1
|
Nakano Y, Johmura Y. Functional diversity of senescent cells in driving ageing phenotypes and facilitating tissue regeneration. J Biochem 2025; 177:189-195. [PMID: 39760855 DOI: 10.1093/jb/mvae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the ageing process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development and repair. This review provides a comprehensive examination of the dual nature of senescent cells, evaluating their deleterious contributions to chronic inflammation, tissue dysfunction and disease, as well as their beneficial roles in maintaining physiological homeostasis. Additionally, we explored the therapeutic potential of senolytic agents designed to selectively eliminate detrimental senescent cells while considering the delicate balance between transient and beneficial senescence and the persistence of pathological senescence. A deeper understanding of these dynamics is critical to develop novel interventions aimed at mitigating age-related dysfunctions and enhancing healthy life expectancies.
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
- Integrated Systems of Aging Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
- Integrated Systems of Aging Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| |
Collapse
|
2
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 471] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. J Anat 2022; 241:42-66. [PMID: 35146756 PMCID: PMC9178385 DOI: 10.1111/joa.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
The core cell cycle machinery is conserved from yeast to humans, and hence it is assumed that all vertebrates share the same set of players. Yet during vertebrate evolution, the genome was duplicated twice, followed by a further genome duplication in teleost fish. Thereafter, distinct genes were retained in different vertebrate lineages; some individual gene duplications also occurred. To which extent these diversifying tendencies were compensated by retaining the same expression patterns across homologous genes is not known. This study for the first time undertook a comprehensive expression analysis for the core cell cycle regulators in the chicken, focusing in on early neurula and pharyngula stages of development, with the latter representing the vertebrate phylotypic stage. We also compared our data with published data for the mouse, Xenopus and zebrafish, the other established vertebrate models. Our work shows that, while many genes are expressed widely, some are upregulated or specifically expressed in defined tissues of the chicken embryo, forming novel synexpression groups with markers for distinct developmental pathways. Moreover, we found that in the neural tube and in the somite, mRNAs of some of the genes investigated accumulate in a specific subcellular localisation, pointing at a novel link between the site of mRNA translation, cell cycle control and interkinetic nuclear movements. Finally, we show that expression patterns of orthologous genes may differ in the four vertebrate models. Thus, for any study investigating cell proliferation, cell differentiation, tissue regeneration, stem cell behaviour and cancer/cancer therapy, it has to be carefully examined which of the observed effects are due to the specific model organism used, and which can be generalised.
Collapse
Affiliation(s)
- Marta Alaiz Noya
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Neurociencias de Alicante, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Life Sciences Solutions, Thermo Fisher Scientific, Monza, Italy
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
6
|
Da Silva-Álvarez S, Picallos-Rabina P, Antelo-Iglesias L, Triana-Martínez F, Barreiro-Iglesias A, Sánchez L, Collado M. The development of cell senescence. Exp Gerontol 2019; 128:110742. [DOI: 10.1016/j.exger.2019.110742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023]
|
7
|
Dai L, Qureshi AR, Witasp A, Lindholm B, Stenvinkel P. Early Vascular Ageing and Cellular Senescence in Chronic Kidney Disease. Comput Struct Biotechnol J 2019; 17:721-729. [PMID: 31303976 PMCID: PMC6603301 DOI: 10.1016/j.csbj.2019.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical model of premature ageing characterized by progressive vascular disease, systemic inflammation, muscle wasting and frailty. The predominant early vascular ageing (EVA) process mediated by medial vascular calcification (VC) results in a marked discrepancy between chronological and biological vascular age in CKD. Though the exact underlying mechanisms of VC and EVA are not fully elucidated, accumulating evidence indicates that cellular senescence - and subsequent chronic inflammation through the senescence-associated secretary phenotype (SASP) - plays a fundamental role in its initiation and progression. In this review, we discuss the pathophysiological links between senescence and the EVA process in CKD, with focus on cellular senescence and media VC, and potential anti-ageing therapeutic strategies of senolytic drugs targeting cellular senescence and EVA in CKD.
Collapse
Affiliation(s)
| | | | | | | | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|
8
|
Feng L, Chen L, Yun J, Bi Z, Tang Y, Wu P, Hou J. Immortalization of chicken embryonic liver-derived cell line by stable expression of hMRP18S-2 for serotype 4 fowl adenovirus propagation. Biologicals 2018; 54:50-57. [PMID: 29752158 DOI: 10.1016/j.biologicals.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/25/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022] Open
Abstract
Inclusion body hepatitis and hydropericardium-hepatitis syndrome caused by serotype 4 fowl adenovirus (FAdV-4) have emerged in China since 2013. FAdV is usually propagated in primary chicken embryonic liver cells or embryo yolk sac. The aim of this work was to develop an immortalized CEL cell line by stable expression of human mitochondrial ribosomal protein 18S-2, named CEL-hMRP18S-2 cells, for the propagation of FAdV-4. The maximum cell density of CEL-hMRP18S-2 cells could reach 2.65 × 106 cells/ml in four-days culture. According to the mRNA levels of cell-cycle related genes in CEL-hMRP18S-2 cells tested by qRT-PCR, we speculated that the transformation of hMRP18S-2 into CEL cells caused the functional inactivation of p53 and the significant down-regulation of p15INK4b might cause the hyperphosphorylated form of Rb, releasing E2F-1 factor and enhancing the E2F-dependent transcription for cell cycle progression. It was suspected that the up-regulated c-Myc mRNA level at the initial period of immortalization might prompt transformed cells through the G0-G1 checkpoint. The normal CPE was observed in CEL-hMRP18S-2 cells infected by FAdV-4 and microcarrier suspension culture performed for FAdV-4 propagation with 9.0 lgTCID50/ml suggested that CEL-hMRP18S-2 cells could be a useful continuous cell line for isolation of wild FAdV and production of FAdV-inactivated vaccine.
Collapse
Affiliation(s)
- Lei Feng
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Li Chen
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junwen Yun
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixiang Bi
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yinghua Tang
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Peipei Wu
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jibo Hou
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
9
|
Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 2016; 13:77-89. [DOI: 10.1038/nrneph.2016.183] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wan Z, Lu Y, Rui L, Yu X, Li Z. PRDM1 overexpression induce G0/G1 arrest in DF-1 cell line. Gene 2016; 592:119-127. [PMID: 27474451 DOI: 10.1016/j.gene.2016.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
PRDM1 (PR domain containing 1) is a transcriptional repressor that affects the expression of numerous genes involved in cell proliferation, differentiation and metabolism. However, the molecular mechanisms underlying PRDM1-regulated gene expression in the DF-1 cell line remain to be elucidated. In this study, we explored the role of PRDM1 in cell proliferation and cell cycle by forced expression of PRDM1 in DF-1 cells. Our results showed an absence of endogenous PRDM1 in this cell line, while exogenous PRDM1 was specifically localized to the nucleus. Ectopic expression of PRDM1 inhibited DF-1 cell proliferation and altered clonal morphology. Furthermore, PRDM1 overexpression caused an increase in the G0/G1 phase population. The levels of p53 mRNA and the p53-regulated p21(WAF1) and MDM2 genes were significantly increased in DF-1 cells transfected with the PRDM1 expression vector. Examination of the Rb pathway further revealed that Rb, E2F-1 and p15(INK4b) alternate reading frame (ARF) mRNA were also significantly increased after transient transfection. Interestingly, the mRNA expression levels of multiple chicken cyclin genes were also increased. These results show that PRDM1 overexpression induced G0/G1 arrest in DF-1 cells through multiple parallel mechanisms, including the p53 and Rb pathways.
Collapse
Affiliation(s)
- Zhiyi Wan
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yanan Lu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lei Rui
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoxue Yu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zandong Li
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
11
|
Wu CW, Storey KB. Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle 2014; 11:1714-26. [DOI: 10.4161/cc.19799] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155:1119-30. [PMID: 24238961 DOI: 10.1016/j.cell.2013.10.041] [Citation(s) in RCA: 862] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/20/2013] [Accepted: 10/15/2013] [Indexed: 12/26/2022]
Abstract
Senescence is a form of cell-cycle arrest linked to tumor suppression and aging. However, it remains controversial and has not been documented in nonpathologic states. Here we describe senescence as a normal developmental mechanism found throughout the embryo, including the apical ectodermal ridge (AER) and the neural roof plate, two signaling centers in embryonic patterning. Embryonic senescent cells are nonproliferative and share features with oncogene-induced senescence (OIS), including expression of p21, p15, and mediators of the senescence-associated secretory phenotype (SASP). Interestingly, mice deficient in p21 have defects in embryonic senescence, AER maintenance, and patterning. Surprisingly, the underlying mesenchyme was identified as a source for senescence instruction in the AER, whereas the ultimate fate of these senescent cells is apoptosis and macrophage-mediated clearance. We propose that senescence is a normal programmed mechanism that plays instructive roles in development, and that OIS is an evolutionarily adapted reactivation of a developmental process.
Collapse
Affiliation(s)
- Mekayla Storer
- Centre for Genomic Regulation (CRG) and UPF, Barcelona 08003, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kong BW, Lee JY, Bottje WG, Lassiter K, Lee J, Foster DN. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line. BMC Genomics 2011; 12:571. [PMID: 22111699 PMCID: PMC3258366 DOI: 10.1186/1471-2164-12-571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. RESULTS A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. CONCLUSIONS The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Hellström AR, Sundström E, Gunnarsson U, Bed’Hom B, Tixier-Boichard M, Honaker CF, Sahlqvist AS, Jensen P, Kämpe O, Siegel PB, Kerje S, Andersson L. Sex-linked barring in chickens is controlled by the CDKN2A /B tumour suppressor locus. Pigment Cell Melanoma Res 2010; 23:521-30. [DOI: 10.1111/j.1755-148x.2010.00700.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
How to learn new and interesting things from model systems based on "exotic" biological species. Proc Natl Acad Sci U S A 2009; 106:19207-8. [PMID: 19906993 DOI: 10.1073/pnas.0911232106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Dorshorst BJ, Ashwell CM. Genetic mapping of the sex-linked barring gene in the chicken. Poult Sci 2009; 88:1811-7. [PMID: 19687264 DOI: 10.3382/ps.2009-00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The sex-linked barring gene of the chicken (Gallus gallus), first identified in 1908, produces an alternating pattern of white and black bars in the adult plumage. More recent studies have shown that melanocytes in the developing feather follicle of the Barred Plymouth Rock experience premature cell death, whereas initially it was thought that melanocytes remained viable in the region of the feather devoid of pigmentation but were simply inhibited from synthesizing melanin. In an attempt to reconcile these 2 different hypotheses at the molecular level, we have taken a gene mapping approach to isolate the sex-linked barring gene variant. We developed a mapping population consisting of 71 F2 chickens from crossing a single Barred Plymouth Rock female with a White Crested Black Polish male. Existing and novel microsatellite markers located on the chicken chromosome Z were used to genotype all individuals in our mapping population. Single marker association analysis revealed a 2.8-Mb region of the distal q arm of chicken chromosome Z to be significantly associated with the barring phenotype (P<0.001). Further analysis suggests that the causal mutation is located within a 355-kb region showing complete association with the barring phenotype and containing 5 known genes [micro-RNA 31 (miRNA-31), methylthioadenosine phosphorylase (MTAP), cyclin-dependent kinase inhibitor 2B (CDKN2B), tripartite motif 36 (TRIM36), and protein geranylgeranyltransferase type I, beta subunit (PGGT1B)], none of which have a defined role in normal melanocyte function. Although several of these genes or their homologs are known to be involved in processes that could potentially explain the barring phenotype, our results indicate that further work directed at fine-mapping this region is necessary to identify this novel mechanism of melanocyte regulation.
Collapse
Affiliation(s)
- B J Dorshorst
- Department of Poultry Science, North Carolina State University, Raleigh 27695, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- Gordon Peters
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A3PX, UK.
| |
Collapse
|
18
|
Peters G. Tumor Suppression for ARFicionados: The Relative Contributions of p16INK4a and p14ARF in Melanoma. J Natl Cancer Inst 2008; 100:757-9. [DOI: 10.1093/jnci/djn156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
19
|
Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 2008; 135:579-88. [PMID: 18192284 DOI: 10.1242/dev.007047] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Overexpression of zinc finger E-box binding homeobox transcription factor 1 (Zeb1) in cancer leads to epithelial-to-mesenchymal transition (EMT) and increased metastasis. As opposed to overexpression, we show that mutation of Zeb1 in mice causes a mesenchymal-epithelial transition in gene expression characterized by ectopic expression of epithelial genes such as E-cadherin and loss of expression of mesenchymal genes such as vimentin. In contrast to rapid proliferation in cancer cells where Zeb1 is overexpressed, this mesenchymal-epithelial transition in mutant mice is associated with diminished proliferation of progenitor cells at sites of developmental defects, including the forming palate, skeleton and CNS. Zeb1 dosage-dependent deregulation of epithelial and mesenchymal genes extends to mouse embryonic fibroblasts (MEFs), and mutant MEFs also display diminished replicative capacity in culture, leading to premature senescence. Replicative senescence in MEFs is classically triggered by products of the Ink4a (Cdkn2a) gene. However, this Ink4a pathway is not activated during senescence of Zeb1 mutant MEFs. Instead, there is ectopic expression of two other cell cycle inhibitory cyclin-dependent kinase inhibitors, p15Ink4b (Cdkn2b) and p21Cdkn1a (Cdkn1a). We demonstrate that this ectopic expression of p15Ink4b extends in vivo to sites of diminished progenitor cell proliferation and developmental defects in Zeb1-null mice.
Collapse
Affiliation(s)
- Yongqing Liu
- James Graham Brown Cancer Center, Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
20
|
Bennett DC. REVIEW ARTICLE: How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 2007; 21:27-38. [DOI: 10.1111/j.1755-148x.2007.00433.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Moulin S, Llanos S, Kim SH, Peters G. Binding to nucleophosmin determines the localization of human and chicken ARF but not its impact on p53. Oncogene 2007; 27:2382-9. [PMID: 17968318 DOI: 10.1038/sj.onc.1210887] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ARF tumour suppressor gene encodes a small highly basic protein whose known functions are largely determined by the amino acids encoded within the first exon. In mammals, the protein incorporates additional residues specified by an alternative reading frame in the second exon of INK4a, but this arrangement does not apply to the chicken homologue. In exploring the intracellular localization of chicken p7(ARF), we found that while the FLAG- and HA-tagged versions localize in the nucleolus, in line with mammalian ARF, the GFP-tagged version is excluded from the nucleolus. Here we show that irrespective of the source or composition of the ARF fusion proteins, versions that accumulate in the nucleolus share the ability to bind to nucleophosmin (NPM). Depletion of NPM with siRNA results in the re-location and destabilization of nucleolar forms of ARF but has little effect on the location or stability of a nucleoplasmic form of ARF. Importantly, knockdown of endogenous NPM does not impair the ability of ARF to bind to MDM2 and stabilize p53. These findings support the view that nucleolar localization determines the stability of ARF but not its primary function.
Collapse
Affiliation(s)
- S Moulin
- Cancer Research UK, London Research Institute, London, UK
| | | | | | | |
Collapse
|
22
|
Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 2006; 7:667-77. [PMID: 16921403 DOI: 10.1038/nrm1987] [Citation(s) in RCA: 632] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INK4b-ARF-INK4a locus encodes two members of the INK4 family of cyclin-dependent kinase inhibitors, p15(INK4b) and p16(INK4a), and a completely unrelated protein, known as ARF. All three products participate in major tumour suppressor networks that are disabled in human cancer and influence key physiological processes such as replicative senescence, apoptosis and stem-cell self-renewal. Transcription from the locus is therefore kept under strict control. Mounting evidence suggests that although the individual genes can respond independently to positive and negative signals in different contexts, the entire locus might be coordinately suppressed by a cis-acting regulatory domain or by the action of Polycomb group repressor complexes.
Collapse
Affiliation(s)
- Jesús Gil
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London W12 0NN, UK
| | | |
Collapse
|
23
|
Christman SA, Kong BW, Landry MM, Kim H, Foster DN. Contributions of differential p53 expression in the spontaneous immortalization of a chicken embryo fibroblast cell line. BMC Cell Biol 2006; 7:27. [PMID: 16813656 PMCID: PMC1533818 DOI: 10.1186/1471-2121-7-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 06/30/2006] [Indexed: 12/30/2022] Open
Abstract
Background The present study was carried out to determine whether the p53 pathway played a role in the spontaneous immortalization of the SC-2 chicken embryo fibroblast (CEF) cell line that has been in continuous culture for over three years. Results The SC-2 cell line emerged from an extended crisis period with a considerably slower growth rate than primary CEF cells. The phenotype of the SC-2 cells changed dramatically at about passage 80, appearing smaller than at earlier passages (e.g., passage 43) and possessing a small, compact morphology. This morphological change coincided with an increase in growth rate. Passage 43 SC-2 cells expressed undetectable levels of p53 mRNA, but by passage 95, the levels were elevated compared to primary passage 6 CEF cells and similar to levels in senescent CEF cells. However, the high level of p53 mRNA detected in passage 95 SC-2 cells did not correlate to functional protein activity. The expression levels of the p53-regulated p21WAF1 gene were significantly decreased in all SC-2 passages that were analyzed. Examination of the Rb pathway revealed that E2F-1 and p15INK4b expression fluctuated with increasing passages, with levels higher in passage 95 SC-2 cells compared to primary passage 6 CEF cells. Conclusion The present study suggests that altered expression of genes involved in the p53 and Rb pathways, specifically, p53 and p21WAF1, may have contributed to the immortalization of the SC-2 CEF cell line.
Collapse
Affiliation(s)
- Shelly A Christman
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Byung-Whi Kong
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Megan M Landry
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Hyunggee Kim
- Division of Biosciences and Technology, Korea University, Seoul, 136–701, Korea
| | - Douglas N Foster
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|