1
|
Pocar P, Berrini A, Di Giancamillo A, Fischer B, Borromeo V. Regulation of the aryl hydrocarbon receptor activity in bovine cumulus-oocyte complexes during in vitro maturation: The role of EGFR and post-EGFR ERK1/2 signaling cascade. Theriogenology 2020; 156:59-69. [PMID: 32679457 DOI: 10.1016/j.theriogenology.2020.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 10/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been extensively characterized as an environmental sensor with major roles in xenobiotic-induced toxicity. Evidence is accumulating that these functions serve as adaptive mechanisms overlapping its physiological roles. We previously described a critical role of constitutive AhR activation for the correct progress of mammalian oocyte maturation but the signaling pathway through which AhR controls maturation remains unclear. The aim of this study was to investigate whether the AhR interacts with the epidermal growth factor receptor (EGFR) and p42/44 extracellular regulated kinases (ERK1/2), both key factors in the signaling network that finely regulates the oocyte maturation. As experimental model we used bovine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM). Blocking ERK1/2 signaling in COCs during IVM with the specific EGFR inhibitor AG1478 or the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 downregulated the expression of the AhR-target gene Cyp1a1. Inhibition of AhR activity was associated with a reduction in the oocytes' ability to progress in meiosis resumption. In contrast, exposure to the AhR antagonist resveratrol reduced both CYP1A1 expression and the oocytes' maturation competence, without affecting ERK1/2 signaling. These findings strongly indicate the EGFR/ERKs signaling network as an upstream regulator of the AhR activation in COCs, offering a new understanding of the finely tuned physiological mechanism leading to oocyte maturation. This information may provide fresh opportunities for improving oocyte in vitro maturation, and therefore boosting the efficiency of assisted reproduction techniques in mammals.
Collapse
Affiliation(s)
- Paola Pocar
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy.
| | - Anna Berrini
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy
| | | | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, D-06097, Halle (Saale), Germany
| | - Vitaliano Borromeo
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy
| |
Collapse
|
2
|
Tokmakov AA, Sato KI, Stefanov VE. Postovulatory cell death: why eggs die via apoptosis in biological species with external fertilization. J Reprod Dev 2017; 64:1-6. [PMID: 29081453 PMCID: PMC5830352 DOI: 10.1262/jrd.2017-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spawned unfertilized eggs have been found to die by apoptosis in several species with external fertilization. However, there is no necessity for the externally laid eggs to degrade via this process, as apoptosis evolved as a mechanism to reduce the damaging effects of individual cell death on the whole organism. The recent observation of egg degradation in the genital tracts of some oviparous species provides a clue as to the physiological relevance of egg apoptosis in these animals. We hypothesize that egg apoptosis accompanies ovulation in species with external fertilization as a normal process to eliminate mature eggs retained in the genital tract after ovulation. Furthermore, apoptosis universally develops in ovulated eggs after spontaneous activation in the absence of fertilization. This paper provides an overview of egg apoptosis in several oviparous biological species, including frog, fish, sea urchin, and starfish.
Collapse
Affiliation(s)
| | - Ken-Ichi Sato
- Department of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Vasily E Stefanov
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Andrieu G, Ledoux A, Branka S, Bocquet M, Gilhodes J, Walzer T, Kasahara K, Inagaki M, Sabbadini RA, Cuvillier O, Hatzoglou A. Sphingosine 1-phosphate signaling through its receptor S1P 5 promotes chromosome segregation and mitotic progression. Sci Signal 2017; 10:eaah4007. [PMID: 28351953 DOI: 10.1126/scisignal.aah4007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Sphingosine kinase 1 (SphK1) promotes cell proliferation and survival, and its abundance is often increased in tumors. SphK1 produces the signaling lipid sphingosine 1-phosphate (S1P), which activates signaling cascades downstream five G protein-coupled receptors (S1P1-5) to modulate vascular and immune system function and promote proliferation. We identified a new function of the SphK1-S1P pathway specifically in the control of mitosis. SphK1 depletion in HeLa cells caused prometaphase arrest, whereas its overexpression or activation accelerated mitosis. Increasing the abundance of S1P promoted mitotic progression, overrode the spindle assembly checkpoint (SAC), and led to chromosome segregation defects. S1P was secreted through the transporter SPNS2 and stimulated mitosis by binding to and activating S1P5 on the extracellular side, which then activated the intracellular phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Knockdown of S1P5 prevented the S1P-induced spindle defect phenotype. RNA interference assays revealed that the mitotic kinase Polo-like kinase 1 (PLK1) was an important effector of S1P-S1P5 signaling-induced mitosis in HeLa cells. Our findings identify an extracellular signal and the downstream pathway that promotes mitotic progression and may indicate potential therapeutic targets to inhibit the proliferation of cancer cells.
Collapse
Affiliation(s)
- Guillaume Andrieu
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 31400 Toulouse, France
- Université de Toulouse, Université Paul Sabatier, 31400 Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, 31400 Toulouse, France
| | - Adeline Ledoux
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 31400 Toulouse, France
- Université de Toulouse, Université Paul Sabatier, 31400 Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, 31400 Toulouse, France
| | - Sophie Branka
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 31400 Toulouse, France
- Université de Toulouse, Université Paul Sabatier, 31400 Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, 31400 Toulouse, France
| | - Magalie Bocquet
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 31400 Toulouse, France
- Université de Toulouse, Université Paul Sabatier, 31400 Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, 31400 Toulouse, France
| | - Julia Gilhodes
- Clinical Trials Office, Biostatistics Unit, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopôle, 31100 Toulouse, France
| | | | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | | | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 31400 Toulouse, France.
- Université de Toulouse, Université Paul Sabatier, 31400 Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, 31400 Toulouse, France
| | - Anastassia Hatzoglou
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 31400 Toulouse, France.
- Université de Toulouse, Université Paul Sabatier, 31400 Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, 31400 Toulouse, France
| |
Collapse
|
4
|
Mulner-Lorillon O, Chassé H, Morales J, Bellé R, Cormier P. MAPK/ERK activity is required for the successful progression of mitosis in sea urchin embryos. Dev Biol 2016; 421:194-203. [PMID: 27913220 DOI: 10.1016/j.ydbio.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction. Nonetheless, the chromatin and spindle organisations are profoundly altered. Early morphological disorders induced by the absence of MAPK/ERK activation are correlated with an important inhibition of global protein synthesis and modification in the cyclin B accumulation profile. After appearance of morphological disorders, there is an increase in the level of the inhibitor of protein synthesis, 4E-BP, and, ultimately, an activation of the spindle checkpoint. Altogether, our results suggest that MAPK/ERK activity is required for the synthesis of (a) protein(s) implicated in an early step of chromatin /microtubule attachment. If this MAPK/ERK-dependent step is not achieved, the cell activates a new checkpoint mechanism, involving the reappearance of 4E-BP that maintains a low level of protein translation, thus saving cellular energy.
Collapse
Affiliation(s)
- Odile Mulner-Lorillon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France.
| | - Héloïse Chassé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Julia Morales
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Robert Bellé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| |
Collapse
|
5
|
Guo H, Garcia-Vedrenne AE, Isserlin R, Lugowski A, Morada A, Sun A, Miao Y, Kuzmanov U, Wan C, Ma H, Foltz K, Emili A. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus
reveals new candidates in egg activation. Proteomics 2015; 15:4080-95. [DOI: 10.1002/pmic.201500159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | | | - Ruth Isserlin
- Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | - Andrew Lugowski
- Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | - Anthony Morada
- Department of Molecular, Cellular and Developmental Biology, and Marine Science Institute; Santa Barbara CA USA
| | - Alex Sun
- Department of Molecular, Cellular and Developmental Biology, and Marine Science Institute; Santa Barbara CA USA
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, and Marine Science Institute; Santa Barbara CA USA
| | - Uros Kuzmanov
- Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | - Cuihong Wan
- Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | - Hongyue Ma
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; College of Pharmacy; Nanjing University of Chinese Medicine; Nanjing P. R. China
| | - Kathy Foltz
- Department of Molecular, Cellular and Developmental Biology, and Marine Science Institute; Santa Barbara CA USA
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| |
Collapse
|
6
|
Houel-Renault L, Philippe L, Piquemal M, Ciapa B. Autophagy is used as a survival program in unfertilized sea urchin eggs that are destined to die by apoptosis after inactivation of MAPK1/3 (ERK2/1). Autophagy 2014; 9:1527-39. [DOI: 10.4161/auto.25712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Arakawa M, Takeda N, Tachibana K, Deguchi R. Polyspermy block in jellyfish eggs: Collaborative controls by Ca2+ and MAPK. Dev Biol 2014; 392:80-92. [DOI: 10.1016/j.ydbio.2014.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/19/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
|
8
|
Costache V, McDougall A, Dumollard R. Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 2014; 450:1175-81. [DOI: 10.1016/j.bbrc.2014.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
9
|
Gonzalez-Garcia JR, Bradley J, Nomikos M, Paul L, Machaty Z, Lai FA, Swann K. The dynamics of MAPK inactivation at fertilization in mouse eggs. J Cell Sci 2014; 127:2749-60. [PMID: 24741069 PMCID: PMC4058113 DOI: 10.1242/jcs.145045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Egg activation at fertilization in mammals is initiated by prolonged Ca(2+) oscillations that trigger the completion of meiosis and formation of pronuclei. A fall in mitogen-activated protein kinase (MAPK) activity is essential for pronuclear formation, but the precise timing and mechanism of decline are unknown. Here, we have measured the dynamics of MAPK pathway inactivation during fertilization of mouse eggs using novel chemiluminescent MAPK activity reporters. This reveals that the MAPK activity decrease begins during the Ca(2+) oscillations, but MAPK does not completely inactivate until after pronuclear formation. The MAPKs present in eggs are Mos, MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) and MAPK3 and MAPK1 (ERK1 and ERK2, respectively). Notably, the MAPK activity decline at fertilization is not explained by upstream destruction of Mos, because a decrease in the signal from a Mos-luciferase reporter is not associated with egg activation. Furthermore, Mos overexpression does not affect the timing of MAPK inactivation or pronuclear formation. However, the late decrease in MAPK could be rapidly reversed by the protein phosphatase inhibitor, okadaic acid. These data suggest that the completion of meiosis in mouse zygotes is driven by an increased phosphatase activity and not by a decline in Mos levels or MEK activity.
Collapse
Affiliation(s)
- Jose Raul Gonzalez-Garcia
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Josephine Bradley
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Michail Nomikos
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Laboni Paul
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
10
|
Philippe L, Tosca L, Zhang WL, Piquemal M, Ciapa B. Different routes lead to apoptosis in unfertilized sea urchin eggs. Apoptosis 2013; 19:436-50. [DOI: 10.1007/s10495-013-0950-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
12
|
Intracellular and extracellular pH and Ca are bound to control mitosis in the early sea urchin embryo via ERK and MPF activities. PLoS One 2013; 8:e66113. [PMID: 23785474 PMCID: PMC3681939 DOI: 10.1371/journal.pone.0066113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Studies aiming to predict the impact on marine life of ocean acidification and of altered salinity have shown altered development in various species including sea urchins. We have analyzed how external Na, Ca, pH and bicarbonate control the first mitotic divisions of sea urchin embryos. Intracellular free Ca (Cai) and pH (pHi) and the activities of the MAP kinase ERK and of MPF regulate mitosis in various types of cells including oocytes and early embryos. We found that intracellular acidification of fertilized eggs by Na-acetate induces a huge activation of ERK at time of mitosis. This also stops the cell cycle and leads to cell death, which can be bypassed by treatment with the MEK inhibitor U0126. Similar intracellular acidification induced in external medium containing low sodium or 5-(N-Methyl-N-isobutyl) amiloride, an inhibitor of the Na+/H+ exchanger, also stops the cell cycle and leads to cell death. In that case, an increase in Cai and in the phosphorylation of tyr-cdc2 occurs during mitosis, modifications that depend on external Ca. Our results indicate that the levels of pHi and Cai determine accurate levels of Ptyr-Cdc2 and P-ERK capable of ensuring progression through the first mitotic cycles. These intracellular parameters rely on external Ca, Na and bicarbonate, alterations of which during climate changes could act synergistically to perturb the early marine life.
Collapse
|
13
|
Tosca L, Glass R, Bronchain O, Philippe L, Ciapa B. PLCγ, G-protein of the Gαq type and cADPr pathway are associated to trigger the fertilization Ca2+ signal in the sea urchin egg. Cell Calcium 2012; 52:388-96. [PMID: 22784667 DOI: 10.1016/j.ceca.2012.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/18/2022]
Abstract
In all species, fertilization triggers in the egg a rapid and transient increase of intracellular free calcium (Cai), but how this signal is generated following sperm and egg interaction has not been clearly characterised yet. In sea urchin, a signalling pathway involving tyrosine kinase and PLCγ has been proposed to be at the origin of the fertilization Cai signal. We report here that injection of src homology-2 (SH2) domains of the sea urchin PLCγ inhibits in a competitive manner the endogenous PLCγ, alters both the amplitude and duration of the fertilization Cai wave, but does not abrogate it. Our results suggest that PLCγ acts in conjunction with a cADPr pathway and G-proteins of the Gαq type to trigger the fertilization Cai wave, and reinforce a crucial role for PLCγ at mitosis and cytokinesis.
Collapse
Affiliation(s)
- Lucie Tosca
- INSERM U935/Université Paris Sud/AP-HP, Histologie-Embryologie-Cytogénétique, Hôpital Antoine Béclère, 92141 Clamart, France
| | | | | | | | | |
Collapse
|
14
|
Role of Mos/MEK/ERK cascade and Cdk1 in Ca2+ oscillations in fertilized ascidian eggs. Dev Biol 2012; 367:208-15. [DOI: 10.1016/j.ydbio.2012.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/16/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022]
|
15
|
Place SP, Smith BW. Effects of seawater acidification on cell cycle control mechanisms in Strongylocentrotus purpuratus embryos. PLoS One 2012; 7:e34068. [PMID: 22479526 PMCID: PMC3313954 DOI: 10.1371/journal.pone.0034068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown fertilization and development of marine species can be significantly inhibited when the pH of sea water is artificially lowered. Little mechanistic understanding of these effects exists to date, but previous work has linked developmental inhibition to reduced cleavage rates in embryos. To explore this further, we tested whether common cell cycle checkpoints were involved using three cellular biomarkers of cell cycle progression: (1) the onset of DNA synthesis, (2) production of a mitotic regulator, cyclin B, and (3) formation of the mitotic spindle. We grew embryos of the purple sea urchin, Strongylocentrotus purpuratus, in seawater artifically buffered to a pH of ∼7.0, 7.5, and 8.0 by CO(2) infusion. Our results suggest the reduced rates of mitotic cleavage are likely unrelated to common cell cycle checkpoints. We found no significant differences in the three biomarkers assessed between pH treatments, indicating the embryos progress through the G(1)/S, G(2)/M and metaphase/anaphase transitions at relatively similar rates. These data suggest low pH environments may not impact developmental programs directly, but may act through secondary mechanisms such as cellular energetics.
Collapse
Affiliation(s)
- Sean P Place
- Department of Biological Sciences and The Environment and Sustainability Program, University of South Carolina, Columbia, South Carolina, United States of America.
| | | |
Collapse
|
16
|
Aguirre-Armenta B, López-Godínez J, Martínez-Cadena G, García-Soto J. Rho-kinase in sea urchin eggs and embryos. Dev Growth Differ 2011; 53:704-14. [PMID: 21671918 DOI: 10.1111/j.1440-169x.2011.01280.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The activation of sea urchin eggs at fertilization provides an ideal system for studying the molecular events involved in cellular activation. Rho GTPases, which are key signaling enzymes in eukaryotes, are involved in sustaining the activation of sea urchin eggs; however, their downstream effectors have not yet been characterized. In somatic cells, RhoA regulates a serine/threonine kinase known as Rho-kinase (ROCK). The activity of ROCK in early sea urchin development has been inferred, but not tested directly. A ROCK gene was identified in the sea urchin (Strongylocentrotus purpuratus) genome and the sequence of its cDNA determined. The sea urchin ROCK (SpROCK) sequence predicts a protein of 158 kDa with >72% and 45% identities with different protein orthologues of the kinase catalytic domain and the complete protein sequence, respectively. SpROCK mRNA levels are high in unfertilized eggs and decrease to 35% after 15 min postfertilization and remain low up to the 4 cell stage. Antibodies to the human ROCK-I kinase domain revealed SpROCK to be concentrated in the cortex of eggs and early embryos. Co-immunoprecipitation assays indicate that RhoA and SpROCK are physically associated. This association is destroyed by treatment with the C3 exoenzyme and with the ROCK antagonist H-1152. H-1152 also inhibited DNA synthesis in embryos. We conclude that the Rho-dependent signaling pathway, via SpROCK, is essential for early embryonic development.
Collapse
Affiliation(s)
- Beatriz Aguirre-Armenta
- División de Ciencias Naturales y Exactas, Departamento de Biología, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36000 México
| | | | | | | |
Collapse
|
17
|
Aze A, Fayet C, Lapasset L, Genevière A. Replication origins are already licensed in G1 arrested unfertilized sea urchin eggs. Dev Biol 2010; 340:557-70. [DOI: 10.1016/j.ydbio.2010.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/24/2022]
|
18
|
Initiation of DNA replication after fertilization is regulated by p90Rsk at pre-RC/pre-IC transition in starfish eggs. Proc Natl Acad Sci U S A 2010; 107:5006-11. [PMID: 20185755 DOI: 10.1073/pnas.1000587107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation of DNA replication in eukaryotic cells is controlled through an ordered assembly of protein complexes at replication origins. The molecules involved in this process are well conserved but diversely regulated. Typically, initiation of DNA replication is regulated in response to developmental events in multicellular organisms. Here, we elucidate the regulation of the first S phase of the embryonic cell cycle after fertilization. Unless fertilization occurs, the Mos-MAPK-p90Rsk pathway causes the G1-phase arrest after completion of meiosis in starfish eggs. Fertilization shuts down this pathway, leading to the first S phase with no requirement of new protein synthesis. However, how and in which stage the initiation complex for DNA replication is arrested by p90Rsk remains unclear. We find that in G1-arrested eggs, chromatin is loaded with the Mcm complex to form the prereplicative complex (pre-RC). Inactivation of p90Rsk is necessary and sufficient for further loading of Cdc45 onto chromatin to form the preinitiation complex (pre-IC) and the subsequent initiation of DNA replication. However, cyclin A-, B-, and E-Cdk's activity and Cdc7 accumulation are dispensable for these processes. These observations define the stage of G1 arrest in unfertilized eggs at transition point from pre-RC to pre-IC, and reveal a unique role of p90Rsk for a negative regulator of this transition. Thus, initiation of DNA replication in the meiosis-to-mitosis transition is regulated at the pre-RC stage as like in the G1 checkpoint, but in a manner different from the checkpoint.
Collapse
|
19
|
Kisielewska J, Philipova R, Huang JY, Whitaker M. MAP kinase dependent cyclinE/cdk2 activity promotes DNA replication in early sea urchin embryos. Dev Biol 2009; 334:383-94. [PMID: 19665013 PMCID: PMC2789238 DOI: 10.1016/j.ydbio.2009.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/30/2009] [Accepted: 07/27/2009] [Indexed: 12/23/2022]
Abstract
Sea urchins provide an excellent model for studying cell cycle control mechanisms governing DNA replication in vivo. Fertilization and cell cycle progression are tightly coordinated by Ca(2+) signals, but the mechanisms underlying the onset of DNA replication after fertilization remain less clear. In this study we demonstrate that calcium-dependent activation of ERK1 promotes accumulation of cyclinE/cdk2 into the male and female pronucleus and entry into first S-phase. We show that cdk2 activity rises quickly after fertilization to a maximum at 4 min, corresponding in timing to the early ERK1 activity peak. Abolishing MAP kinase activity after fertilization with MEK inhibitor, U0126, substantially reduces the early peak of cdk2 activity and prevents cyclinE and cdk2 accumulation in both sperm pronucleus and zygote nucleus in vivo. Both p27(kip1) and roscovitine, cdk2 inhibitors, prevented DNA replication suggesting cdk2 involvement in this process in sea urchin. Inhibition of cdk2 activity using p27(kip1) had no effect on the phosphorylation of MBP by ERK, but completely abolished phosphorylation of retinoblastoma protein, a cdk2 substrate, indicating that cdk2 activity is downstream of ERK1 activation. This pattern of regulation of DNA synthesis conforms to the pattern observed in mammalian somatic cells.
Collapse
Affiliation(s)
| | | | | | - M. Whitaker
- The Institute for Cell and Molecular Biosciences, Medical School, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Roux MM, Radeke MJ, Goel M, Mushegian A, Foltz KR. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 2008; 313:630-47. [DOI: 10.1016/j.ydbio.2007.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
21
|
Matson S, Ducibella T. The MEK inhibitor, U0126, alters fertilization-induced [Ca2+]i oscillation parameters and secretion: differential effects associated with in vivo and in vitro meiotic maturation. Dev Biol 2007; 306:538-48. [PMID: 17451670 DOI: 10.1016/j.ydbio.2007.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 01/15/2023]
Abstract
Although mitogen-activated protein kinase (MAPK) is a well-known cell cycle regulator, emerging studies have also implicated its activity in the regulation of intracellular calcium concentration ([Ca2+](i)) and secretion. Those studies raise the hypothesis that MAPK activity during oocyte maturation and early fertilization is required for normal egg Ca2+ oscillations and cortical granule (CG) secretion. We extend the findings of [Lee, B., Vermassen, E., Yoon, S.-Y., Vanderheyden, V., Ito, J., Alfandari, D., De Smedt, H., Parys, J.B., Fissore, R.A., 2006. Phosphorylation of IP(3)R1 and the regulation of [Ca2+](i) responses at fertilization: a role for the MAP kinase pathway. Development 133, 4355-4365] by demonstrating acute effects on Ca2+ oscillation frequency, amplitude, and duration in fertilized mouse eggs matured in vitro with the MAPK inhibitor, U0126. Frequency was increased, whereas amplitude and duration were greatly decreased. These effects were significantly reduced in eggs matured in vivo and fertilized in the presence of the inhibitor. Ionomycin studies indicated that intracellular Ca2+ stores were differentially affected in eggs matured in vitro with U0126. Consistent with these effects on [Ca2+](i) elevation, fertilization-induced CG exocytosis and metaphase II exit were also reduced in in vitro-matured eggs with U0126, but not in those similarly treated after in vivo maturation. These results indicate that MAPK targets Ca2+ regulatory proteins during both maturation and fertilization, as well as provide a new hypothesis for MAPK function, which is to indirectly regulate events of early development by controlling Ca2+ oscillation parameters.
Collapse
Affiliation(s)
- Sara Matson
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
22
|
Roux MM, Townley IK, Raisch M, Reade A, Bradham C, Humphreys G, Gunaratne HJ, Killian CE, Moy G, Su YH, Ettensohn CA, Wilt F, Vacquier VD, Burke RD, Wessel G, Foltz KR. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev Biol 2006; 300:416-33. [PMID: 17054939 DOI: 10.1016/j.ydbio.2006.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/01/2006] [Accepted: 09/02/2006] [Indexed: 01/02/2023]
Abstract
The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote. The sea urchin "calcium toolkit" as predicted by the genome is described. Emphasis is on the Ca(2+) signaling modules operating during egg activation, but the Ca(2+) signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca(2+) at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca(2+) serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.
Collapse
Affiliation(s)
- Michelle M Roux
- Department MCD Biology and Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|