structure. Spermatozoa isolated from testes and semen were examined. Silver nitrate staining made it possible to identify many significant details of the morphological structure of the spermatozoon and could be successfully employed in sperm morphology assessments.
Collapse
Affiliation(s)
- Katarzyna Andraszek
- Institute of Bioengineering and Animal Breeding, University of Life Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Elżbieta Smalec
- Institute of Bioengineering and Animal Breeding, University of Life Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| |
Collapse
|
50
|
García-Peiró A, Oliver-Bonet M, Navarro J, Abad C, Guitart M, Amengual MJ, Gosálvez J, Benet J. Dynamics of sperm DNA fragmentation in patients carrying structurally rearranged chromosomes. ACTA ACUST UNITED AC 2011; 34:e546-53. [DOI: 10.1111/j.1365-2605.2011.01153.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|