1
|
Chen J, Zhang X, Li L, Ma X, Yang C, Liu Z, Li C, Fernandez-Cabezudo MJ, al-Ramadi BK, Wu C, Huang W, Zhang Y, Zhang Y, Liu W. Farnesyl pyrophosphate is a new danger signal inducing acute cell death. PLoS Biol 2021; 19:e3001134. [PMID: 33901180 PMCID: PMC8075202 DOI: 10.1371/journal.pbio.3001134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022] Open
Abstract
Cell death is a vital event in life. Infections and injuries cause lytic cell death, which gives rise to danger signals that can further induce cell death, inflammation, and tissue damage. The mevalonate (MVA) pathway is an essential, highly conserved and dynamic metabolic pathway. Here, we discover that farnesyl pyrophosphate (FPP), a metabolic intermediate of the MVA pathway, functions as a newly identified danger signal to trigger acute cell death leading to neuron loss in stroke. Harboring both a hydrophobic 15-carbon isoprenyl chain and a heavily charged pyrophosphate head, FPP leads to acute cell death independent of its downstream metabolic pathways. Mechanistically, extracellular calcium influx and the cation channel transient receptor potential melastatin 2 (TRPM2) exhibit essential roles in FPP-induced cell death. FPP activates TRPM2 opening for ion influx. Furthermore, in terms of a mouse model constructing by middle cerebral artery occlusion (MCAO), FPP accumulates in the brain, which indicates the function of the FPP and TRPM2 danger signal axis in ischemic injury. Overall, our data have revealed a novel function of the MVA pathway intermediate metabolite FPP as a danger signal via transient receptor potential cation channels.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaochen Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People’s Republic of China, IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
| | - Liping Li
- Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing Advanced Innovation Center for Human Brain Protection, Beijing, China
| | - Xianqiang Ma
- Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing Advanced Innovation Center for Human Brain Protection, Beijing, China
| | - Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhaodi Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People’s Republic of China, IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
| | - Chenyang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People’s Republic of China, IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People’s Republic of China, IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing Advanced Innovation Center for Human Brain Protection, Beijing, China
| | - Wanli Liu
- School of Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
2
|
Occhiuto CJ, Kammala AK, Yang C, Nellutla R, Garcia M, Gomez G, Subramanian H. Store-Operated Calcium Entry via STIM1 Contributes to MRGPRX2 Induced Mast Cell Functions. Front Immunol 2020; 10:3143. [PMID: 32038646 PMCID: PMC6985555 DOI: 10.3389/fimmu.2019.03143] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells are inflammatory immune cells that play an essential role in mediating allergic reactions in humans. It is well-known that mast cell activation is critically regulated by intracellular calcium ion (Ca2+) concentrations. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a G-protein coupled receptor (GPCR) expressed on mast cells that is activated by various ligands, including several FDA approved drugs; consequently, this receptor has been implicated in causing pseudo-allergic reactions in humans. MRGPRX2 activation leads to an increase in intracellular Ca2+ levels; however, the Ca2+ mobilizing mechanisms utilized by this receptor are largely unknown. Previous reports showed that store-operated Ca2+ entry (SOCE) via the calcium sensor, stromal interaction molecule 1 (STIM1), regulates mast cell response induced by the high-affinity IgE receptor (FcεRI). In this study, using complementary pharmacologic and genetic ablation approaches we demonstrate that SOCE through STIM1 promotes MRGPRX2-induced human mast cell response in vitro. Importantly, SOCE also critically modulates MrgprB2 (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Collectively, our data suggests that MRGPRX2/MrgprB2 activation of mast cells is dependent on SOCE via STIM1, and further characterization of the MRGPRX2-SOCE-STIM1 pathway will lead to the identification of novel targets for the treatment of pseudo-allergic reactions in humans.
Collapse
Affiliation(s)
| | - Ananth K Kammala
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Canchai Yang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Rithvik Nellutla
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Marco Garcia
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Moccia F, Guerra G. Ca2+Signalling in Endothelial Progenitor Cells: Friend or Foe? J Cell Physiol 2015; 231:314-27. [DOI: 10.1002/jcp.25126] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/04/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology; Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Pavia Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”; University of Molise; Campobasso Italy
| |
Collapse
|
4
|
Xu Y, Zhang S, Niu H, Ye Y, Hu F, Chen S, Li X, Luo X, Jiang S, Liu Y, Chen Y, Li J, Xiang R, Li N. STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer. Sci Rep 2015; 5:11754. [PMID: 26257076 PMCID: PMC4530453 DOI: 10.1038/srep11754] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
The importance of store-operated Ca2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells.
Collapse
Affiliation(s)
- Yingxi Xu
- 1] School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Shu Zhang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Haiying Niu
- Department of Obstetrics and Gynecology, First Central Hospital Clinic Institute, Tianjin Medical University, 24 Fukang Road, Tianjin 300192 China
| | - Yujie Ye
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Fen Hu
- School of Physics, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Si Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xuefei Li
- Beijing Health Vocational College, 94 Nanhengxijie Street, Beijing, 100053 China
| | - Xiaohe Luo
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shan Jiang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanhua Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Junying Li
- Department of Obstetrics and Gynecology, First Central Hospital Clinic Institute, Tianjin Medical University, 24 Fukang Road, Tianjin 300192 China
| | - Rong Xiang
- 1] School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China [3] Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Na Li
- 1] School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China [3] Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
5
|
Tojyo Y, Morita T, Nezu A, Tanimura A. Key components of store-operated Ca2+ entry in non-excitable cells. J Pharmacol Sci 2014; 125:340-6. [PMID: 25030742 DOI: 10.1254/jphs.14r06cp] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+) entry pathway in non-excitable cells. It is activated by the depletion of Ca(2+) from intracellular Ca(2+) stores, notably the endoplasmic reticulum (ER). In the past 9 years, it has been established that two key proteins, stromal interacting molecule 1 (STIM1) and Orai1, play critical roles in SOCE. STIM1 is a single-pass transmembrane protein located predominantly in the ER that serves as a Ca(2+) sensor within the ER, while Orai1 is a tetraspanning plasma membrane (PM) protein that functions as the pore-forming subunit of store-operated Ca(2+) channels. A decrease in the ER Ca(2+) concentration induces translocation of STIM1 into puncta close to the PM. STIM1 oligomers directly interact with Orai1 channels and activates them. This review summarizes the molecular basis of the interaction between STIM1 and Orai1 in SOCE. Further, we describe current findings on additional regulatory proteins, such as Ca(2+) release-activated Ca(2+) regulator 2A and septin, novel roles of STIM1, and modulation of SOCE by protein phosphorylation.
Collapse
Affiliation(s)
- Yosuke Tojyo
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Japan
| | | | | | | |
Collapse
|
6
|
Enhanced expression of Stim, Orai, and TRPC transcripts and proteins in endothelial progenitor cells isolated from patients with primary myelofibrosis. PLoS One 2014; 9:e91099. [PMID: 24603752 PMCID: PMC3946386 DOI: 10.1371/journal.pone.0091099] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/10/2014] [Indexed: 11/22/2022] Open
Abstract
Background An increase in the frequency of circulating endothelial colony forming cells (ECFCs), the only subset of endothelial progenitor cells (EPCs) truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF). Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE) activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs) and subjects suffering from renal cellular carcinoma (RCC-ECFCs). SOCE is up-regulated in RCC-ECFCs due to the over-expression of its underlying molecular components, namely Stim1, Orai1, and TRPC1. Methodology/Principal Findings We utilized Ca2+ imaging, real-time polymerase chain reaction, western blot analysis and functional assays to evaluate molecular structure and the functional role of SOCE in ECFCs derived from PMF patients (PMF-ECFCs). SOCE, induced by either pharmacological (i.e. cyclopiazonic acid or CPA) or physiological (i.e. ATP) stimulation, was significantly higher in PMF-ECFCs. ATP-induced SOCE was inhibited upon blockade of the phospholipase C/InsP3 signalling pathway with U73111 and 2-APB. The higher amplitude of SOCE was associated to the over-expression of the transcripts encoding for Stim2, Orai2–3, and TRPC1. Conversely, immunoblotting revealed that Stim2 levels remained constant as compared to N-ECFCs, while Stim1, Orai1, Orai3, TRPC1 and TRPC4 proteins were over-expressed in PMF-ECFCs. ATP-induced SOCE was inhibited by BTP-2 and low micromolar La3+ and Gd3+, while CPA-elicited SOCE was insensitive to Gd3+. Finally, BTP-2 and La3+ weakly blocked PMF-ECFC proliferation, while Gd3+ was ineffective. Conclusions Two distinct signalling pathways mediate SOCE in PMF-ECFCs; one is activated by passive store depletion and is Gd3+-resistant, while the other one is regulated by the InsP3-sensitive Ca2+ pool and is inhibited by Gd3+. Unlike N- and RCC-ECFCs, the InsP3-dependent SOCE does not drive PMF-ECFC proliferation.
Collapse
|
7
|
Taniguchi M, Fukunaka A, Hagihara M, Watanabe K, Kamino S, Kambe T, Enomoto S, Hiromura M. Essential role of the zinc transporter ZIP9/SLC39A9 in regulating the activations of Akt and Erk in B-cell receptor signaling pathway in DT40 cells. PLoS One 2013; 8:e58022. [PMID: 23505453 PMCID: PMC3591455 DOI: 10.1371/journal.pone.0058022] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/29/2013] [Indexed: 01/08/2023] Open
Abstract
The essential trace element zinc is important for all living organisms. Zinc functions not only as a nutritional factor, but also as a second messenger. However, the effects of intracellular zinc on the B cell-receptor (BCR) signaling pathway remain poorly understood. Here, we present data indicating that the increase in intracellular zinc level induced by ZIP9/SLC39A9 (a ZIP Zrt-/Irt-like protein) plays an important role in the activation of Akt and Erk in response to BCR activation. In DT40 cells, the enhancement of Akt and Erk phosphorylation following BCR activation requires intracellular zinc. To clarify this event, we used chicken ZnT5/6/7-gene-triple-knockout DT40 (TKO) cells and chicken Zip9-knockout DT40 (cZip9KO) cells. The levels of Akt and ERK phosphorylation significantly decreased in cZip9KO cells. In addition, the enzymatic activity of protein tyrosine phosphatase (PTPase) increased in cZip9KO cells. These biochemical events were restored by overexpressing the human Zip9 (hZip9) gene. Moreover, we found that the increase in intracellular zinc level depends on the expression of ZIP9. This observation is in agreement with the increased levels of Akt and Erk phosphorylation and the inhibition of total PTPase activity. We concluded that ZIP9 regulates cytosolic zinc level, resulting in the enhancement of Akt and Erk phosphorylation. Our observations provide new mechanistic insights into the BCR signaling pathway underlying the regulation of intracellular zinc level by ZIP9 in response to the BCR activation.
Collapse
Affiliation(s)
- Masanari Taniguchi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Ayako Fukunaka
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Mitsue Hagihara
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Keiko Watanabe
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Shinichiro Kamino
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuichi Enomoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Makoto Hiromura
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| |
Collapse
|
8
|
Oda S, Uchida K, Wang X, Lee J, Shimada Y, Tominaga M, Kadowaki M. TRPM2 contributes to antigen-stimulated Ca²⁺ influx in mucosal mast cells. Pflugers Arch 2013; 465:1023-30. [PMID: 23371039 DOI: 10.1007/s00424-013-1219-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
Food allergy (FA) is a common allergic disease without any currently available effective drug therapies. Mucosal mast cells (MMCs) play a particularly important role in FA, and the increase in their cytosolic Ca(2+) concentration ([Ca(2+)]cyt) is considered to be a principal component of the degranulation process. However, the mechanisms governing Ca(2+) influx remain poorly understood in MMCs. Recent reports have highlighted the functions of the transient receptor potential melastatin 2 (TRPM2) channel in immunocytes, including its role in monocyte chemokine production and macrophage phagocytic activity. Although TRPM2 gene expression has been demonstrated in mast cells, the significance of such expression remains virtually unknown. In this study, we found that antigen-stimulated degranulation was significantly reduced in mucosal-type bone marrow-derived mast cells (mBMMCs) prepared from TRPM2-knockout (TRPM2-KO) mice (TRPM2-KO mBMMCs) and was suppressed following the administration of three TRPM2 inhibitors with different chemical structures, including econazole, flufenamic acid (FFA), and 2-aminoethoxydiphenyl borate. Furthermore, the antigen-stimulated increase in [Ca(2+)]cyt was significantly decreased in TRPM2-KO mBMMCs and was also suppressed by the TRPM2 inhibitors econazole and FFA. In addition, thapsigargin-induced increase in [Ca(2+)]cyt was significantly decreased in TRPM2-KO mBMMCs. These results suggest that TRPM2 may participate in antigen-induced extracellular Ca(2+) influx and subsequent degranulation. In addition, TRPM2 inhibitors were shown to improve food allergic reactions in a mouse model. Together, these results suggest that TRPM2 inhibitors suppress MMC degranulation via regulation of the increase in [Ca(2+)]cyt. Thus, TRPM2 may play a key role in degranulation by modulating intracellular Ca(2+) in MMCs.
Collapse
Affiliation(s)
- Satoshi Oda
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Shaw PJ, Feske S. Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci (Elite Ed) 2012. [PMID: 22202035 DOI: 10.2741/540] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcium signals play a critical role in many cell-type specific effector functions during innate and adaptive immune responses. The predominant mechanism to raise intracellular (Ca²⁺) used by most immune cells is store-operated Ca²⁺ entry (SOCE), whereby the depletion of endoplasmic reticulum (ER) Ca²⁺ stores triggers the influx of extracellular Ca²⁺. SOCE in immune cells is mediated by the highly Ca²⁺ selective Ca²⁺-release-activated Ca²⁺ (CRAC) channel, encoded by ORAI1, ORAI2 and ORAI3 genes. ORAI proteins are activated by stromal interaction molecules (STIM) 1 and 2, which act as sensors of ER Ca²⁺ store depletion. The importance of SOCE mediated by STIM and ORAI proteins for immune function is evident from the immunodeficiency and autoimmunity in patients with mutations in STIM1 and ORAI1 genes. These patients and studies in gene-targeted mice have revealed an essential role for ORAI/STIM proteins in the function of several immune cells. This review focuses on recent advances made towards understanding the role of SOCE in immune cells with an emphasis on the immune dysregulation that results from defects in SOCE in human patients and transgenic mice.
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
10
|
Decuypere JP, Monaco G, Kiviluoto S, Oh-hora M, Luyten T, De Smedt H, Parys JB, Missiaen L, Bultynck G. STIM1, but not STIM2, is required for proper agonist-induced Ca2+ signaling. Cell Calcium 2011; 48:161-7. [PMID: 20801505 DOI: 10.1016/j.ceca.2010.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The stromal interaction molecules STIM1 and STIM2 sense a decreasing Ca(2+) concentration in the lumen of the endoplasmic reticulum and activate Ca(2+) channels in the plasma membrane. In addition, at least 2 reports suggested that STIM1 may also interact with the inositol 1,4,5-trisphosphate (IP(3)) receptor. Using embryonic fibroblasts from Stim1(-/-), Stim2(-/-) and wild-type mice, we now tested the hypothesis that STIM1 and STIM2 would also regulate the IP(3) receptor. We investigated whether STIM1 or STIM2 would be the luminal Ca(2+) sensor that controls the loading dependence of the IP(3)-induced Ca(2+) release. Partial emptying of the stores in plasma-membrane permeabilized cells resulted in an increased EC(50) and a decreased Hill coefficient for IP(3)-induced Ca(2+) release. This effect occurred both in the presence and absence of STIM proteins, indicating that these proteins were not the luminal Ca(2+) sensor for the IP(3) receptor. Although Stim1(-/-) cells displayed a normal IP(3)-receptor function, agonist-induced Ca(2+) release was reduced. This finding suggests that the presence of STIM1 is required for proper agonist-induced Ca(2+) signaling. Our data do not provide experimental evidence for the suggestion that STIM proteins would directly control the function of the IP(3) receptor.
Collapse
|
11
|
Dellis O, Arbabian A, Papp B, Rowe M, Joab I, Chomienne C. Epstein-Barr virus latent membrane protein 1 increases calcium influx through store-operated channels in B lymphoid cells. J Biol Chem 2011; 286:18583-92. [PMID: 21454636 DOI: 10.1074/jbc.m111.222257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) signaling plays an important role in B cell survival and activation and is dependent on Ca(2+) trapped in the endoplasmic reticulum (ER) and on extracellular Ca(2+). Epstein-Barr virus (EBV) can immortalize B cells and contributes to lymphomagenesis. Previously, we showed that the ER Ca(2+) content of Burkitt lymphoma cell lines was increased following infection with immortalization-competent virus expressing the full set of EBV latency genes (B95-8). In contrast, infection with an immortalization-deficient virus (P3HR-1) not expressing LMP-1 is without effect. LMP-1 protein expression was sufficient to increase the ER Ca(2+) content and to increase the cytosolic Ca(2+) concentration ([Ca(2+)](cyt)). In this follow-up study, we showed that the resting [Ca(2+)](cyt) of P3HR-1-infected cells was decreased, implying that EBV not only modified the ER homeostasis but also affected the cytosolic Ca(2+) homeostasis. Furthermore, even if the store-operated calcium entry (SOCE) of these cells was normal, the [Ca(2+)](cyt) increase after thapsigargin + CaCl(2) stimulation was blunted. In contrast, the resting [Ca(2+)](cyt) of B95-8 infected cells was not changed, even if their SOCE was increased significantly. When expressed alone, LMP-1 induced an increase of the SOCE amplitude and the expression of the protein allowing this influx, Orai1, showing the effect of EBV on SOCE of B cells are mediated by LMP-1. However, other hitherto unidentified EBV processes, unmasked in P3HR-1 infected cells, counteract this LMP-1-dependent increase of SOCE amplitude to impair a general and potentially toxic increase of [Ca(2+)](i). Thus, EBV infection modifies the cellular Ca(2+) homeostasis by acting on the ER and plasma membrane transporters.
Collapse
Affiliation(s)
- Olivier Dellis
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 940, Institut Universitaire d'Hématologie, Université Paris VII, Paris, France.
| | | | | | | | | | | |
Collapse
|
12
|
Tanimura A. The Development of FRET-Based IP3 Biosensors and Their Use for Monitoring IP3 Dynamics during Ca2+ Oscillations and Ca2+ Waves in Non-Excitable Cells. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010; 28:491-533. [PMID: 20307213 DOI: 10.1146/annurev.immunol.021908.132550] [Citation(s) in RCA: 601] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ca(2+) entry into cells of the peripheral immune system occurs through highly Ca(2+)-selective channels known as CRAC (calcium release-activated calcium) channels. CRAC channels are a very well-characterized example of store-operated Ca(2+) channels, so designated because they open when the endoplasmic reticulum (ER) Ca(2+) store becomes depleted. Physiologically, Ca(2+) is released from the ER lumen into the cytoplasm when activated receptors couple to phospholipase C and trigger production of the second messenger inositol 1,4,5-trisphosphate (IP(3)). IP(3) binds to IP(3) receptors in the ER membrane and activates Ca(2+) release. The proteins STIM and ORAI were discovered through limited and genome-wide RNAi screens, respectively, performed in Drosophila cells and focused on identifying modulators of store-operated Ca(2+) entry. STIM1 and STIM2 sense the depletion of ER Ca(2+) stores, whereas ORAI1 is a pore subunit of the CRAC channel. In this review, we discuss selected aspects of Ca(2+) signaling in cells of the immune system, focusing on the roles of STIM and ORAI proteins in store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Patrick G Hogan
- Department of Pathology, Harvard Medical School, Immune Disease Institute, Children's Hospital Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
14
|
Kurosaki T, Baba Y. Ca2+ signaling and STIM1. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:51-8. [PMID: 20226808 DOI: 10.1016/j.pbiomolbio.2010.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/16/2010] [Accepted: 02/18/2010] [Indexed: 01/29/2023]
Abstract
An increase in the intracellular calcium ion concentration ([Ca(2+)]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca(2+)) regulates various cellular events after the stimulation of cells. Initial increase in Ca(2+) comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca(2+) is required to maintain the increased level of Ca(2+) inside cells. Store-operated Ca(2+) entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca(2+) in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca(2+). STIM1 senses the status of the intracellular Ca(2+) stores via a luminal N-terminal Ca(2+)-binding EF-hand domain. Dissociation of Ca(2+) from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca(2+) channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Japan.
| | | |
Collapse
|
15
|
Abstract
The versatility of Ca(2+) as an intracellular messenger derives largely from the spatial organization of cytosolic Ca(2+) signals, most of which are generated by regulated openings of Ca(2+)-permeable channels. Most Ca(2+) channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER). Targeting of these channels to appropriate destinations underpins their ability to generate spatially organized Ca(2+) signals. All Ca(2+) channels begin life in the cytosol, and the vast majority are then functionally assembled in the ER, where they may either remain or be dispatched to other membranes. Here, by means of selective examples, we review two issues related to this trafficking of Ca(2+) channels via the ER. How do cells avoid wayward activity of Ca(2+) channels in transit as they pass from the ER via other membranes to their final destination? How and why do some cells express small numbers of the archetypal intracellular Ca(2+) channels, IP(3)R and RyR, in the PM?
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
16
|
Feske S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 2009; 231:189-209. [PMID: 19754898 DOI: 10.1111/j.1600-065x.2009.00818.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a mechanism used by many cells types including lymphocytes and other immune cells to increase intracellular Ca2+ concentrations to initiate signal transduction. Activation of immunoreceptors such as the T-cell receptor, B-cell receptor, or Fc receptors results in the release of Ca2+ ions from endoplasmic reticulum (ER) Ca2+ stores and subsequent activation of plasma membrane Ca2+ channels such as the well-characterized Ca2+ release-activated Ca2+ (CRAC) channel. Two genes have been identified that are essential for SOCE: ORAI1 as the pore-forming subunit of the CRAC channel in the plasma membrane and stromal interaction molecule-1 (STIM1) sensing the ER Ca2+ concentration and activating ORAI1-CRAC channels. Intense efforts in the past several years have focused on understanding the molecular mechanism of SOCE and the role it plays for cell functions in vitro and in vivo. A number of transgenic mouse models have been generated to investigate the role of ORAI1 and STIM1 in immunity. In addition, mutations in ORAI1 and STIM1 identified in immunodeficient patients provide valuable insight into the role of both genes and SOCE. This review focuses on the role of ORAI1 and STIM1 in vivo, discussing the phenotypes of ORAI1- and STIM1-deficient human patients and mice.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
17
|
Morita T, Tanimura A, Baba Y, Kurosaki T, Tojyo Y. A novel Stim1-dependent, non-capacitative Ca2+ entry pathway is activated by B cell receptor stimulation and depletion of Ca2+ stores. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:383-7. [PMID: 20224233 DOI: 10.2152/jmi.56.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In most non-excitable cells, the depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) entry (CCE), which is a Ca(2+)-selective and La(3+)-sensitive entry pathway. Here, we report a novel mechanism of La(3+)-resistant Ca(2+) entry that is synergistically regulated by B cell receptor (BCR) stimulation and Ca(2+) store depletion (B-SOC). In the wild-type (WT) DT40 cells, BCR stimulation with anti-IgM antibodies induced Ca(2+) release and subsequent Ca(2+) entry in the presence of 0.3 microM La(3+) which blocks CCE completely. In the inositol 1,4,5-trisphosphate receptor-deficient (IP(3)R-KO) cells, BCR stimulation elicited neither Ca(2+) release nor Ca(2+) entry. However, under pretreatment of thapsigargin (ThG), BCR stimulation induced La(3+)-resistant Ca(2+) entry into both WT and IP(3)R-KO cells. These results indicate that BCR stimulation and Ca(2+) store depletion work in concert to activate the La(3+)-resistant Ca(2+) entry pathway. B-SOC was inhibited by tyrosine kinase inhibitor, genistein. In addition, B-SOC was completely abolished in Stim1-deficient cells and was restored by overexpression of yellow fluorescent protein (YFP)-tagged Stim1, but was unaffected by double knockdown of Orai1/Orai2. These results demonstrate a unique non-CCE pathway, in which Ca(2+) entry depends on Stim1 and tyrosine kinase activation. It is likely that similar regulation of Ca(2+) entry occurs in other cell types including salivary gland cells.
Collapse
Affiliation(s)
- Takao Morita
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | | | | | | |
Collapse
|