1
|
Papp S, Dziak E, Opas M. Embryonic stem cell-derived cardiomyogenesis: a novel role for calreticulin as a regulator. Stem Cells 2009; 27:1507-15. [PMID: 19544459 DOI: 10.1002/stem.85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A role for calreticulin, an endoplasmic reticulum (ER)-resident, Ca(2+)-binding chaperone, has recently emerged in the context of cardiomyogenesis. We previously proposed calreticulin to be a novel cardiac fetal gene, because calreticulin knockout causes embryonic lethality in mice as a result of cardiac defects, it is transiently activated during heart development, and heart-targeted overexpression of constitutively active calcineurin in calreticulin-null mice rescues the lethal phenotype. Calreticulin affects Ca(2+) homeostasis and expression of adhesion-related genes. Using cardiomyocytes derived from both calreticulin-null and wild-type embryonic stem (ES) cells, we show here that cardiomyogenesis from calreticulin-null ES cells is accelerated but deregulated, such that the myofibrils of calreticulin-null cardiomyocytes become disorganized and disintegrate with time in culture. We have previously shown that the disorganization of the actin cytoskeleton in calreticulin-null cells may be explained, at least in part, by the downregulation of adhesion proteins, implying that calreticulin ablation causes adhesion-related defects. Here, upon examination of adhesion proteins, we found that vinculin is downregulated in calreticulin-null cardiomyocytes. We also found c-Src activity to be higher in calreticulin-null cardiomyocytes than in wild-type cardiomyocytes, and c-Src activity is affected by both calreticulin and [Ca(2+)]. Finally, we show that calreticulin and calsequestrin, the major Ca(2+) storage proteins of the ER and sarcoplasmic reticulum, respectively, exhibit alternate distributions. This suggests that calreticulin may have a housekeeping role to play in mature cardiomyocytes as well as during cardiomyogenesis. We propose here that calreticulin, an ER Ca(2+) storage protein, is a crucial regulator of cardiomyogenesis whose presence is required for controlled cardiomyocyte development from ES cells.
Collapse
Affiliation(s)
- Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
2
|
Vandamme D, Rommelaere H, Lambert E, Waterschoot D, Vandekerckhove J, Constantin B, Ampe C. α-Skeletal muscle actin mutants causing different congenital myopathies induce similar cytoskeletal defects in cell line cultures. ACTA ACUST UNITED AC 2009; 66:179-92. [DOI: 10.1002/cm.20340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Falcone G, Ciuffini L, Gauzzi MC, Provenzano C, Strano S, Gallo R, Castellani L, Alemà S. v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene 2004; 22:8302-15. [PMID: 14614454 DOI: 10.1038/sj.onc.1206915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.
Collapse
Affiliation(s)
- Germana Falcone
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo 00016, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Aouacheria A, Néel B, Bouaziz Z, Dominique R, Walchshofer N, Paris J, Fillion H, Gillet G. Carbazolequinone induction of caspase-dependent cell death in Src-overexpressing cells. Biochem Pharmacol 2002; 64:1605-16. [PMID: 12429350 DOI: 10.1016/s0006-2952(02)01385-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that RSV-transformed quail neuroretina cells (QNR-ts68) were highly resistant to apoptosis provoked by serum withdrawal, and that this property was due to v-Src kinase activity. The present study investigates the cytotoxic effect and the functional mechanism of carbazolequinone-mediated cell death in this system. QNR-ts68 cells were subjected to carbazolequinone treatment and both growth inhibition and cell death induction were examined using formazan assays. Cell death mechanism (both apoptosis and necrosis) was confirmed through phosphatidyl serine exposure and propidium iodide incorporation. Furthermore, the effect of active carbazolequinone was inhibited by a pan caspase inhibitor. Cytofluorimetric and immunofluorescence data demonstrated the activation of caspase-3 and the involvement of mitochondria. Therefore, this study clearly indicates that carbazolequinones could induce cell death in transformed cells displaying high levels of antiapoptotic tyrosine kinase activity. Further investigations would be necessary to elucidate the mechanisms by which these carbazolequinones act as antitumor agents.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université Claude Bernard, 7 passage du Vercors, F69367, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gallo R, Zazzeroni F, Alesse E, Mincione C, Borello U, Buanne P, D'Eugenio R, Mackay AR, Argenti B, Gradini R, Russo MA, Maroder M, Cossu G, Frati L, Screpanti I, Gulino A. REN: a novel, developmentally regulated gene that promotes neural cell differentiation. J Cell Biol 2002; 158:731-40. [PMID: 12186855 PMCID: PMC2174014 DOI: 10.1083/jcb.200202024] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.
Collapse
Affiliation(s)
- Rita Gallo
- Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Aouacheria A, Ory S, Schmitt JR, Rigal D, Jurdic P, Gillet G. p60(v-src) and serum control cell shape and apoptosis via distinct pathways in quail neuroretina cells. Oncogene 2002; 21:1171-86. [PMID: 11850837 DOI: 10.1038/sj.onc.1205170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Revised: 10/29/2001] [Accepted: 11/07/2001] [Indexed: 11/09/2022]
Abstract
We made use of QNR cells transformed by a thermosensitive (tsNY68) strain of the Rous sarcoma virus (RSV) to compare the effect of p60(v-src) and serum in cultured nerve cells. In this system, both p60(v-src) heat inactivation and serum removal resulted in growth arrest in G1. In both cases, growth arrest was reversible since cell proliferation was rapidly re-induced following respectively p60v-src renaturation or serum re-addition. However, cells did not fully recover their ability to grow in soft agar, suggesting that, in contrast to the cell cycle machinery, the transforming capacities of these cells have been irreversibly altered. We found that p60(v-src) kinase activity prevented detachment from the substratum and cell death following serum removal. Thermal inactivation of p60(v-src) at restrictive temperature (41.5 degrees C), but not serum removal, resulted in dramatic morphological changes, which occurred 4 h after temperature shift up to 41.5 degrees C. Later on, typical features of apoptotic cells could be observed. Cell death was greatly reduced by the caspase-3 inhibitor ZVAD.FMK, but not by the caspase-1 inhibitor Ac-YVAD.CHO. Together, these results suggested that p60(v-src) and serum factors act on distinct pathways, at least in part. In an attempt to identify the signalling pathways involved in the cell response to p60(v-src) down regulation, we found that Erk and Rac were rapidly inactivated following temperature shift up to 41.5 degrees C. Thus, the combined effects of p60(v-src) and serum factors on the cytoskeleton dynamics and the apoptosis machinery are essential for full neoplastic transformation of neuroretina cells.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard 7, passage du Vercors F69367 Lyon cedex 07, France
| | | | | | | | | | | |
Collapse
|
7
|
Reedy MC, Bullard B, Vigoreaux JO. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol 2000; 151:1483-500. [PMID: 11134077 PMCID: PMC2150682 DOI: 10.1083/jcb.151.7.1483] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Flightin is a multiply phosphorylated, 20-kD myofibrillar protein found in Drosophila indirect flight muscles (IFM). Previous work suggests that flightin plays an essential, as yet undefined, role in normal sarcomere structure and contractile activity. Here we show that flightin is associated with thick filaments where it is likely to interact with the myosin rod. We have created a null mutation for flightin, fln(0), that results in loss of flight ability but has no effect on fecundity or viability. Electron microscopy comparing pupa and adult fln(0) IFM shows that sarcomeres, and thick and thin filaments in pupal IFM, are 25-30% longer than in wild type. fln(0) fibers are abnormally wavy, but sarcomere and myotendon structure in pupa are otherwise normal. Within the first 5 h of adult life and beginning of contractile activity, IFM fibers become disrupted as thick filaments and sarcomeres are variably shortened, and myofibrils are ruptured at the myotendon junction. Unusual empty pockets and granular material interrupt the filament lattice of adult fln(0) sarcomeres. Site-specific cleavage of myosin heavy chain occurs during this period. That myosin is cleaved in the absence of flightin is consistent with the immunolocalization of flightin on the thick filament and biochemical and genetic evidence suggesting it is associated with the myosin rod. Our results indicate that flightin is required for the establishment of normal thick filament length during late pupal development and thick filament stability in adult after initiation of contractile activity.
Collapse
Affiliation(s)
- Mary C. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Belinda Bullard
- European Molecular Biology Laboratory, Heidelberg 69012, Germany
| | - Jim O. Vigoreaux
- Department of Biology, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
8
|
Gallo R, Serafini M, Castellani L, Falcone G, Alemà S. Distinct effects of Rac1 on differentiation of primary avian myoblasts. Mol Biol Cell 1999; 10:3137-50. [PMID: 10512856 PMCID: PMC25569 DOI: 10.1091/mbc.10.10.3137] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 08/02/1999] [Indexed: 11/11/2022] Open
Abstract
Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src-induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures.
Collapse
Affiliation(s)
- R Gallo
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Richerche, 00137 Rome, Italy
| | | | | | | | | |
Collapse
|
9
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: the flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 138:97-137. [PMID: 10396139 DOI: 10.1007/bfb0119625] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Provenzano C, Gallo R, Carbone R, Di Fiore PP, Falcone G, Castellani L, Alemà S. Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling. Exp Cell Res 1998; 242:186-200. [PMID: 9665816 DOI: 10.1006/excr.1998.4095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eps8 is a recently identified substrate of receptor and nonreceptor tyrosine kinases implicated in the control of cell proliferation. To investigate potential functions of Eps8, its intracellular localization has been examined in several cell types. In cycling fibroblasts immunolabeling with antibodies to Eps8 reveals a punctate pattern within the perinuclear region and staining of motile peripheral cell extensions and cell-cell contact regions. Stimulation of quiescent Swiss 3T3 fibroblasts with serum induces a striking reorganization of the actin cytoskeleton which is accompanied by the enrichment of Eps8 and cortactin in membrane ruffles and lamellipodia. A similar accumulation of Eps8 to membrane ruffles is observed in cells treated with phorbol esters, which also induce marked changes of the F-actin cytoskeleton. The localization of Eps8 at the cell cortex is largely independent from the binding of Eps8 to an EGFR/ErbB-2 chimeric receptor. Moreover, fractionation studies reveal that a portion of the Eps8 molecules present in the cell periphery, unlike cortactin and the receptor, is resistant to mild extraction with detergent. Upon cellular transformation by the tyrosine kinase v-Src, a pool of Eps8 is recruited to newly formed specialized regions of the cytoskeleton, such as actin bodies in terminally differentiated myotubes and podosomes in fibroblasts, where cortactin and a variety of cytoskeletal proteins are also found. Extraction with Triton X-100 preserves the association of Eps8 to podosomes and leaves the majority of the v-Src tyrosine-phosphorylated Eps8 in the detergent-resistant fraction. The observed recruitment of Eps8 to highly dynamic cytoskeletal structures of normal and transformed cells suggests that Eps8 may play a role in the reorganization of the cytoskeleton, perhaps acting as a docking site for other signaling molecules.
Collapse
Affiliation(s)
- C Provenzano
- Istituto di Biologia Cellulare, CNR, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|