1
|
Xu C, Zhang W, Zhang X, Zhou D, Qu L, Liu J, Xiao M, Ni R, Jiang F, Ni W, Lu C. Coupling function of cyclin-dependent kinase 2 and Septin2 in the promotion of hepatocellular carcinoma. Cancer Sci 2018; 110:540-549. [PMID: 30444001 PMCID: PMC6361569 DOI: 10.1111/cas.13882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and aggressive malignant tumor with a poorly defined molecular mechanism. Cyclin‐dependent kinase 2 (CDK2) and Septin2 (SEPT2) are 2 known oncogenic molecules but the mechanism of functional interactions remains unclear. Here, we interestingly found that CDK2 and SEPT2 show very similar dynamic expression during the cell cycle. Both CDK2 and SEPT2 show the highest protein levels in the G2/M phase, resulting in CDK2 interacting with SEPT2 and stabilizing SEPT2 in HCC. In a panel of 8 pairs of fresh HCC tissues and corresponding adjacent tissues, both western blot and immunohistochemistry (IHC) assays demonstrate that CDK2 expression is highly correlated with SEPT2. HCC with high expression of both CDK2 and SEPT2 are more likely to relapse. This observation is further demonstrated by a large panel of 100 HCC patients. In this large panel, high expression of both CDK2 and SEPT2 significantly correlates with tumor differentiation and microvascular invasion, which is an independent prognostic factor in HCC patients. In summary, our results reveal a cooperative function between CDK2 and SEPT2. HCC with high expression of CDK2 and SEPT2 might be more aggressive and respond poorly to current therapy.
Collapse
Affiliation(s)
- Chenzhou Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Xuening Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Danhua Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Davidich MI, Bornholdt S. Boolean network model predicts knockout mutant phenotypes of fission yeast. PLoS One 2013; 8:e71786. [PMID: 24069138 PMCID: PMC3777975 DOI: 10.1371/journal.pone.0071786] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 12/02/2022] Open
Abstract
Boolean networks (or: networks of switches) are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.
Collapse
Affiliation(s)
- Maria I. Davidich
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Stefan Bornholdt
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
- * E-mail:
| |
Collapse
|
3
|
Aloy P, Russell RB. Understanding and predicting protein assemblies with 3D structures. Comp Funct Genomics 2010; 4:410-5. [PMID: 18629088 PMCID: PMC2447374 DOI: 10.1002/cfg.310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 06/03/2003] [Accepted: 06/03/2003] [Indexed: 01/08/2023] Open
Abstract
Protein interactions are central to most biological processes, and are currently the subject of great interest. Yet despite the many recently developed methods for
interaction discovery, little attention has been paid to one of the best sources of
data: complexes of known three-dimensional (3D) structure. Here we discuss how
such complexes can be used to study and predict protein interactions and complexes,
and to interrogate interaction networks proposed by methods such as two-hybrid
screens or affinity purifications.
Collapse
Affiliation(s)
- Patrick Aloy
- EMBL, Meyerhofstrasse 1, Heidelberg D69117, Germany
| | | |
Collapse
|
4
|
MacDermed DM, Khodarev NN, Pitroda SP, Edwards DC, Pelizzari CA, Huang L, Kufe DW, Weichselbaum RR. MUC1-associated proliferation signature predicts outcomes in lung adenocarcinoma patients. BMC Med Genomics 2010; 3:16. [PMID: 20459602 PMCID: PMC2876055 DOI: 10.1186/1755-8794-3-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 05/06/2010] [Indexed: 12/23/2022] Open
Abstract
Background MUC1 protein is highly expressed in lung cancer. The cytoplasmic domain of MUC1 (MUC1-CD) induces tumorigenesis and resistance to DNA-damaging agents. We characterized MUC1-CD-induced transcriptional changes and examined their significance in lung cancer patients. Methods Using DNA microarrays, we identified 254 genes that were differentially expressed in cell lines transformed by MUC1-CD compared to control cell lines. We then examined expression of these genes in 441 lung adenocarcinomas from a publicly available database. We employed statistical analyses independent of clinical outcomes, including hierarchical clustering, Student's t-tests and receiver operating characteristic (ROC) analysis, to select a seven-gene MUC1-associated proliferation signature (MAPS). We demonstrated the prognostic value of MAPS in this database using Kaplan-Meier survival analysis, log-rank tests and Cox models. The MAPS was further validated for prognostic significance in 84 lung adenocarcinoma patients from an independent database. Results MAPS genes were found to be associated with proliferation and cell cycle regulation and included CCNB1, CDC2, CDC20, CDKN3, MAD2L1, PRC1 and RRM2. MAPS expressors (MAPS+) had inferior survival compared to non-expressors (MAPS-). In the initial data set, 5-year survival was 65% (MAPS-) vs. 45% (MAPS+, p < 0.0001). Similarly, in the validation data set, 5-year survival was 57% (MAPS-) vs. 28% (MAPS+, p = 0.005). Conclusions The MAPS signature, comprised of MUC1-CD-dependent genes involved in the control of cell cycle and proliferation, is associated with poor outcomes in patients with adenocarcinoma of the lung. These data provide potential new prognostic biomarkers and treatment targets for lung adenocarcinoma.
Collapse
Affiliation(s)
- Dhara M MacDermed
- The Scripps Research Institute and Scripps Translational Science Institute, 3344 N Torrey Pines Court Ste, 300, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gupta M, Trott D, Porter ACG. Rescue of a human cell line from endogenous Cdk1 depletion by Cdk1 lacking inhibitory phosphorylation sites. J Biol Chem 2006; 282:4301-4309. [PMID: 17164242 DOI: 10.1074/jbc.m607910200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells that transiently overexpress cyclin-dependent kinase 1 lacking inhibitory phosphorylation sites (Cdk1-AF) undergo premature and catastrophic mitosis, reflecting the key role for Cdk1 in promoting a timely transit from G(2) into mitosis. Conversely, cells depleted of Cdk1 undergo repeated S phases without intervening mitoses (endoreduplication), reflecting a role for Cdk1 in preventing premature S phases. It is not known how Cdk1 prevents entry into S phase at times in G(2) when it does not promote mitosis. Also uncertain is the extent of redundancy between inhibitory phosphorylation and other mechanisms for controlling Cdk1 activity. We describe here human cells that not only tolerate stable Cdk1-AF expression but also rely on it for survival when endogenous Cdk1 is depleted. When residual endogenous Cdk1 expression is further depleted, however, proliferation of Cdk1-AF-rescued cells is inhibited. Interestingly, this inhibition is not accompanied by endoreduplication. These results are consistent with a two-threshold model for Cdk1 kinase activity, one for suppressing endoreduplication and one for promoting mitosis. They also indicate that inhibitory phosphorylation is indispensable for only a fraction of the total cellular complement of Cdk1.
Collapse
Affiliation(s)
- Mita Gupta
- Department of Haematology and Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, United Kingdom
| | - Deborah Trott
- Department of Haematology and Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, United Kingdom
| | - Andrew C G Porter
- Department of Haematology and Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, United Kingdom.
| |
Collapse
|
6
|
Affiliation(s)
- Patrick Aloy
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
7
|
Cueille N, Nougarede R, Mechali F, Philippe M, Bonne-Andrea C. Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E-Cdk2. J Virol 1998; 72:7255-62. [PMID: 9696820 PMCID: PMC109948 DOI: 10.1128/jvi.72.9.7255-7262.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have found that the replicative helicase E1 of bovine papillomavirus type 1 (BPV-1) interacts with a key cell cycle regulator of S phase, the cyclin E-Cdk2 kinase. The E1 helicase, which interacts with cyclin E and not with Cdk2, presents the highest affinity for catalytically active kinase complexes. In addition, E1, cyclin E, and Cdk2 expressed in Xenopus egg extracts are quantitatively coimmunoprecipitated from crude extracts by either anti-Cdk2 or anti-E1 antibodies. E1 protein is also a substrate of the cyclin E-Cdk2 kinase in vitro. Using the viral components required for in vitro BPV-1 replication and free-membrane cytosol from Xenopus eggs, we show that efficient replication of BPV plasmids is dependent on the addition of E1-cyclin E-Cdk2 complexes. Thus, the BPV initiator of replication and cyclin E-Cdk2 are likely to function together as a protein complex which may be the key to the cell cycle regulation of papillomavirus replication.
Collapse
Affiliation(s)
- N Cueille
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, UPR 1086, 34293 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
8
|
Roghi C, Giet R, Uzbekov R, Morin N, Chartrain I, Le Guellec R, Couturier A, Dorée M, Philippe M, Prigent C. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J Cell Sci 1998; 111 ( Pt 5):557-72. [PMID: 9454730 DOI: 10.1242/jcs.111.5.557] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.
Collapse
Affiliation(s)
- C Roghi
- Département de Biologie et Génétique du Développement, Université de Rennes I, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gopalan G, Chan CS, Donovan PJ. A novel mammalian, mitotic spindle-associated kinase is related to yeast and fly chromosome segregation regulators. J Cell Biol 1997; 138:643-56. [PMID: 9245792 PMCID: PMC2141637 DOI: 10.1083/jcb.138.3.643] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Revised: 05/16/1997] [Indexed: 02/04/2023] Open
Abstract
We describe a novel mammalian protein kinase related to two newly identified yeast and fly kinases-Ipl1 and aurora, respectively-mutations in which cause disruption of chromosome segregation. We have designated this kinase as Ipl1- and aurora-related kinase 1 (IAK1). IAK1 expression in mouse fibroblasts is tightly regulated temporally and spatially during the cell cycle. Transcripts first appear at G1/S boundary, are elevated at M-phase, and disappear rapidly after completion of mitosis. The protein levels and kinase activity of IAK1 are also cell cycle regulated with a peak at M-phase. IAK1 protein has a distinct subcellular and temporal pattern of localization. It is first identified on the centrosomes immediately after the duplicated centrosomes have separated. The protein remains on the centrosome and the centrosome-proximal part of the spindle throughout mitosis and is detected weakly on midbody microtubules at telophase and cytokinesis. In cells recovering from nocodazole treatment and in taxol-treated mitotic cells, IAK1 is associated with microtubule organizing centers. A wild-type and a mutant form of IAK1 cause mitotic spindle defects and lethality in ipl1 mutant yeast cells but not in wild-type cells, suggesting that IAK1 interferes with Ipl1p function in yeast. Taken together, these data strongly suggest that IAK1 may have an important role in centrosome and/ or spindle function during chromosome segregation in mammalian cells. We suggest that IAK1 is a new member of an emerging subfamily of the serine/threonine kinase superfamily. The members of this subfamily may be important regulators of chromosome segregation.
Collapse
Affiliation(s)
- G Gopalan
- Cell Biology of Development and Differentiation Group, ABL Basic Research Program, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
10
|
Stern B, Nurse P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 1996. [DOI: 10.1016/s0168-9525(96)80016-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Chevalier S, Tassan JP, Cox R, Philippe M, Ford C. Both cdc2 and cdk2 promote S phase initiation in Xenopus egg extracts. J Cell Sci 1995; 108 ( Pt 5):1831-41. [PMID: 7657707 DOI: 10.1242/jcs.108.5.1831] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus egg extracts induce S phase DNA replication in added sperm pronuclei in a highly regulated manner, similar to events in vivo. Removal of cyclin-dependant kinases (cdks) or cdk2 from these extracts using affinity matrices severely inhibits initiation of S phase. We have used p13suc1 beads to remove both cdk2 and cdc2 proteins from egg extracts and developed a method to replace either protein alone to assess their capacity to initiate DNA replication. Re-addition of either cdk2 or cdc2 proteins to depleted extracts, through translation of their respective mRNAs, restimulated replication, judged by both total synthesis and labelling index. An ATP-binding-site mutant cdk2 mRNA (cdk2.R33) failed to stimulate replication and inhibited S phase initiation in mock-depleted extracts. Both human and Xenopus cdc2 mRNAs rescued replication in this system. Human mutant mRNAs have been used to show that the stimulation induced requires cdc2 catalytic activity, though not its mitotically active form. Rescue of replication by p34cdc2 is also observed in extracts depleted of cdks with a cdk2 antibody, which still retain much of their endogenous cdc2 protein. We conclude that newly synthesised p34cdc2, but not the inherited ‘old’ form, can induce S phase and in this form may overlap in function with p33cdk2.
Collapse
Affiliation(s)
- S Chevalier
- Département de Biologie et Génétique du Développement, CNRS, URA 256, Université de Rennes I, France
| | | | | | | | | |
Collapse
|