1
|
Hiroshima M, Bannai H, Matsumoto G, Ueda M. Application of single-molecule analysis to singularity phenomenon of cells. Biophys Physicobiol 2024; 21:e211018. [PMID: 39175861 PMCID: PMC11338674 DOI: 10.2142/biophysico.bppb-v21.s018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Single-molecule imaging in living cells is an effective tool for elucidating the mechanisms of cellular phenomena at the molecular level. However, the analysis was not designed for throughput and requires high expertise, preventing it from reaching large scale, which is necessary when searching for rare cells that induce singularity phenomena. To overcome this limitation, we have automated the imaging procedures by combining our own focusing device, artificial intelligence, and robotics. The apparatus, called automated in-cell single-molecule imaging system (AiSIS), achieves a throughput that is a hundred-fold higher than conventional manual imaging operations, enabling the analysis of molecular events by individual cells across a large population. Here, using AiSIS, we demonstrate the single-molecule imaging of molecular behaviors and reactions related to tau protein aggregation, which is considered a singularity phenomenon in neurological disorders. Changes in the dynamics and kinetics of molecular events were observed inside and on the basal membrane of cells after the induction of aggregation. Additionally, to detect rare cells based on the molecular behavior, we developed a method to identify the state of individual cells defined by the quantitative distribution of molecular mobility and clustering. Using this method, cellular variations in receptor behavior were shown to decrease following ligand stimulation. This cell state analysis based on large-scale single-molecule imaging by AiSIS will advance the study of molecular mechanisms causing singularity phenomena.
Collapse
Affiliation(s)
- Michio Hiroshima
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Osaka 565-0874, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, Shinjuku-ku, Tokyo 162-0056, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Osaka 565-0874, Japan
| |
Collapse
|
2
|
Takebayashi K, Kamimura Y, Ueda M. Field model for multistate lateral diffusion of various transmembrane proteins observed in living Dictyostelium cells. J Cell Sci 2023; 136:jcs260280. [PMID: 36655427 PMCID: PMC10022678 DOI: 10.1242/jcs.260280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
The lateral diffusion of transmembrane proteins on plasma membranes is a fundamental process for various cellular functions. Diffusion properties specific for individual protein species have been extensively studied, but the common features among protein species are poorly understood. Here, we systematically studied the lateral diffusion of various transmembrane proteins in the lower eukaryote Dictyostelium discoideum cells using a hidden Markov model for single-molecule trajectories obtained experimentally. As common features, all membrane proteins that had from one to ten transmembrane regions adopted three free diffusion states with similar diffusion coefficients regardless of their structural variability. All protein species reduced their mobility similarly upon the inhibition of microtubule or actin cytoskeleton dynamics, or myosin II. The relationship between protein size and the diffusion coefficient was consistent with the Saffman-Delbrück model, meaning that membrane viscosity is a major determinant of lateral diffusion, but protein size is not. These protein species-independent properties of multistate free diffusion were explained simply and quantitatively by free diffusion on the three membrane regions with different viscosities, which is in sharp contrast to the complex diffusion behavior of transmembrane proteins in higher eukaryotes.
Collapse
Affiliation(s)
- Kazutoshi Takebayashi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Yoichiro Kamimura
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Masahiro Ueda
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Xu X, Pan M, Jin T. How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of Dictyostelium discoideum (Review). Front Cell Dev Biol 2021; 9:724940. [PMID: 34490271 PMCID: PMC8417749 DOI: 10.3389/fcell.2021.724940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
Collapse
Affiliation(s)
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
4
|
Hiroshima M, Yasui M, Ueda M. Large-scale single-molecule imaging aided by artificial intelligence. Microscopy (Oxf) 2020; 69:69-78. [DOI: 10.1093/jmicro/dfz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
Single-molecule imaging analysis has been applied to study the dynamics and kinetics of molecular behaviors and interactions in living cells. In spite of its high potential as a technique to investigate the molecular mechanisms of cellular phenomena, single-molecule imaging analysis has not been extended to a large scale of molecules in cells due to the low measurement throughput as well as required expertise. To overcome these problems, we have automated the imaging processes by using computer operations, robotics and artificial intelligence (AI). AI is an ideal substitute for expertise to obtain high-quality images for quantitative analysis. Our automated in-cell single-molecule imaging system, AiSIS, could analyze 1600 cells in 1 day, which corresponds to ∼ 100-fold higher efficiency than manual analysis. The large-scale analysis revealed cell-to-cell heterogeneity in the molecular behavior, which had not been recognized in previous studies. An analysis of the receptor behavior and downstream signaling was accomplished within a significantly reduced time frame and revealed the detailed activation scheme of signal transduction, advancing cell biology research. Furthermore, by combining the high-throughput analysis with our previous finding that a receptor changes its behavioral dynamics depending on the presence of a ligand/agonist or inhibitor/antagonist, we show that AiSIS is applicable to comprehensive pharmacological analysis such as drug screening. This AI-aided automation has wide applications for single-molecule analysis.
Collapse
Affiliation(s)
- Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Suita 565-0874, Japan
| | | | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Suita 565-0874, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
5
|
Hashimura H, Morimoto YV, Yasui M, Ueda M. Collective cell migration of Dictyostelium without cAMP oscillations at multicellular stages. Commun Biol 2019; 2:34. [PMID: 30701199 PMCID: PMC6345914 DOI: 10.1038/s42003-018-0273-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023] Open
Abstract
In Dictyostelium discoideum, a model organism for the study of collective cell migration, extracellular cyclic adenosine 3',5'-monophosphate (cAMP) acts as a diffusible chemical guidance cue for cell aggregation, which has been thought to be important in multicellular morphogenesis. Here we revealed that the dynamics of cAMP-mediated signaling showed a transition from propagating waves to steady state during cell development. Live-cell imaging of cytosolic cAMP levels revealed that their oscillation and propagation in cell populations were obvious for cell aggregation and mound formation stages, but they gradually disappeared when multicellular slugs started to migrate. A similar transition of signaling dynamics occurred with phosphatidylinositol 3,4,5-trisphosphate signaling, which is upstream of the cAMP signal pathway. This transition was programmed with concomitant developmental progression. We propose a new model in which cAMP oscillation and propagation between cells, which are important at the unicellular stage, are unessential for collective cell migration at the multicellular stage.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, 565-0871 Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
| | - Yusuke V. Morimoto
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502 Japan
| | - Masato Yasui
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, 565-0871 Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
6
|
Miyanaga Y, Kamimura Y, Kuwayama H, Devreotes PN, Ueda M. Chemoattractant receptors activate, recruit and capture G proteins for wide range chemotaxis. Biochem Biophys Res Commun 2018; 507:304-310. [PMID: 30454895 DOI: 10.1016/j.bbrc.2018.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022]
Abstract
The wide range sensing of extracellular signals is a common feature of various sensory cells. Eukaryotic chemotactic cells driven by GPCRs and their cognate G proteins are one example. This system endows the cells directional motility towards their destination over long distances. There are several mechanisms to achieve the long dynamic range, including negative regulation of the receptors upon ligand interaction and spatial regulation of G proteins, as we found recently. However, these mechanisms are insufficient to explain the 105-fold range of chemotaxis seen in Dictyostelium. Here, we reveal that the receptor-mediated activation, recruitment, and capturing of G proteins mediate chemotactic signaling at the lower, middle and higher concentration ranges, respectively. These multiple mechanisms of G protein dynamics can successfully cover distinct ranges of ligand concentrations, resulting in seamless and broad chemotaxis. Furthermore, single-molecule imaging analysis showed that the activated Gα subunit forms an unconventional complex with the agonist-bound receptor. This complex formation of GPCR-Gα increased the membrane-binding time of individual Gα molecules and therefore resulted in the local accumulation of Gα. Our findings provide an additional chemotactic dynamic range mechanism in which multiple G protein dynamics positively contribute to the production of gradient information.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., 114 WBSB, Baltimore, MD, 21205, USA
| | - Masahiro Ueda
- Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
7
|
Matsuoka S, Ueda M. Mutual inhibition between PTEN and PIP3 generates bistability for polarity in motile cells. Nat Commun 2018; 9:4481. [PMID: 30367048 PMCID: PMC6203803 DOI: 10.1038/s41467-018-06856-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) and PIP3 phosphatase (PTEN) are enriched mutually exclusively on the anterior and posterior membranes of eukaryotic motile cells. However, the mechanism that causes this spatial separation between the two molecules is unknown. Here we develop a method to manipulate PIP3 levels in living cells and used it to show PIP3 suppresses the membrane localization of PTEN. Single-molecule measurements of membrane-association and -dissociation kinetics and of lateral diffusion reveal that PIP3 suppresses the PTEN binding site required for stable PTEN membrane binding. Mutual inhibition between PIP3 and PTEN provides a mechanistic basis for bistability that creates a PIP3-enriched/PTEN-excluded state and a PTEN-enriched/PIP3-excluded state underlying the strict spatial separation between PIP3 and PTEN. The PTEN binding site also mediates the suppression of PTEN membrane localization in chemotactic signaling. These results illustrate that the PIP3-PTEN bistable system underlies a cell's decision-making for directional movement irrespective of the environment.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN QBiC, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN QBiC, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Single Molecule Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
8
|
Nakamura Y, Hibino K, Yanagida T, Sako Y. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains. Biophys Physicobiol 2016; 13:1-11. [PMID: 27924253 PMCID: PMC5042160 DOI: 10.2142/biophysico.13.0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.
Collapse
Affiliation(s)
- Yuki Nakamura
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kayo Hibino
- Laboratory for Cell Signaling Dynamics, RIKEN QBiC, Suita, Osaka 565-0874, Japan
| | - Toshio Yanagida
- Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Mashanov GI. Single molecule dynamics in a virtual cell: a three-dimensional model that produces simulated fluorescence video-imaging data. J R Soc Interface 2015; 11:20140442. [PMID: 25008080 PMCID: PMC4233692 DOI: 10.1098/rsif.2014.0442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The analysis of single molecule imaging experiments is complicated by the stochastic nature of single molecule events, by instrument noise and by the limited information which can be gathered about any individual molecule observed. Consequently, it is important to cross check experimental results using a model simulating single molecule dynamics (e.g. movements and binding events) in a virtual cell-like environment. The output of such a model should match the real data format allowing researchers to compare simulated results with the real experiments. The proposed model exploits the advantages of ‘object-oriented’ computing. First of all, the ability to create and manipulate a number of classes, each containing an arbitrary number of single molecule objects. These classes may include objects moving within the ‘cytoplasm’; objects moving at the ‘plasma membrane’; and static objects located inside the ‘body’. The objects of a given class can interact with each other and/or with the objects of other classes according to their physical and chemical properties. Each model run generates a sequence of images, each containing summed images of all fluorescent objects emitting light under given illumination conditions with realistic levels of noise and emission fluctuations. The model accurately reproduces reported single molecule experiments and predicts the outcome of future experiments.
Collapse
Affiliation(s)
- Gregory I Mashanov
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
10
|
Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. NANOSCALE 2014; 6:12229-12249. [PMID: 25227707 DOI: 10.1039/c4nr04195j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technique, Macau, China.
| | | | | | | | | |
Collapse
|
11
|
Yasui M, Matsuoka S, Ueda M. PTEN hopping on the cell membrane is regulated via a positively-charged C2 domain. PLoS Comput Biol 2014; 10:e1003817. [PMID: 25211206 PMCID: PMC4161299 DOI: 10.1371/journal.pcbi.1003817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
PTEN, a tumor suppressor that is frequently mutated in a wide spectrum of cancers, exerts PI(3,4,5)P3 phosphatase activities that are regulated by its dynamic shuttling between the membrane and cytoplasm. Direct observation of PTEN in the interfacial environment can offer quantitative information about the shuttling dynamics, but remains elusive. Here we show that positively charged residues located in the cα2 helix of the C2 domain are necessary for the membrane localization of PTEN via stable electrostatic interactions in Dictyostelium discoideum. Single-molecule imaging analyses revealed that PTEN molecules moved distances much larger than expected had they been caused by lateral diffusion, a phenomenon we call “hopping.” Our novel single-particle tracking analysis method found that the cα2 helix aids in regulating the hopping and stable-binding states. The dynamically established membrane localization of PTEN was revealed to be essential for developmental processes and clarified a fundamental regulation mechanism of the protein quantity and activity on the plasma membrane. The plasma membrane is a major chemical reaction field in living cells, and the molecular mechanisms of protein-membrane interactions are important for many cellular functions. In this report, we have discovered that the PTEN protein, which transits between the cytoplasm and membrane, hops along the plasma membrane of living cells. We tracked individual PTEN molecules on the membrane by single molecule imaging and analyzed the hopping behavior by developing a novel analysis method, which measures the rebinding probability of membrane-bound proteins after detaching from the membrane. We found that positively charged amino acids in the C2 domain of PTEN, which were reported to be important for its phosphatase activity on the membrane, are required to suppress excessive hopping and stabilize PTEN membrane binding. The stable electrostatic interactions localize PTEN to the plasma membrane and play an indispensable role in regulating the size of the multicellular structures formed under a starving environment. Our results suggest electrostatic interactions between the protein and membrane regulate protein quantity and activity.
Collapse
Affiliation(s)
- Masato Yasui
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- * E-mail:
| | - Masahiro Ueda
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
12
|
Fujii M, Nishimori H, Awazu A. Influences of excluded volume of molecules on signaling processes on the biomembrane. PLoS One 2013; 8:e62218. [PMID: 23658714 PMCID: PMC3642174 DOI: 10.1371/journal.pone.0062218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/18/2013] [Indexed: 01/25/2023] Open
Abstract
We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by monotonically increasing; increasing then decreasing in a bell-shaped curve; or increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.
Collapse
Affiliation(s)
- Masashi Fujii
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | |
Collapse
|
13
|
Coelho M, Maghelli N, Tolić-Nørrelykke IM. Single-molecule imagingin vivo: the dancing building blocks of the cell. Integr Biol (Camb) 2013; 5:748-58. [DOI: 10.1039/c3ib40018b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Miguel Coelho
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. Tel: +49 351 210 2691
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. Tel: +49 351 210 2691
| | - Iva M. Tolić-Nørrelykke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. Tel: +49 351 210 2691
| |
Collapse
|
14
|
Matsuoka S, Shibata T, Ueda M. Asymmetric PTEN distribution regulated by spatial heterogeneity in membrane-binding state transitions. PLoS Comput Biol 2013; 9:e1002862. [PMID: 23326224 PMCID: PMC3542079 DOI: 10.1371/journal.pcbi.1002862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/10/2012] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that underlie asymmetric PTEN distribution at the posterior of polarized motile cells and regulate anterior pseudopod formation were addressed by novel single-molecule tracking analysis. Heterogeneity in the lateral mobility of PTEN on a membrane indicated the existence of three membrane-binding states with different diffusion coefficients and membrane-binding lifetimes. The stochastic state transition kinetics of PTEN among these three states were suggested to be regulated spatially along the cell polarity such that only the stable binding state is selectively suppressed at the anterior membrane to cause local PTEN depletion. By incorporating experimentally observed kinetic parameters into a simple mathematical model, the asymmetric PTEN distribution can be explained quantitatively to illustrate the regulatory mechanisms for cellular asymmetry based on an essential causal link between individual stochastic reactions and stable localizations of the ensemble.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Japan
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
| | - Tatsuo Shibata
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
- Laboratories for Physical Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Japan
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
15
|
Mazza D, Ganguly S, McNally JG. Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking. Methods Mol Biol 2013; 1042:117-37. [PMID: 23980004 DOI: 10.1007/978-1-62703-526-2_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Single-molecule fluorescence microscopy has been used for decades to quantify macromolecular dynamics occurring in specimens that are in direct contact with a coverslip. This has permitted in vitro analysis of single-molecule motion in various biochemically reconstituted systems as well as in vivo studies of single-molecule motion on cell membranes. More recently, thanks to improvements in fluorescent tags and microscopes, it has been possible to follow individual molecules inside thicker specimens such as the nucleus of living cells. This has enabled a detailed description of the live-cell binding of nuclear proteins to DNA. In this protocol we describe a method to quantify intranuclear binding using single-molecule tracking (SMT).
Collapse
Affiliation(s)
- Davide Mazza
- Center for Experimental Imaging, Istituto Scientifi co Ospedale San Raffaele e Universita' Vita-Salute San Raffaele, Bethesda, MD, USA
| | | | | |
Collapse
|
16
|
Matsuoka S, Miyanaga Y, Yanagida T, Ueda M. Single-molecule imaging of stochastic signaling events in living cells. Cold Spring Harb Protoc 2012; 2012:267-78. [PMID: 22383647 DOI: 10.1101/pdb.top068189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Environmental changes result in signaling events at cell membranes. To develop the means to understand these events at the molecular level, it is essential to become familiar with the stochastic nature of signaling molecules in living cells. Using total internal reflection fluorescent microscopy (TIRFM), these signaling events can be directly observed at the single-molecule level. This article explains the basis of TIRFM and how it is set up. It then describes how to visualize cell membrane signaling events. It also explains how to prove that detected fluorescence is emitted from single dye molecules and how to analyze the data from TIRFM experiments.
Collapse
|
17
|
Millius A, Watanabe N, Weiner OD. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. J Cell Sci 2012; 125:1165-76. [PMID: 22349699 DOI: 10.1242/jcs.091157] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes.
Collapse
Affiliation(s)
- Arthur Millius
- Cardiovascular Research Institute and Department of Biochemistry, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
18
|
|
19
|
Sako Y, Hiroshima M, Pack CG, Okamoto K, Hibino K, Yamamoto A. Live cell single-molecule detection in systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:183-92. [DOI: 10.1002/wsbm.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Jin T. GPCR-controlled chemotaxis in Dictyostelium discoideum. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:717-27. [PMID: 21381217 DOI: 10.1002/wsbm.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dictyostelium discoideum has been chosen as the key model organism for the study of eukaryotic chemotaxis. Studies in this lower eukaryotic organism have allowed us to discover eukaryotic chemotaxis behavior and to gradually understand the mechanism of chemotaxis. Investigations in this simple organism often guide the direction of chemotaxis studies in areas such as forming concepts, discovering molecular components, revealing pathways and networks. The cooperation between experimental approaches and computational modeling has helped us to comprehend the signaling network as a system. To further reveal the relationships among the molecular mechanisms of individual signaling steps, a continuous interplay between model development and refinement and experimental testing and verification will be useful. This article focuses on a chemoattractant G-protein-coupled receptor (GPCR)/G-protein gradient sensing machinery, which is monitored by PIP(3) responses and investigated by the interplay between live cell imaging experiments and computational modeling. We believe that such an approach will lead to a much better understanding of GPCR-controlled chemotaxis of all eukaryotic cells.
Collapse
Affiliation(s)
- Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Twinbrook Facility, Rockville, MD, USA.
| |
Collapse
|
21
|
Iglesias PA. Spatial regulation of PI3K signaling during chemotaxis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:247-253. [PMID: 20835994 DOI: 10.1002/wsbm.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' OH position of the inositol ring of phosphoinositides on the inner leaf of the plasma membrane. Receptor-mediated activation of the PI3K pathway plays a crucial role in numerous signaling pathways and regulates a number of critical cellular processes, including growth, differentiation, survival and directed migration. In this focus article, we review the temporal and spatial regulation of PI3K in chemotaxing cells with particular emphasis on the amoeba Dictyostelium as well as neutrophils. We also briefly discuss one model used to elucidate the PI3K pathway.
Collapse
Affiliation(s)
- Pablo A Iglesias
- Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Gutman O, Walliser C, Piechulek T, Gierschik P, Henis YI. Differential regulation of phospholipase C-beta2 activity and membrane interaction by Galphaq, Gbeta1gamma2, and Rac2. J Biol Chem 2010; 285:3905-3915. [PMID: 20007712 PMCID: PMC2823533 DOI: 10.1074/jbc.m109.085100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 01/15/2023] Open
Abstract
We combined fluorescence recovery after photobleaching (FRAP) beam-size analysis with biochemical assays to investigate the mechanisms of membrane recruitment and activation of phospholipase C-beta(2) (PLCbeta(2)) by G protein alpha(q) and betagamma dimers. We show that activation by alpha(q) and betagamma differ from activation by Rac2 and from each other. Stimulation by alpha(q) enhanced the plasma membrane association of PLCbeta(2), but not of PLCbeta(2)Delta, which lacks the alpha(q)-interacting region. Although alpha(q) resembled Rac2 in increasing the contribution of exchange to the FRAP of PLCbeta(2) and in enhancing its membrane association, the latter effect was weaker than with Rac2. Moreover, the membrane recruitment of PLCbeta(2) by alpha(q) occurred by enhancing PLCbeta(2) association with fast-diffusing (lipid-like) membrane components, whereas stimulation by Rac2 led to interactions with slow diffusing membrane sites. On the other hand, activation by betagamma shifted the FRAP of PLCbeta(2) and PLCbeta(2)Delta to pure lateral diffusion 3- to 5-fold faster than lipids, suggesting surfing-like diffusion along the membrane. We propose that these different modes of PLCbeta(2) membrane recruitment may accommodate contrasting functional needs to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)) in localized versus dispersed populations. PLCbeta(2) activation by Rac2, which leads to slow lateral diffusion and much faster exchange, recruits PLCbeta(2) to act locally on PtdInsP(2) at specific domains. Activation by alpha(q) leads to lipid-like diffusion of PLCbeta(2) accompanied by exchange, enabling the sampling of larger, yet limited, areas prior to dissociation. Finally, activation by betagamma recruits PLCbeta(2) to the membrane by transient interactions, leading to fast "surfing" diffusion along the membrane, sampling large regions for dispersed PtdInsP(2) populations.
Collapse
Affiliation(s)
- Orit Gutman
- From the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and
| | - Claudia Walliser
- the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Piechulek
- the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Gierschik
- the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Yoav I Henis
- From the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and.
| |
Collapse
|
23
|
Matsuoka S, Shibata T, Ueda M. Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging. Biophys J 2009; 97:1115-24. [PMID: 19686659 DOI: 10.1016/j.bpj.2009.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 05/24/2009] [Accepted: 06/02/2009] [Indexed: 11/26/2022] Open
Abstract
Single-molecule trajectories of molecules on the membrane of living cells have indicated the possibility that the lateral mobility of individual molecules is variable with time. Such temporal variation in mobility may indicate intrinsic kinetics of multiple molecular states. To clarify the mechanisms of signal processing on the membrane, quantitative characterizations of such temporal variations are necessary. Here we propose a method to analyze and characterize the multiple states in lateral mobility and their transition kinetics from single-molecule trajectories based on a displacement probability density function and an autocorrelation function of squared displacements. We performed our method for three cases: a molecule with a single diffusion coefficient (D), a mixture of molecules in two states with different D-values, and a molecule switching between two states with different D-values. Our analysis of numerically generated trajectories successfully distinguished the three cases and estimated the characteristic parameters for mobility and the kinetics of state transitions. This method is applicable to single-molecule tracking analysis of molecules in multiple functional states with different lateral mobility on the membrane of living cells.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
24
|
Chuai M, Dormann D, Weijer CJ. Imaging cell signalling and movement in development. Semin Cell Dev Biol 2009; 20:947-55. [DOI: 10.1016/j.semcdb.2009.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
25
|
Hong K, Nishiyama M. From Guidance Signals to Movement: Signaling Molecules Governing Growth Cone Turning. Neuroscientist 2009; 16:65-78. [DOI: 10.1177/1073858409340702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Directed growth cone movements in response to external guidance signals are required for the establishment of functional neuronal connections during development, adult nerve regeneration, and adult neurogenesis. Growth cone intrinsic properties permit different growth cone responses (e.g., attraction or repulsion) to a guidance signal, and alterations to these intrinsic properties often result in opposite growth cone responses. This article reviews the current knowledge of growth cone signaling, emphasizing the dependency of Ca2+ signaling on membrane potential shifts, and cyclic nucleotide and phosphoinositide signaling pathways during growth cone turning in response to guidance signals. We also discuss how asymmetrical growth cone signaling is achieved for the fine-tuned growth cone movement.
Collapse
Affiliation(s)
- Kyonsoo Hong
- Department of Biochemistry, New York University School of Medicine, New York, New York,
| | - Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, New York
| |
Collapse
|
26
|
Abstract
Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Knight JD, Falke JJ. Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. Biophys J 2009; 96:566-82. [PMID: 19167305 DOI: 10.1016/j.bpj.2008.10.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/23/2008] [Indexed: 01/15/2023] Open
Abstract
Proteins containing membrane targeting domains play essential roles in many cellular signaling pathways. However, important features of the membrane-bound state are invisible to bulk methods, thereby hindering mechanistic analysis of membrane targeting reactions. Here we use total internal reflection fluorescence microscopy (TIRFM), combined with single particle tracking, to probe the membrane docking mechanism of a representative pleckstrin homology (PH) domain isolated from the general receptor for phosphoinositides, isoform 1 (GRP1). The findings show three previously undescribed features of GRP1 PH domain docking to membranes containing its rare target lipid, phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)]. First, analysis of surface diffusion kinetics on supported lipid bilayers shows that in the absence of other anionic lipids, the PI(3,4,5)P(3)-bound protein exhibits the same diffusion constant as a single lipid molecule. Second, the binding of the anionic lipid phosphatidylserine to a previously unidentified secondary binding site slows both diffusion and dissociation kinetics. Third, TIRFM enables direct observation of rare events in which dissociation from the membrane surface is followed by transient diffusion through solution and rapid rebinding to a nearby, membrane-associated target lipid. Overall, this study shows that in vitro single-molecule TIRFM provides a new window into the molecular mechanisms of membrane docking reactions.
Collapse
Affiliation(s)
- Jefferson D Knight
- Molecular Biophysics Program, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
28
|
Hammond GRV, Sim Y, Lagnado L, Irvine RF. Reversible binding and rapid diffusion of proteins in complex with inositol lipids serves to coordinate free movement with spatial information. ACTA ACUST UNITED AC 2009; 184:297-308. [PMID: 19153221 PMCID: PMC2654307 DOI: 10.1083/jcb.200809073] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polyphosphoinositol lipids convey spatial information partly by their interactions with cellular proteins within defined domains. However, these interactions are prevented when the lipids' head groups are masked by the recruitment of cytosolic effector proteins, whereas these effectors must also have sufficient mobility to maximize functional interactions. To investigate quantitatively how these conflicting functional needs are optimized, we used different fluorescence recovery after photobleaching techniques to investigate inositol lipid–effector protein kinetics in terms of the real-time dissociation from, and diffusion within, the plasma membrane. We find that the protein–lipid complexes retain a relatively rapid (∼0.1–1 µm2/s) diffusion coefficient in the membrane, likely dominated by protein–protein interactions, but the limited time scale (seconds) of these complexes, dictated principally by lipid–protein interactions, limits their range of action to a few microns. Moreover, our data reveal that GAP1IP4BP, a protein that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in vitro with similar affinity, is able to “read” PtdIns(3,4,5)P3 signals in terms of an elongated residence time at the membrane.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Pharmacology, University of Cambridge, Cambridge, England, UK.
| | | | | | | |
Collapse
|
29
|
Miyanaga Y, Matsuoka S, Ueda M. Single-molecule imaging techniques to visualize chemotactic signaling events on the membrane of living Dictyostelium cells. Methods Mol Biol 2009; 571:417-435. [PMID: 19763983 DOI: 10.1007/978-1-60761-198-1_28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this chapter, we describe methods to monitor signaling events at the single-molecule level on the membrane of living cells by using total internal reflection fluorescence microscopy (TIRFM). The techniques provide a powerful tool for elucidating the stochastic properties of signaling molecules involved in chemotaxis of the cellular slime mold Dictyostelium discoideum. Taking cAMP receptor 1 (cAR1) as an example of a target protein for single-molecule imaging, we describe the experimental setup of TIRFM, a method for labeling cAR1 with a fluorescent dye, and a method for investigating the receptor's lateral mobility. We discuss how the developmental progression of cells modulates both cAR1 behavior and the phenotypic variability in cAR1 mobility for different cell populations.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
30
|
Abstract
Imaging membrane dynamics is an important goal, motivated by the abundance of biochemical and biophysical events that are orchestrated at, or by, cellular membranes. The short length scales, fast timescales, and environmental requirements of membrane phenomena present challenges to imaging experiments. Several technical advances offer means to overcome these challenges, and we describe here three powerful techniques applicable to membrane imaging: total internal reflection fluorescence (TIRF) microscopy, fluorescence interference contrast (FLIC) microscopy, and fluorescence correlation spectroscopy (FCS). For each, we discuss the physics underpinning the approach, its practical implementation, and recent examples highlighting its achievements in exploring the membrane environment.
Collapse
Affiliation(s)
- Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
31
|
Heterodimerization of integrin Mac-1 subunits studied by single-molecule imaging. Biochem Biophys Res Commun 2008; 368:882-6. [DOI: 10.1016/j.bbrc.2008.01.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
|
32
|
Pincet F. Membrane recruitment of scaffold proteins drives specific signaling. PLoS One 2007; 2:e977. [PMID: 17912354 PMCID: PMC1991591 DOI: 10.1371/journal.pone.0000977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022] Open
Abstract
Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces Cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes.
Collapse
Affiliation(s)
- Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
33
|
Watt F. 2006 Winner: Satomi Matsuoka. J Cell Sci 2007. [DOI: 10.1242/jcs.120.9.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Miyanaga Y, Matsuoka S, Yanagida T, Ueda M. Stochastic signal inputs for chemotactic response in Dictyostelium cells revealed by single molecule imaging techniques. Biosystems 2006; 88:251-60. [PMID: 17184903 DOI: 10.1016/j.biosystems.2006.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 07/20/2006] [Indexed: 10/23/2022]
Abstract
Chemotactic cells can exhibit extreme sensitivity to chemical gradients. Theoretical estimations of the signal inputs required for chemotaxis suggest that the response can be achieved under the strong influence of stochastic input noise generated by the receptors during the transmembrane signaling. This arises a fundamental question regarding the mechanisms for directional sensing: how do cells obtain reliable information regarding gradient direction by using stochastically operating receptors and the downstream molecules? To address this question, we have developed single molecule imaging techniques to visualize signaling molecules responsible for chemotaxis in living Dictyostelium cells, allowing us to monitor the stochastic signaling processes directly. Single molecule imaging of a chemoattractant bound to a receptor demonstrates that signal inputs fluctuate with time and space. Downstream signaling molecules, such as PTEN and a PH domain-containing protein that are constituent parts of chemotactic signaling system, can also be followed at single molecule level in living cells, illuminating the stochastic nature of chemotactic signaling processes. In this report, we start with a brief introduction of chemotactic response of the eukaryotic cells, followed by an explanation for single molecule imaging techniques, and finally discuss these applications to chemotactic signaling system of Dictyostelium cells.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
35
|
Sato MJ, Ueda M, Takagi H, Watanabe TM, Yanagida T, Ueda M. Input-output relationship in galvanotactic response of Dictyostelium cells. Biosystems 2006; 88:261-72. [PMID: 17184899 DOI: 10.1016/j.biosystems.2006.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/30/2006] [Indexed: 11/25/2022]
Abstract
Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.
Collapse
Affiliation(s)
- Masayuki J Sato
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cell migration is an essential process during many phases of development and adult life. Cells can either migrate as individuals or move in the context of tissues. Movement is controlled by internal and external signals, which activate complex signal transduction cascades resulting in highly dynamic and localised remodelling of the cytoskeleton, cell-cell and cell-substrate interactions. To understand these processes, it will be necessary to identify the critical structural cytoskeletal components, their spatio-temporal dynamics as well as those of the signalling pathways that control them. Imaging plays an increasingly important and powerful role in the analysis of these spatio-temporal dynamics. We will highlight a variety of imaging techniques and their use in the investigation of various aspects of cell motility, and illustrate their role in the characterisation of chemotaxis in Dictyostelium and cell movement during gastrulation in chick embryos in more detail.
Collapse
Affiliation(s)
- Dirk Dormann
- Division of Cell and Developmental Biology, School of Life sciences, University of Dundee, Dundee, UK
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life sciences, University of Dundee, Dundee, UK
| |
Collapse
|
37
|
Charest PG, Firtel RA. Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 2006; 16:339-47. [PMID: 16806895 DOI: 10.1016/j.gde.2006.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/09/2006] [Indexed: 01/17/2023]
Abstract
Chemotactic cells translate shallow chemoattractant gradients into a highly polarized intracellular response that includes the localized production of PI(3,4,5)P(3) on the side of the cell facing the highest chemoattractant concentration. Research over the past decade began to uncover the molecular mechanisms involved in this localized signal amplification controlling the leading edge of chemotaxing cells. These mechanisms have been shown to involve multiple positive feedback loops, in which the PI(3,4,5)P(3) signal amplifies itself independently of the original stimulus, as well as inhibitory signals that restrict PI(3,4,5)P(3) to the leading edge, thereby creating a steep intracellular PI(3,4,5)P(3) gradient. Molecules involved in positive feedback signaling at the leading edge include the small G-proteins Rac and Ras, phosphatidylinositol-3 kinase and F-actin, as part of interlinked feedback loops that lead to a robust production of PI(3,4,5)P(3).
Collapse
Affiliation(s)
- Pascale G Charest
- Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|