1
|
Zhang T, Zhao S, Dong F, Jia Y, Chen X, Sun Y, Zhu L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6:6 PFPiA through Disturbing the Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1028-1038. [PMID: 36594808 DOI: 10.1021/acs.est.2c04765] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are frequently detected in aquatic environments, but the neurotoxic effects and underlying mechanisms remain unclear. In this study, male zebrafish were exposed to 6:6 PFPiA (1 and 10 nM) for 28 days, which exhibited anxiety-like symptoms. Gut microbiome results indicated that 6:6 PFPiA significantly increased the abundance of Gram-negative bacteria, leading to enhanced levels of lipopolysaccharide (LPS) and inflammation in the gut. The LPS was delivered to the brain through the gut-brain axis (GBA), damaged the blood-brain barrier (BBB), stimulated neuroinflammation, and caused apoptosis as well as neural injury in the brain. This mechanism was verified by the fact that antibiotics reduced the LPS levels in the gut and brain, accompanied by reduced inflammatory responses and anxiety-like behavior. The BBB damage also resulted in the enhanced accumulation of 6:6 PFPiA in the brain, where it might bind strongly with and activate aryl hydrocarbon receptor (AhR) to induce brain inflammation directly. Additionally, as the fish received treatment with an inhibitor of AhR, the inflammation response and anxiety-like behavior decreased distinctly. This study sheds light on the new mechanisms of neurotoxicity-induced 6:6 PFPiA due to the interruption on GBA.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Sujuan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- School of Public Health, Anhui Medical University, Hefei 230032, P.R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
2
|
Gong P, Madak-Erdogan Z, Flaws JA, Shapiro DJ, Katzenellenbogen JA, Katzenellenbogen BS. Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol Cell Endocrinol 2016; 437:190-200. [PMID: 27543265 PMCID: PMC5873581 DOI: 10.1016/j.mce.2016.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/15/2016] [Accepted: 08/14/2016] [Indexed: 11/19/2022]
Abstract
Botanical estrogen (BE) dietary supplements are consumed by women as substitutes for loss of endogenous estrogens at menopause. To examine the roles of estrogen receptor α (ERα) and aryl hydrocarbon receptor (AhR) and their crosstalk in the actions of BEs, we studied gene regulation and proliferation responses to four widely used BEs, genistein, daidzein, and S-equol from soy, and liquiritigen from licorice root in breast cancer and liver cells. BEs and estradiol (E2), acting through ERα, stimulated proliferation, ERα chromatin binding and target-gene expression. BEs but not E2, acting through AhR, bound to xenobiotic response element-containing chromatin sites and enhanced AhR target-gene expression (CYP1A1, CYP1B1). While E2 and TCDD acted quite selectively through their respective receptors, BEs acted via both receptors, with their AhR activity moderated by negative crosstalk through ERα. Both ERα and AhR should be considered as mediators of the biology and pharmacology of BEs.
Collapse
Affiliation(s)
- Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Oka K, Kohno S, Ohta Y, Guillette LJ, Iguchi T, Katsu Y. Molecular cloning and characterization of the aryl hydrocarbon receptors and aryl hydrocarbon receptor nuclear translocators in the American alligator. Gen Comp Endocrinol 2016; 238:13-22. [PMID: 27174749 DOI: 10.1016/j.ygcen.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022]
Abstract
Aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, binds to a variety of chemical compounds including various environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin. This receptor regulates expression of target genes through dimerization with the AHR nuclear translocator (ARNT). Since AHR-ARNT signaling pathways differ among species, characterization of AHR and ARNT is important to assess the effects of environmental contamination and for understanding the molecular mechanism underlying the intrinsic function. In this study, we isolated the cDNAs encoding three types of AHR and two types of ARNT from a reptile, the American alligator (Alligator mississippiensis). In vitro reporter gene assays showed that all complexes of alligator AHR-ARNT were able to activate ligand-dependent transcription on a xenobiotic response element. We found that AHR-ARNT complexes had higher sensitivities to a ligand than AHR-ARNT2 complexes. Alligator AHR1B showed the highest sensitivity in transcriptional activation induced by indigo when compared with AHR1A and AHR2. Taken together, our data revealed that all three alligator AHRs and two ARNTs were functional in the AHR signaling pathway with ligand-dependent and isoform-specific transactivations in vitro.
Collapse
Affiliation(s)
- Kaori Oka
- Graduate School of Life Science and Department of Biological Sciences, Hokkaido University, Sapporo, Japan
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, and Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, and Hollings Marine Laboratory, Charleston, SC, USA
| | - Yasuhiko Ohta
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Koyama, Tottori, Japan
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, and Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, and Hollings Marine Laboratory, Charleston, SC, USA
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yoshinao Katsu
- Graduate School of Life Science and Department of Biological Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Endler A, Chen L, Shibasaki F. Coactivator recruitment of AhR/ARNT1. Int J Mol Sci 2014; 15:11100-10. [PMID: 24950180 PMCID: PMC4100201 DOI: 10.3390/ijms150611100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/27/2014] [Accepted: 06/07/2014] [Indexed: 01/03/2023] Open
Abstract
A common feature of nuclear receptors (NRs) is the transformation of external cell signals into specific transcriptions of the signal molecule. Signal molecules function as ligands for NRs and, after their uptake, activated NRs form homo- or heterodimers at promoter recognition sequences of the specific genes in the nucleus. Another common feature of NRs is their dependence on coactivators, which bridge the basic transcriptional machinery and other cofactors to the target genes, in order to initiate transcription and to unwind histone-bound DNA for exposing additional promoter recognition sites via their histone acetyltransferase (HAT) function. In this review, we focus on our recent findings related to the recruitment of steroid receptor coactivator 1 (SRC1/NCoA1) by the estrogen receptor-α (ERα) and by the arylhydrocarbon receptor/arylhydrocarbon receptor nuclear translocator 1 (AhR/ARNT1) complex. We also describe the extension of our previously published findings regarding the binding between ARNT1.1 exon16 and SRC1e exon 21, via in silico analyses of androgen receptor (AR) NH2-carboxyl-terminal interactions, the results of which were verified by in vitro experiments. Based on these data, we suggest a newly derived tentative binding site of nuclear coactivator 2/glucocorticoid receptor interacting protein-1/transcriptional intermediary factor 2 (NCOA-2/ GRIP-1/TIF-2) for ARNT1.1 exon 16. Furthermore, results obtained by immunoprecipitation have revealed a second leucine-rich binding site for hARNT1.1 exon 16 in SRC1e exon 21 (LSSTDLL). Finally, we discuss the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an endocrine disruptor for estrogen related transcription.
Collapse
Affiliation(s)
- Alexander Endler
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Li Chen
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
5
|
Jablonska A, Polouliakh N. In silico discovery of novel transcription factors regulated by mTOR-pathway activities. Front Cell Dev Biol 2014; 2:23. [PMID: 25364730 PMCID: PMC4206986 DOI: 10.3389/fcell.2014.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycine (mTOR) pathway is a key regulator of cellular growth, development, and ageing, and unraveling its control is essential for understanding life and death of biological organisms. A motif-discovery workbench including nine tools was used to identify transcription factors involved in five basic (Insulin, MAPK, VEGF, Hypoxia, and mTOR core) activities of the mTOR pathway. Discovered transcription factors are classified as “process-specific” or “pathway-ubiquitous” with highlights toward their regulating/regulated activities within the mTOR pathway. Our transcription regulation results will facilitate further research on investigating the control mechanism in mTOR pathway.
Collapse
Affiliation(s)
- Agnieszka Jablonska
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology Lodz, Poland
| | - Natalia Polouliakh
- Fundamental Research Laboratories, Sony Computer Science Laboratories Inc. Tokyo, Japan ; Systems Biology Institute Tokyo, Japan ; Graduate School of Medicine, Yokohama City University Yokohama, Japan
| |
Collapse
|