1
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
3
|
Dhandare BC, Rather MA, Bhosale BP, Pawar R, Guttula PK, Pagarkar AU. Molecular modeling, docking and dynamic simulations of growth hormone receptor (GHR) of Labeo rohita. J Biomol Struct Dyn 2020; 40:3024-3037. [PMID: 33179589 DOI: 10.1080/07391102.2020.1844063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Growth hormones (GH) have diverse functions like growth promotion, metabolism, appetite, reproduction and social behavior in vertebrates, which is mediated through the growth hormone receptor (GHR). This work was aimed to analyze structural features, homology modeling and molecular docking of Labeo rohita GHR protein. A physicochemical characteristic, like molecular weight was 67.2 kDa and hydropathicity was 0.336. Protein modeling and structure confirmation of L. rohita GHR protein showed 92.7% residues are in the favored region. Selection of ligands and molecular docking shown Melengestrol and Riboflavin ligand showed uppermost binding energy values -7.8 and -7.3 kcal/mol. Molecular interactions describe conventional hydrogen bonding of Melengestrol was observed with VAL94, GLU97, GLU95, TRP57, PHE33, THR34, PRO35, ASP36, PRO37, ARG49, GLY292, LYS291, ILE290, ALA287, LYS289 residues. Riboflavin hydrogen bonds interaction was at PRO37, ASP36, PRO35, THR34, ARG49, SER144, VAL443, GLN442, PRO284, ASP294, ILE285, PRO286, SER408, ALA287, GLY292, LYS291, ILE290, PRO288, LYS287. Molecular dynamics simulation outcomes revealed that complex 2 (Riboflavin and GHR protein) is better than complex1 (Melengestrol and GHR protein). Overall, the results of the present work lead identification of novel molecules that may be agonistic of growth hormone receptor protein and can be used to surge growth in fish. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhushan C Dhandare
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil-Gandarbal, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKAUST-K), India
| | - B P Bhosale
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | - Ravindra Pawar
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | | | - A U Pagarkar
- Marine Biological Research Station (MBRS), Ratnagiri, Maharashtra, India
| |
Collapse
|
4
|
Amenyogbe E, Chen G, Wang Z. Identification, characterization, and expressions profile analysis of growth hormone receptors (GHR1 and GHR2) in Hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus polyphekadion ♂). Genomics 2019; 112:1-9. [PMID: 31121246 DOI: 10.1016/j.ygeno.2019.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Growth hormone is an essential hormone that plays essential roles in growth, metabolism, cellular differentiation, immunity and reproduction in fish, by means of the growth hormone receptors. The encoding cDNA growth hormone receptors (GHR1 and GHR2) were cloned and characterized from Hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Sequence analysis of the cloned GHR1 was observed as containing 2176, which comprised an ORF of 1842 bp, 5 UTR of 6 bp and 3 UTR of 328 bp, with 612 amino acids encoding proteins, while GHR2 was observed as containing 1824 bp that encompassed an ORF of 708 bp, 5 UTR of 48 bp and 3 UTR of 1068 bp with 235 amino acids encoding proteins. Relative mRNA expression of GHR1 and GHR2 in the liver and muscle was found to be highest respectively. Our findings provide vital statistics of GHRs likely to play a significant role in the growth of the fish.
Collapse
Affiliation(s)
- Eric Amenyogbe
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China.
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China
| |
Collapse
|
5
|
Ocłoń E, Solomon G, Hayouka Z, Gertler A. Preparation of biologically active monomeric recombinant zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) recombinant growth hormones. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1215-1222. [PMID: 29777415 DOI: 10.1007/s10695-018-0512-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Fish growth hormones (GHs) play an important role in regulating growth, metabolism, reproduction, osmoregulation, and immunity and have thus garnered attention for their application in aquaculture. Zebrafish GH (zGH) cDNA or rainbow trout GH (rtGH) cDNA was cloned into the pMon3401 vector, expressed in MON105-competent Escherichia coli and purified to homogeneity. Their biological activity was evidenced by their ability to interact with ovine GH receptor extracellular domain and stimulate GH receptor-mediated proliferation in FDC-P1-3B9 cells stably transfected with rabbit GH receptor. The relative affinity of zGH and rtGH, estimated by IC50, was about 38-fold and 512-fold lower, respectively, than ovine GH. This is likely the reason for the low biological activity in cells with rabbit GH receptor, ~ 36-fold lower for zGH and ~ 107-fold lower for rtGH than for human GH. This was not due to improper refolding, as evidenced by circular dichroism analysis. Predicting the activity of fish GHs is problematic as there is no one single optimal in vitro bioassay; heterologous assays may be ambiguous, and only homologous assays are suitable for measuring activity.
Collapse
Affiliation(s)
- Ewa Ocłoń
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Animal Physiology and Endocrinology, The University of Agriculture in Krakow, Krakow, Poland
| | - Gili Solomon
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Zvi Hayouka
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Arieh Gertler
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
6
|
Dames SA. One short cysteine-rich sequence pattern - two different disulfide-bonded structures - a molecular dynamics simulation study. J Pept Sci 2015; 21:480-94. [PMID: 25781269 DOI: 10.1002/psc.2765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Abstract
The nematocyst walls of Hydra are formed by proteins containing small cysteine-rich domains (CRDs) of ~25 amino acids. The first CRD of nematocyst outer all antigen (NW1) and the C-terminal CRD of minicollagen-1 (Mcol1C) contain six cysteines at identical sequence positions, however adopt different disulfide bonded structures. NW1 shows the disulfide connectivities C2-C14/C6-C19/C10-C18 and Mcol1C C2-C18/C6-C14/C10-C19. To analyze if both show structural preferences in the open, non-disulfide bonded form, which explain the formation of either disulfide connectivity pattern, molecular dynamics (MD) simulations at different temperatures were performed. NW1 maintained in the 100-ns MD simulations at 283 K a rather compact fold that is stabilized by specific hydrogen bonds. The Mcol1C structure fluctuated overall more, however stayed most of the time also rather compact. The analysis of the backbone Φ/ψ angles indicated different turn propensities for NW1 and Mcol1C, which mostly can be explained based on published data about the influence of different amino acid side chains on the local backbone conformation. Whereas a folded precursor mechanism may be considered for NW1, Mcol1C may fold according to the quasi-stochastic folding model involving disulfide bond reshuffling and conformational changes, locking the native disulfide conformations. The study further demonstrates the power of MD simulations to detect local structural preferences in rather dynamic systems such as the open, non-disulfide bonded forms of NW1 and Mcol1C, which complement published information from NMR backbone residual dipolar couplings. Because the backbone structural preferences encoded by the amino acid sequence embedding the cysteines influence which disulfide connectivities are formed, the data are generally interesting for a better understanding of oxidative folding and the design of disulfide stabilized therapeutics.
Collapse
Affiliation(s)
- Sonja A Dames
- Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, 85747, Garching, Germany.,Helmholtz Zentrum München, Germany and Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
7
|
Huang Y, Chang Y. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:321-49. [PMID: 24373242 DOI: 10.1016/b978-0-12-800101-1.00010-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.
Collapse
Affiliation(s)
- Yao Huang
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Yongchang Chang
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Sedek M, van der Velden LM, Strous GJ. Multimeric growth hormone receptor complexes serve as signaling platforms. J Biol Chem 2013; 289:65-73. [PMID: 24280222 DOI: 10.1074/jbc.m113.523373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) signaling is required for promoting longitudinal body growth, stem cell activation, differentiation, and survival and for regulation of metabolism. Failure to adequately regulate GH signaling leads to disease: excessive GH signaling has been connected to cancer, and GH insensitivity has been reported in cachexia patients. Since its discovery in 1989, the receptor has served a pivotal role as the prototype cytokine receptor both structurally and functionally. Phosphorylation and ubiquitylation regulate the GH receptor (GHR) at the cell surface: two ubiquitin ligases (SCF(βTrCP2) and CHIP) determine the GH responsiveness of cells by controlling its endocytosis, whereas JAK2 initiates the JAK/STAT pathway. We used blue native electrophoresis to identify phosphorylated and ubiquitylated receptor intermediates. We show that GHRs occur as ∼500-kDa complexes that dimerize into active ∼900-kDa complexes upon GH binding. The dimerized complexes act as platforms for transient interaction with JAK2 and ubiquitin ligases. If GH and receptors are made in the same cell (autocrine mode), only limited numbers of ∼900-kDa complexes are formed. The experiments reveal the dynamic changes in post-translational modifications during GH-induced signaling events and show that relatively simple cytokine receptors like GHRs are able to form higher order protein complexes. Insight in the complex formation of cytokine receptors is crucially important for engineering cytokines that control ligand-induced cell responses and for generating a new class of therapeutic agents for a wide range of diseases.
Collapse
Affiliation(s)
- Magdalena Sedek
- From the Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
9
|
Tsai TC, Lu JK, Choo SL, Yeh SY, Tang RB, Lee HY, Lu JH. The paracrine effect of exogenous growth hormone alleviates dysmorphogenesis caused by tbx5 deficiency in zebrafish (Danio rerio) embryos. J Biomed Sci 2012; 19:63. [PMID: 22776023 PMCID: PMC3407474 DOI: 10.1186/1423-0127-19-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/09/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dysmorphogenesis and multiple organ defects are well known in zebrafish (Danio rerio) embryos with T-box transcription factor 5 (tbx5) deficiencies, mimicking human Holt-Oram syndrome. METHODS Using an oligonucleotide-based microarray analysis to study the expression of special genes in tbx5 morphants, we demonstrated that GH and some GH-related genes were markedly downregulated. Zebrafish embryos microinjected with tbx5-morpholino (MO) antisense RNA and mismatched antisense RNA in the 1-cell stage served as controls, while zebrafish embryos co-injected with exogenous growth hormone (GH) concomitant with tbx5-MO comprised the treatment group. RESULTS The attenuating effects of GH in tbx5-MO knockdown embryos were quantified and observed at 24, 30, 48, 72, and 96 h post-fertilization. Though the understanding of mechanisms involving GH in the tbx5 functioning complex is limited, exogenous GH supplied to tbx5 knockdown zebrafish embryos is able to enhance the expression of downstream mediators in the GH and insulin-like growth factor (IGF)-1 pathway, including igf1, ghra, and ghrb, and signal transductors (erk1, akt2), and eventually to correct dysmorphogenesis in various organs including the heart and pectoral fins. Supplementary GH also reduced apoptosis as determined by a TUNEL assay and decreased the expression of apoptosis-related genes and proteins (bcl2 and bad) according to semiquantitative reverse-transcription polymerase chain reaction and immunohistochemical analysis, respectively, as well as improving cell cycle-related genes (p27 and cdk2) and cardiomyogenetic genes (amhc, vmhc, and cmlc2). CONCLUSIONS Based on our results, tbx5 knockdown causes a pseudo GH deficiency in zebrafish during early embryonic stages, and supplementation of exogenous GH can partially restore dysmorphogenesis, apoptosis, cell growth inhibition, and abnormal cardiomyogenesis in tbx5 knockdown zebrafish in a paracrine manner.
Collapse
Affiliation(s)
- Tzu-Chun Tsai
- Department of Medical Research and Education, National Yang-Ming University Hospital, Yilan, Taiwan, Republic of China
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Jen-Kann Lu
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Sie-Lin Choo
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Shu-Yu Yeh
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Ren-Bing Tang
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Hsin-Yu Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jen-Her Lu
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
10
|
Slotman JA, da Silva Almeida AC, Hassink GC, van de Ven RHA, van Kerkhof P, Kuiken HJ, Strous GJ. Ubc13 and COOH terminus of Hsp70-interacting protein (CHIP) are required for growth hormone receptor endocytosis. J Biol Chem 2012; 287:15533-43. [PMID: 22433856 DOI: 10.1074/jbc.m111.302521] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCF(βTrCP) (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCF(βTrCP)-directed Lys(48) polyubiquitination. We now show that also Lys(63)-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR.
Collapse
Affiliation(s)
- Johan A Slotman
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Ma F, Wei Z, Shi C, Gan Y, Lu J, Frank SJ, Balducci J, Huang Y. Signaling cross talk between growth hormone (GH) and insulin-like growth factor-I (IGF-I) in pancreatic islet β-cells. Mol Endocrinol 2011; 25:2119-33. [PMID: 22034225 DOI: 10.1210/me.2011-1052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dysfunction and destruction of pancreatic islet β-cells is a hallmark of diabetes. Better understanding of cell signals regulating β-cell growth and antiapoptosis will allow development of therapeutic strategies for diabetes by preservation and expansion of β-cell mass. GH and IGF-I share a complicated physiological relationship and have both been implicated in β-cell function. GH and IGF-I exert their biological effects through binding to respective receptors (GHR and IGF-IR) and subsequently engaging downstream signaling pathways. However, their collaborative roles in modulation of β-cell mass and the underlying molecular mechanisms remain poorly understood. In this study, we demonstrate that cultured β-cells are appealing systems for investigating potential GH-IGF-I signaling cross talk. We uncover that GH specifically promotes formation of a protein complex containing GHR, Janus kinase 2 (a nonreceptor kinase coupled to GH/GHR signaling), and IGF-IR. More importantly, GH and IGF-I synergistically activate both signal transducer and activator of transcription 5 and Akt pathways. Concomitantly, β-cells proliferate more robustly and are better protected from serum deprivation-induced apoptosis when exposed to GH and IGF-I in combination vs. GH or IGF-I alone. The augmented proliferative effects by GH and IGF-I are confirmed in isolated islets. Taken together, our findings strongly suggest that there exists a novel signaling relationship between GH/GHR and IGF-I/IGF-IR systems in β-cells, i.e. IGF-IR may serve as a proximal component of GH/GHR signaling, contributing to enhancement of β-cell mass and function. In support of this, IGF-IR knockdown in β-cells resulted in the desensitization of acute GH-induced signal transducer and activator of transcription 5 activation.
Collapse
Affiliation(s)
- Fanxin Ma
- Laboratory of Signal Transduction, Department of Obstetrics and Gynecology, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli. BMC Microbiol 2011; 11:74. [PMID: 21486484 PMCID: PMC3096576 DOI: 10.1186/1471-2180-11-74] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/12/2011] [Indexed: 01/13/2023] Open
Abstract
Background In an acidic and lysine-rich environment Escherichia coli induces expression of the cadBA operon which encodes CadA, the lysine decarboxylase, and CadB, the lysine/cadaverine antiporter. cadBA expression is dependent on CadC, a membrane-integrated transcriptional activator which belongs to the ToxR-like protein family. Activation of CadC requires two stimuli, lysine and low pH. Whereas lysine is detected by an interplay between CadC and the lysine-specific transporter LysP, pH alterations are sensed by CadC directly. Crystal structural analyses revealed a close proximity between two periplasmic cysteines, Cys208 and Cys272. Results Substitution of Cys208 and/or Cys272 by alanine resulted in CadC derivatives that were active in response to only one stimulus, either lysine or pH 5.8. Differential in vivo thiol trapping revealed a disulfide bond between these two residues at pH 7.6, but not at pH 5.8. When Cys208 and Cys272 were replaced by aspartate and lysine, respectively, virtually wild-type behavior was restored indicating that the disulfide bond could be mimicked by a salt bridge. Conclusion A disulfide bond was found in the periplasmic domain of CadC that supports an inactive state of CadC at pH 7.6. At pH 5.8 disulfide bond formation is prevented which transforms CadC into a semi-active state. These results provide new insights into the function of a pH sensor.
Collapse
|
13
|
Putters J, Slotman JA, Gerlach JP, Strous GJ. Specificity, location and function of βTrCP isoforms and their splice variants. Cell Signal 2011; 23:641-7. [DOI: 10.1016/j.cellsig.2010.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/25/2010] [Indexed: 11/25/2022]
|
14
|
Di Prinzio CM, Botta PE, Barriga EH, Ríos EA, Reyes AE, Arranz SE. Growth hormone receptors in zebrafish (Danio rerio): adult and embryonic expression patterns. Gene Expr Patterns 2010; 10:214-25. [PMID: 20230916 DOI: 10.1016/j.gep.2010.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 03/04/2010] [Accepted: 03/07/2010] [Indexed: 12/01/2022]
Abstract
Growth hormone receptor (GHR) is a critical regulator of growth and metabolism. Although two GHRs have been characterized in many fish species, their functional characteristics, mechanisms of regulation and roles in embryonic development remain unclear. The zebrafish (Danio rerio) is an excellent model organism to study both developmental and physiological processes. In the present work, we characterized the complete cDNA sequences of zebrafish GHRs, ghra and ghrb, and their gene structures. We studied the expression of both receptors in adult tissues, and during embryonic development and larval stages by means of RT-PCR and whole-mount in situ hybridization. We determined that both transcripts are maternal ones, with specific expression patterns during development. Both GHR transcripts are mainly expressed in the notochord, myotomes, anterior structures and in the yolk cell. Interestingly, their expression became undetectable at 96h post-fertilization. Unlike other reports in fish, ghrs expression could not be detected in brain when adult tissues were used, and we detected ghrb but not ghra transcripts in muscle. In addition, we determined alternative transcript sequences for ghra with specific domain deletions, and alternative transcripts for ghrb that generate a premature stop codon and codify for truncated isoforms. These isoforms lack intracellular regions necessary for the activation of signal transducers and activators of transcription (STAT) family transcription factors 5.
Collapse
Affiliation(s)
- Cecilia M Di Prinzio
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET/UNR), Area Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Frank SJ, Fuchs SY. Modulation of growth hormone receptor abundance and function: roles for the ubiquitin-proteasome system. Biochim Biophys Acta Mol Basis Dis 2008; 1782:785-94. [PMID: 18586085 DOI: 10.1016/j.bbadis.2008.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 05/27/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
Abstract
Growth hormone plays an important role in regulating numerous functions in vertebrates. Several pathways that negatively regulate the magnitude and duration of its signaling (including expression of tyrosine phosphatases, SOCS and PIAS proteins) are shared between signaling induced by growth hormone itself and by other cytokines. Here we overview downregulation of the growth hormone receptor as the most specific and potent mechanism of restricting cellular responses to growth hormone and analyze the role of several proteolytic systems and, specifically, ubiquitin-dependent pathways in this regulation.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA.
| | | |
Collapse
|
16
|
Fang P, Girgis R, Little BM, Pratt KL, Guevara-Aguirre J, Hwa V, Rosenfeld RG. Growth hormone (GH) insensitivity and insulin-like growth factor-I deficiency in Inuit subjects and an Ecuadorian cohort: functional studies of two codon 180 GH receptor gene mutations. J Clin Endocrinol Metab 2008; 93:1030-7. [PMID: 18073295 DOI: 10.1210/jc.2007-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
CONTEXT Among more than 250 cases of GH insensitivity syndrome (GHIS) reported to date, the largest cohort was identified in southern Ecuador. In the Ecuadorian GHIS cohort, a sense mutation (GAA>GAG) at codon E180 of GH receptor [GHR (E180sp)] results in deletion of codons 181-188. No functional studies of this mutation have been performed, nor have different mutations at codon 180 been reported. OBJECTIVE We now report identification of a novel GHR mutation, also within codon E180, in two distantly related GHIS subjects of Inuit origin and provide mechanistic insights into the defects caused by the Inuit and Ecuadorian GHR mutations. PATIENTS The two Inuit subjects, with heights of -5 sd score and -7 sd score, respectively, had elevated circulating levels of GH but low levels of GH-binding protein, IGF-I, and IGF-binding protein-3. RESULTS Both Inuit subjects carry the same novel nonsense homozygous GHR mutation at codon E180 (GAA->TAA, E180X). In vitro reconstitution experiments demonstrated that GHR (E180sp), but not GHR (E180X), could be stably expressed. GHR (E180sp), however, could not bind GH and could neither activate signal transducer and activator of transcription-5b nor induce -5b-dependent gene expression on GH treatment. Furthermore, the GHR (E180sp), which has a deletion of eight amino acid residues within the GHR dimerization domain, although retaining the ability to homodimerize, was defective in trafficking to the cell surface. CONCLUSIONS The E180X mutation identified in two Inuit patients resulted in a truncated, unstably expressed GHR variant, whereas the E180 splicing mutation previously identified in the Ecuadorian cohort, affected both GH binding and GHR trafficking and rendered the abnormal GHR nonfunctional.
Collapse
Affiliation(s)
- Peng Fang
- Department of Pediatrics, NRC5, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
van den Eijnden MJ, Strous GJ. Autocrine growth hormone: effects on growth hormone receptor trafficking and signaling. Mol Endocrinol 2007; 21:2832-46. [PMID: 17666586 DOI: 10.1210/me.2007-0092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
GH and GH receptor are expressed in many extrapituitary tissues, permitting autocrine/paracrine activity. Autocrine GH has regulatory functions in embryonic development and cellular differentiation and proliferation and is reported to be involved in the development and metastasis of tumor cells. To understand the principles of transport and signaling of autocrine GH and GH receptor, we used a model system to express both proteins in the same cell. Our experiments show that GH binds the GH receptor immediately after synthesis in the endoplasmic reticulum and facilitates maturation of GH receptor. The hormone-receptor complexes arrive at the cell surface where exogenously added GH is unable to bind these receptors. Autocrine GH activates the GH receptors, but signal transduction occurs only after exiting the endoplasmic reticulum. This model study explains why autocrine GH-producing cells may be insensitive for GH (antagonist) treatment and clarifies autocrine signaling events.
Collapse
Affiliation(s)
- Monique J van den Eijnden
- Department of Cell Biology, Institut of Biomembranes, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
18
|
Fang P, Riedl S, Amselem S, Pratt KL, Little BM, Haeusler G, Hwa V, Frisch H, Rosenfeld RG. Primary growth hormone (GH) insensitivity and insulin-like growth factor deficiency caused by novel compound heterozygous mutations of the GH receptor gene: genetic and functional studies of simple and compound heterozygous states. J Clin Endocrinol Metab 2007; 92:2223-31. [PMID: 17405847 DOI: 10.1210/jc.2006-2624] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary GH insensitivity (GHI) or Laron syndrome, caused by mutations of the GH receptor (GHR) gene, has a clinical phenotype of postnatal growth failure associated with normal elevated serum concentrations of GH and low serum levels of IGF-I. OBJECTIVE We investigated the clinical and biochemical implications of molecular defects in the GHR gene in an Austrian family with two daughters who were GHI. PATIENTS Patient 1 [height, -4.8 sd score (SDS)] and patient 2 (height, -5.0 SDS) had elevated circulating levels of GH, low-normal levels of GH-binding protein, and abnormally low IGF-I (-5.0 SDS and -2.6 SDS, respectively) and IGF-binding protein-3 (-2.6 SDS and -2.0 SDS, respectively). RESULTS Both patients carry novel compound, missense, heterozygous GHR mutations, C94S and H150Q. In vitro reconstitution experiments demonstrated that whereas each of the mutants could be stably expressed, GHR(C94S) lost its affinity for GH and could neither activate signal transducer and activator of transcription (STAT)-5b nor drive STAT5b-dependent gene transcription in response to GH (1-100 ng/ml). GHR(H150Q) showed normal affinity for GH but impaired capacity for signal transduction. The compound heterozygote and C94S heterozygote, but not the H150Q heterozygote, showed significant deficiency in activating GH-induced gene expression, corroborating diminished GH-induced STAT5b activation in fibroblasts carrying GHR(C94S) as either a compound heterozygote (in the patients) or a simple heterozygote (in one parent). CONCLUSIONS Each of the compound heterozygous mutations contributed additively to the pathological condition seen in the patients, and the more detrimental of the two mutations, C94S, may cause (partial) primary GHI, even in a heterozygous state.
Collapse
Affiliation(s)
- Peng Fang
- Department of Pediatrics, University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|