1
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
2
|
Hayashi S, Sakata S, Kawamura S, Tokutake Y, Yonekura S. XBP1u Is Involved in C2C12 Myoblast Differentiation via Accelerated Proteasomal Degradation of Id3. Front Physiol 2022; 13:796190. [PMID: 35153829 PMCID: PMC8829448 DOI: 10.3389/fphys.2022.796190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle, elongation, and fusion to form multinucleated myotubes. Id3, a member of the Id family, plays a crucial role in cell cycle exit and differentiation. However, in muscle cells after differentiation induction, the detailed mechanisms that diminish Id3 function and cause the cells to withdraw from the cell cycle are unknown. Induction of myoblast differentiation resulted in decreased expression of Id3 and increased expression of XBP1u, and XBP1u accelerated proteasomal degradation of Id3 in C2C12 cells. The expression levels of the cyclin-dependent kinase inhibitors p21, p27, and p57 were not increased after differentiation induction of XBP1-knockdown C2C12 cells. Moreover, knockdown of Id3 rescued myogenic differentiation of XBP1-knockdown C2C12 cells. Taken together, these findings provide evidence that XBP1u regulates cell cycle exit after myogenic differentiation induction through interactions with Id3. To the best of our knowledge, this is the first report of the involvement of XBP1u in myoblast differentiation. These results indicate that XBP1u may act as a “regulator” of myoblast differentiation under various physiological conditions.
Collapse
Affiliation(s)
- Satoko Hayashi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shotaro Sakata
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shotaro Kawamura
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yukako Tokutake
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- *Correspondence: Shinichi Yonekura,
| |
Collapse
|
3
|
Lee CS, Cho HJ, Lee JW, Son H, Chai J, Kim HS. Adhesion GPCR Latrophilin-2 Specifies Cardiac Lineage Commitment through CDK5, Src, and P38MAPK. Stem Cell Reports 2021; 16:868-882. [PMID: 33798451 PMCID: PMC8072181 DOI: 10.1016/j.stemcr.2021.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Identifying lineage-specific markers is pivotal for understanding developmental processes and developing cell therapies. Here, we investigated the functioning of a cardiomyogenic cell-surface marker, latrophilin-2 (LPHN2), an adhesion G-protein-coupled receptor, in cardiac differentiation. LPHN2 was selectively expressed in cardiac progenitor cells (CPCs) and cardiomyocytes (CMCs) during mouse and human pluripotent stem cell (PSC) differentiation; cell sorting with an anti-LPHN2 antibody promoted the isolation of populations highly enriched in CPCs and CMCs. Lphn2 knockdown or knockout PSCs did not express cardiac genes. We used the Phospho Explorer Antibody Array, which encompasses nearly all known signaling pathways, to assess molecular mechanisms underlying LPHN2-induced cardiac differentiation. LPHN2-dependent phosphorylation was the strongest for cyclin-dependent kinase 5 (CDK5) at Tyr15. We identified CDK5, Src, and P38MAPK as key downstream molecules of LPHN2 signaling. These findings provide a valuable strategy for isolating CPCs and CMCs from PSCs and insights into the still-unknown cardiac differentiation mechanisms.
Collapse
Affiliation(s)
- Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Flamini V, Ghadiali RS, Antczak P, Rothwell A, Turnbull JE, Pisconti A. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53. Stem Cell Reports 2018; 10:970-983. [PMID: 29429962 PMCID: PMC5918193 DOI: 10.1016/j.stemcr.2018.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence.
Collapse
Affiliation(s)
- Valentina Flamini
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rachel S Ghadiali
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Philipp Antczak
- Department of Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Computational Biology Facility, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy Rothwell
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Addolorata Pisconti
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
5
|
Lu J, Zheng ZF, Li P, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Lin M, Tu RH, Zheng CH, Huang CM. A Novel Preoperative Skeletal Muscle Measure as a Predictor of Postoperative Complications, Long-Term Survival and Tumor Recurrence for Patients with Gastric Cancer After Radical Gastrectomy. Ann Surg Oncol 2018; 25:439-448. [PMID: 29181681 DOI: 10.1245/s10434-017-6269-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 08/29/2023]
Abstract
BACKGROUND Increasing numbers of studies have shown that skeletal muscle measures are closely associated with tumors. This study explored the relationship between skeletal muscle measures and short- and long-term outcomes after radical gastrectomy (RG) for gastric cancer (GC). METHODS The study analyzed 221 GC patients who underwent RG between December 2009 and December 2010. The total psoas area (TPA) and psoas density [Hounsfield unit average calculation (HUAC)] were measured. The total psoas gauge (TPG) was created by multiplying TPA × HUAC. Low TPA, low HUAC, and low TPG were defined in the categorical analyses as the lowest quartile. Logistic regression modeling, the Kaplan-Meier method, and three-step multivariate analysis were used. RESULTS The median follow-up period was 64 months. Compared with low TPA and low HUAC, only low TPG was an independent risk factor for postoperative complications. The univariate analysis showed that low TPA, low HUAC, and low TPG were predictors of overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CCS) after surgery. The result of the three-step multivariate analysis demonstrated that low TPG was an independent risk factor for OS, RFS, and CCS. Moreover, the prognostic value of TPG was superior to that of TPA and HUAC. The patients with low TPG experienced significantly more postoperative liver recurrence than the patients with high TPG (p = 0.011). CONCLUSION Compared with preoperative skeletal muscle quantity (TPA) and quality (HUAC), TPG can more accurately predict complications and prognosis after RG. In addition, TPG may be an indicator for the early detection of liver recurrence after RG.
Collapse
Affiliation(s)
- Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhi-Fang Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
6
|
Lindqvist J, Torvaldson E, Gullmets J, Karvonen H, Nagy A, Taimen P, Eriksson JE. Nestin contributes to skeletal muscle homeostasis and regeneration. J Cell Sci 2017; 130:2833-2842. [PMID: 28733456 DOI: 10.1242/jcs.202226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023] Open
Abstract
Nestin, a member of the cytoskeletal family of intermediate filaments, regulates the onset of myogenic differentiation through bidirectional signaling with the kinase Cdk5. Here, we show that these effects are also reflected at the organism level, as there is a loss of skeletal muscle mass in nestin-/- (NesKO) mice, reflected as reduced lean (muscle) mass in the mice. Further examination of muscles in male mice revealed that these effects stemmed from nestin-deficient muscles being more prone to spontaneous regeneration. When the regeneration capacity of the compromised NesKO muscle was tested by muscle injury experiments, a significant healing delay was observed. NesKO satellite cells showed delayed proliferation kinetics in conjunction with an elevation in p35 (encoded by Cdk5r1) levels and Cdk5 activity. These results reveal that nestin deficiency generates a spontaneous regenerative phenotype in skeletal muscle that relates to a disturbed proliferation cycle that is associated with uncontrolled Cdk5 activity.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Josef Gullmets
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Henok Karvonen
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
7
|
Knockdown of Expression of Cdk5 or p35 (a Cdk5 Activator) Results in Podocyte Apoptosis. PLoS One 2016; 11:e0160252. [PMID: 27479491 PMCID: PMC4968817 DOI: 10.1371/journal.pone.0160252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/15/2016] [Indexed: 11/25/2022] Open
Abstract
Podocytes are terminally differentiated glomerular epithelial cells. Podocyte loss has been found in many renal diseases. Cdk5 is a cyclin-dependent protein kinase which is predominantly regulated by p35. To study the role of Cdk5/p35 in podocyte survival, we first applied western blotting (WB) analysis to confirm the time-course expression of Cdk5 and p35 during kidney development and in cultured immortalized mouse podocytes. We also demonstrated that p35 plays an important role in promoting podocyte differentiation by overexpression of p35 in podocytes. To deregulate the expression of Cdk5 or p35 in mouse podocytes, we used RNAi and analyzed cell function and apoptosis assaying for podocyte specific marker Wilms Tumor 1 (WT1) and cleaved caspase 3, respectively. We also counted viable cells using cell counting kit-8. We found that depletion of Cdk5 causes decreased expression of WT1 and apoptosis. It is noteworthy, however, that downregulation of p35 reduced Cdk5 activity, but had no effect on cleaved caspase 3 expression. It did, however, reduce expression of WT1, a transcription factor, and produced podocyte dysmorphism. On the other hand increased apoptosis could be detected in p35-deregulated podocytes using the TUNEL analysis and immunofluorescent staining with cleaved caspase3 antibody. Viability of podocytes was decreased in both Cdk5 and p35 knockdown cells. Knocking down Cdk5 or p35 gene by RNAi does not affect the cycline I expression, another Cdk5 activator in podocyes. We conclude that Cdk5 and p35 play a crucial role in maintaining podocyte differentiation and survival, and suggest these proteins as targets for therapeutic intervention in podocyte-damaged kidney diseases.
Collapse
|
8
|
Putarjunan A, Torii KU. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals. Dev Growth Differ 2016; 58:341-54. [PMID: 27125444 PMCID: PMC11520973 DOI: 10.1111/dgd.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/01/2024]
Abstract
Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
9
|
Lindqvist J, Wistbacka N, Eriksson JE. Studying Nestin and its Interrelationship with Cdk5. Methods Enzymol 2015; 568:509-35. [PMID: 26795482 DOI: 10.1016/bs.mie.2015.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current research utilizes the specific expression pattern of intermediate filaments (IF) for identifying cellular state and origin, as well as for the purpose of disease diagnosis. Nestin is commonly utilized as a specific marker and driver for CNS progenitor cell types, but in addition, nestin can be found in several mesenchymal progenitor cells, and it is constitutively expressed in a few restricted locations, such as muscle neuromuscular junctions and kidney podocytes. Alike most other members of the IF protein family, nestin filaments are dynamic, constantly being remodeled through posttranslational modifications, which alter the solubility, protein levels, and signaling capacity of the nestin filaments. Through its interactions with kinases and other signaling executors, resulting in a complex and bidirectional regulation of cell signaling events, nestin has the potential to determine whether cells divide, differentiate, migrate, or stay in place. In this review, the broad and similar roles of IFs as dynamic signaling scaffolds, is exemplified by observations of nestin functions and its interaction with the cyclin- dependent kinase 5, the atypical kinase in the family of cyclin-dependent kinases.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Num Wistbacka
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
10
|
Zhong B, Wang T, Lun X, Zhang J, Zheng S, Yang W, Li W, Xiang AP, Chen Z. Contribution of nestin positive esophageal squamous cancer cells on malignant proliferation, apoptosis, and poor prognosis. Cancer Cell Int 2014; 14:57. [PMID: 24966803 PMCID: PMC4071021 DOI: 10.1186/1475-2867-14-57] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Background The stem cell-associated intermediate filament nestin has recently been linked with neoplastic transformation, but the specific mechanism by which nestin positive tumor cells leads to malignant invasion and metastasis behaviors of esophageal squamous cell carcinoma (ESCC) remains unclear. Methods To obtain insight into the biological role of nestin in ESCC, we explored the association of the nestin phenotype with malignant proliferation and apoptosis in esophageal squamous cancer cells. Nestin expression was determined in ESCC specimens and cell lines, and correlated with clinicopathological properties, including clinical prognosis and proliferative markers. The association of the nestin phenotype with apoptotic indicators was also analyzed. Results Nestin was expressed in ESCC specimens and cell lines. ESCC patients with nestin-positive tumors had significantly shorter median survival and progression-free survival times than those with nestin-negative tumors. Positive staining for the proliferation markers Ki67 and PCNA (proliferating cell nuclear antigen) was detected in 56.9% and 60.2% of ESCC specimens, respectively, and was strongly correlated with the nestin phenotype. Notably, expression of cyclin dependent kinase-5 (CDK5) and P35 was detected in 53.8% and 48.4% of ESCC specimens, respectively, and was strongly associated with the nestin phenotype. Conclusion Our data demonstrated nestin expression in ESCC specimens and cell lines, and revealed a strong association of the nestin phenotype with poor prognosis in ESCC patients. Furthermore, we showed that nestin positive ESCC cells played an important role in the malignant proliferation and apoptosis.
Collapse
Affiliation(s)
- Beilong Zhong
- Department of Thoracic Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueping Lun
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jinli Zhang
- Guangzhou Research Institute of Traumatic Surgery, the Fourth Affiliated Hospital, Ji'nan University, Guangzhou, Guangdong 510220, China
| | - Sannv Zheng
- Department of Anesthesiology and Operating Room of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weilin Yang
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenguang Chen
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
11
|
Bankston AN, Li W, Zhang H, Ku L, Liu G, Papa F, Zhao L, Bibb JA, Cambi F, Tiwari-Woodruff SK, Feng Y. p39, the primary activator for cyclin-dependent kinase 5 (Cdk5) in oligodendroglia, is essential for oligodendroglia differentiation and myelin repair. J Biol Chem 2013; 288:18047-57. [PMID: 23645679 DOI: 10.1074/jbc.m113.453688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39(-/-) mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair.
Collapse
Affiliation(s)
- Andrew N Bankston
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Terabayashi T, Sakaguchi M, Shinmyozu K, Ohshima T, Johjima A, Ogura T, Miki H, Nishinakamura R. Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development. PLoS One 2012; 7:e39714. [PMID: 22768111 PMCID: PMC3387196 DOI: 10.1371/journal.pone.0039714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/25/2012] [Indexed: 01/24/2023] Open
Abstract
Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development.
Collapse
Affiliation(s)
- Takeshi Terabayashi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
| | - Kaori Shinmyozu
- Proteomics Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Ai Johjima
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Teru Ogura
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE. Insights into intermediate filament regulation from development to ageing. J Cell Sci 2011; 124:1363-72. [PMID: 21502133 DOI: 10.1242/jcs.041244] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filament (IF) proteins comprise a large family with more than 70 members. Initially, IFs were assumed to provide only structural reinforcement for the cell. However, IFs are now known to be dynamic structures that are involved in a wide range of cellular processes during all stages of life, from development to ageing, and during homeostasis and stress. This Commentary discusses some lesser-known functional and regulatory aspects of IFs. We specifically address the emerging roles of nestin in myogenesis and cancer cell migration, and examine exciting evidence on the regulation of nestin and lamin A by the notch signalling pathway, which could have repercussions for our understanding of the roles of IF proteins in development and ageing. In addition, we discuss the modulation of the post-translational modifications of neuronally expressed IFs and their protein-protein interactions, as well as IF glycosylation, which not only has a role in stress and ageing, but might also regulate IFs during development. Although many of these recent findings are still preliminary, they nevertheless open new doors to explore the functionality of the IF family of proteins.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
14
|
Quintavalle M, Elia L, Price JH, Heynen-Genel S, Courtneidge SA. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci Signal 2011; 4:ra49. [PMID: 21791703 DOI: 10.1126/scisignal.2002032] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acquisition of invasive cell behavior underlies tumor progression and metastasis. To further define the molecular mechanisms underlying invasive behavior, we developed a high-throughput screening strategy to quantitate invadopodia, which are actin-rich membrane protrusions of cancer cells that contribute to tissue invasion and matrix remodeling. We tested the LOPAC 1280 collection of pharmacologically active agents in a high-content, image-based assay and identified compounds that inhibited invadopodium formation without overt toxicity, as well as compounds that increased invadopodia number. The chemotherapeutic agent paclitaxel increased both the number of invadopodia and the invasive behavior of various human cancer cell lines, effects that have potential clinical implications for its use before surgical removal of a primary tumor (neoadjuvant therapy) or in patients with chemoresistant tumors. Several compounds that inhibited invasion have been characterized as cyclin-dependent kinase (Cdk) inhibitors, and loss-of-function experiments determined that Cdk5 was the relevant target. We further determined that Cdk5 promoted both invadopodium formation and cancer cell invasion by phosphorylating and thus decreasing the abundance of the actin regulatory protein caldesmon.
Collapse
Affiliation(s)
- Manuela Quintavalle
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
15
|
Pallari HM, Lindqvist J, Torvaldson E, Ferraris SE, He T, Sahlgren C, Eriksson JE. Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol Biol Cell 2011; 22:1539-49. [PMID: 21346193 PMCID: PMC3084676 DOI: 10.1091/mbc.e10-07-0568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 01/06/2011] [Accepted: 02/16/2011] [Indexed: 12/11/2022] Open
Abstract
Many types of progenitor cells are distinguished by the expression of the intermediate filament protein nestin, a frequently used stem cell marker, the physiological roles of which are still unknown. Whereas myogenesis is characterized by dynamically regulated nestin levels, we studied how altering nestin levels affects myoblast differentiation. Nestin determined both the onset and pace of differentiation. Whereas depletion of nestin by RNAi strikingly accelerated the process, overexpression of nestin completely inhibited differentiation. Nestin down-regulation augmented the early stages of differentiation, at the level of cell-cycle withdrawal and expression of myogenic markers, but did not affect proliferation of undifferentiated dividing myoblasts. Nestin regulated the cleavage of the Cdk5 activator protein p35 to its degradation-resistant form, p25. In this way, nestin has the capacity to halt myoblast differentiation by inhibiting sustained activation of Cdk5 by p25, which is critical for the progress of differentiation. Our results imply that nestin regulates the early stages of myogenesis rather than maintains the undifferentiated state of progenitor cells. In the bidirectional interrelationship between nestin and Cdk5, Cdk5 regulates the organization and stability of its own nestin scaffold, which in turn controls the effects of Cdk5. This nestin-Cdk5 cross-talk sets the pace of muscle differentiation.
Collapse
Affiliation(s)
- Hanna-Mari Pallari
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
16
|
Magli A, Angelelli C, Ganassi M, Baruffaldi F, Matafora V, Battini R, Bachi A, Messina G, Rustighi A, Del Sal G, Ferrari S, Molinari S. Proline isomerase Pin1 represses terminal differentiation and myocyte enhancer factor 2C function in skeletal muscle cells. J Biol Chem 2010; 285:34518-27. [PMID: 20801874 PMCID: PMC2966067 DOI: 10.1074/jbc.m110.104133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/20/2010] [Indexed: 12/23/2022] Open
Abstract
Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation. With the aim of clarifying the mechanism of Pin1 function in skeletal myogenesis, we investigated whether MEF2C, a critical regulator of the myogenic program that is the end point of several signaling pathways, might serve as a/the target for the inhibitory effects of Pin1 on muscle differentiation. We show that Pin1 interacts selectively with phosphorylated MEF2C in skeletal muscle cells, both in vitro and in vivo. The interaction with Pin1 requires two novel critical phospho-Ser/Thr-Pro motifs in MEF2C, Ser(98) and Ser(110), which are phosphorylated in vivo. Overexpression of Pin1 decreases MEF2C stability and activity and its ability to cooperate with MyoD to activate myogenic conversion. Collectively, these findings reveal a novel role for Pin1 as a regulator of muscle terminal differentiation and suggest that Pin1-mediated repression of MEF2C function could contribute to this function.
Collapse
Affiliation(s)
- Alessandro Magli
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Cecilia Angelelli
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Massimo Ganassi
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Fiorenza Baruffaldi
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | - Renata Battini
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | - Graziella Messina
- Stem Cell Research Institute, H. San Raffaele Scientific Institute, 20132 Milan, Italy
- the Department of Biology, University of Milan, 20129 Milan, Italy
| | - Alessandra Rustighi
- the Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Area Science Park, University of Trieste, 34100 Trieste, Italy, and
- the Department of Life Sciences, University of Trieste, 34012 Trieste, Italy
| | - Giannino Del Sal
- the Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Area Science Park, University of Trieste, 34100 Trieste, Italy, and
- the Department of Life Sciences, University of Trieste, 34012 Trieste, Italy
| | - Stefano Ferrari
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Susanna Molinari
- From the Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| |
Collapse
|
17
|
Lu JW, Chang JG, Yeh KT, Chen RM, Tsai JJP, Hu RM. Decreased expression of p39 is associated with a poor prognosis in human hepatocellular carcinoma. Med Oncol 2010; 28 Suppl 1:S239-45. [PMID: 20936377 DOI: 10.1007/s12032-010-9707-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 09/25/2010] [Indexed: 01/05/2023]
Abstract
The aims of this study are to investigate the relationship between p39 expression and clinicopathological parameters of hepatocellular carcinoma (HCC) and to evaluate the prognostic value of p39 for HCC patients. Real-time quantitative PCR and immunohistochemistry was used to measure p39 expression in tumor and adjacent nontumor samples. Relationships of p39 expression with clinical parameters and patient survival were analyzed. Real-time quantitative RT-PCR showed that the quantity of p39 mRNA in cancerous tissue was significantly lower than that in nontumor tissue (P < 0.001). Immunohistochemistry data confirmed that p39 protein was reduced in 64% of HCC. p39 expression was not influenced by chronic alcohol exposure or cirrhosis. Reduction in p39 was correlated with the HBV (P = 0.039), HCV (P = 0.011), and histological grade (P < 0.001). HCC patients with lower p39 expression had poorer overall survival rate than that with high expression (HR, 2.868; 95% CI, 1.451-5.670; P = 0.002). Together with other results, these results reveal that p39 expression was reduced in HCC tissue. p39 could be a useful clinical prognostic marker for hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| | | | | | | | | | | |
Collapse
|
18
|
Dong H, Lin W, Wu J, Chen T. Flavonoids activate pregnane x receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC BIOCHEMISTRY 2010; 11:23. [PMID: 20553580 PMCID: PMC2901217 DOI: 10.1186/1471-2091-11-23] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/16/2010] [Indexed: 12/14/2022]
Abstract
Background The expression of the drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is regulated by the pregnane × receptor (PXR), which is modulated by numerous signaling pathways, including the cyclin-dependent kinase (Cdk) pathway. Flavonoids, commonly consumed by humans as dietary constituents, have been shown to modulate various signaling pathways (e.g., inhibiting Cdks). Flavonoids have also been shown to induce CYPs expression, but the underlying mechanism of action is unknown. Here, we report the mechanism responsible for flavonoid-mediated PXR activation and CYP expression. Results In a cell-based screen designed to identify compounds that activate PXR-mediated CYP3A4 gene expression in HepG2 human carcinoma cells, we identified several flavonoids, such as luteolin and apigenin, as PXR activators. The flavonoids did not directly bind to PXR, suggesting that an alternative mechanism may be responsible for flavonoid-mediated PXR activation. Consistent with the Cdk5-inhibitory effect of flavonoids, Cdk5 and p35 (a non-cyclin regulatory subunit required to activate Cdk5) were expressed in HepG2. The activation of Cdk5 attenuated PXR-mediated CYP3A4 expression whereas its downregulation enhanced it. The Cdk5-mediated downregulation of CYP3A4 promoter activity was restored by flavonoids, suggesting that flavonoids activate PXR by inactivating Cdk5. In vitro kinase assays showed that Cdk5 directly phosphorylates PXR. The Cdk kinase profiling assay showed that apigenin inhibits multiple Cdks, suggesting that several Cdks may be involved in activation of PXR by flavonoids. Conclusions Our results for the first time link the stimulatory effect of flavonoids on CYP expression to their inhibitory effect on Cdks, through a PXR-mediated mechanism. These results may have important implications on the pharmacokinetics of drugs co-administered with herbal remedy and herbal-drug interactions.
Collapse
Affiliation(s)
- Hanqing Dong
- Department of Chemical Biology and Therapeutics, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
19
|
Mao D, Hinds PW. p35 is required for CDK5 activation in cellular senescence. J Biol Chem 2010; 285:14671-80. [PMID: 20181942 PMCID: PMC2863219 DOI: 10.1074/jbc.m109.066118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/20/2010] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma tumor suppressor gene (RB-1) is a key regulator of cellular senescence. Expression of the retinoblastoma protein (pRB) in human tumor cells that lack it results in senescence-like changes. The induction of the senescent phenotype by pRB requires the postmitotic kinase CDK5, the best known function of which is in neuronal development and postmitotic neuronal activities. Activation of CDK5 in neurons depends on its activators p35 and p39; however, little is known about how CDK5 is activated in non-neuronal senescent cells. Here we report that p35 is required for the activation of CDK5 in the process of cellular senescence. We demonstrate that: (i) p35 is expressed in osteosarcoma cells, (ii) p35 is required for CDK5 activation induced by pRB during senescence, (iii) p35 is required for the senescent morphological changes in which CDK5 is known to be involved as well as for expression of the senescence secretome, and (iv) p35 is up-regulated in senescing cells. Taken together, these results suggest that p35 is at least one of the activators of CDK5 that is mobilized in the process of cellular senescence, which may provide insight into cancer cell proliferation and future cancer therapeutics.
Collapse
Affiliation(s)
- Daqin Mao
- From the Molecular Oncology Research Institute, Tufts Medical Center, and
- the Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Philip W. Hinds
- From the Molecular Oncology Research Institute, Tufts Medical Center, and
| |
Collapse
|
20
|
de Thonel A, Ferraris SE, Pallari HM, Imanishi SY, Kochin V, Hosokawa T, Hisanaga SI, Sahlgren C, Eriksson JE. Protein kinase Czeta regulates Cdk5/p25 signaling during myogenesis. Mol Biol Cell 2010; 21:1423-34. [PMID: 20200223 PMCID: PMC2854099 DOI: 10.1091/mbc.e09-10-0847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Atypical protein kinase Cζ (PKCζ) is emerging as a mediator of differentiation. Here, we describe a critical role for PKCζ during myogenic differentiation. Our results identify PKCζ as a controller of myogenic differentiation by its regulation of Cdk5. Atypical protein kinase Cζ (PKCζ) is emerging as a mediator of differentiation. Here, we describe a novel role for PKCζ in myogenic differentiation, demonstrating that PKCζ activity is indispensable for differentiation of both C2C12 and mouse primary myoblasts. PKCζ was found to be associated with and to regulate the Cdk5/p35 signaling complex, an essential factor for both neuronal and myogenic differentiation. Inhibition of PKCζ activity prevented both myotube formation and simultaneous reorganization of the nestin intermediate filament cytoskeleton, which is known to be regulated by Cdk5 during myogenesis. p35, the Cdk5 activator, was shown to be a specific phosphorylation target of PKCζ. PKCζ-mediated phosphorylation of Ser-33 on p35 promoted calpain-mediated cleavage of p35 to its more active and stable fragment, p25. Strikingly, both calpain activation and the calpain-mediated cleavage of p35 were shown to be PKCζ-dependent in differentiating myoblasts. Overall, our results identify PKCζ as a controller of myogenic differentiation by its regulation of the phosphorylation-dependent and calpain-mediated p35 cleavage, which is crucial for the amplification of the Cdk5 activity that is required during differentiation.
Collapse
Affiliation(s)
- Aurélie de Thonel
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, 20521 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Q, Liu X, Zhang M, Ye G, Qiao Q, Ling Y, Wu Y, Zhang Y, Yu L. Characterization of a novel human CDK5 splicing variant that inhibits Wnt/beta-catenin signaling. Mol Biol Rep 2009; 37:2415-21. [PMID: 19693690 DOI: 10.1007/s11033-009-9752-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/06/2009] [Indexed: 11/25/2022]
Abstract
The cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases, playing an essential role in regulating cell-cycle progression. In our present work, human CDK5 and a novel CDK5 splicing variant, named as CDK5-SV, were cloned from the cDNA library of human testis. CDK5-SV lacking the exon 7 of CDK5 encodes a protein of 260 amino acids. Through RT-PCR analysis in different human tissues, CDK5-SV was found to be expressed in testis, skeletal muscle, colon, bone marrow and ovary, while CDK5 was ubiquitously expressed. Immunofluorescence experiment in HeLa cells showed that the subcellular localizations of CDK5-SV and CDK5 were totally different. CDK5 mainly located in the cytoplasm, while CDK5-SV accumulated in nucleus. Reporter gene assay showed that when co-transfected with beta-catenin, CDK5 and CDK5-SV could both strongly inhibit the Wnt/beta-catenin signaling pathway. Consistently, CDK5-SV could also interact with beta-catenin as CDK5 does. Taken together, our findings suggest that CDK5-SV might also be a negative regulator of Wnt/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, 200433 Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kanungo J, Zheng YL, Mishra B, Pant HC. Zebrafish Rohon-Beard neuron development: cdk5 in the midst. Neurochem Res 2009; 34:1129-37. [PMID: 19067160 PMCID: PMC6007013 DOI: 10.1007/s11064-008-9885-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase that is activated mostly by association with its activators, p35 and p39. Initially projected as a neuron-specific kinase, cdk5 is expressed ubiquitously and its kinase activity solely depends on the presence of its activators, which are also found in some non-neuronal tissues. As a multifunctional protein, cdk5 has been linked to axonogenesis, cell migration, exocytosis, neuronal differentiation and apoptosis. Cdk5 plays a critical role in functions other than normal physiology, especially in neurodegeneration. Its contribution to both normal physiological as well as pathological processes is mediated by its specific substrates. Cdk5-null mice are embryonically lethal, therefore making it difficult to study precisely what cdk5 does to the nervous system at early stages of development, be it neuron development or programmed cell death. Zebrafish model system bypasses the impediment, as it is amenable to reverse genetics studies. One of the functions that we have followed for the cdk5 ortholog in zebrafish in vivo is its effect on the Rohon-Beard (RB) neurons. RB neurons are the primary sensory spinal neurons that die during the first two days of zebrafish development eventually to be replaced by the dorsal root ganglia (DRG). Based on ours studies and others', here we discuss possible mechanisms that may be involved in cdk5's role in RB neuron development and survival.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4130, USA
| | | | | | | |
Collapse
|
23
|
Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH. Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol 2009; 11:624-30. [PMID: 19363486 PMCID: PMC2714540 DOI: 10.1038/ncb1868] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/17/2009] [Indexed: 01/09/2023]
Abstract
Cell migration is a dynamic process that requires temporal and spatial regulation of integrin activation and focal adhesion assembly/disassembly. Talin, an actin and beta-integrin tail-binding protein, is essential for integrin activation and focal adhesion formation. Calpain-mediated cleavage of talin has a key role in focal adhesion turnover; however, the talin head domain, one of the two cleavage products, stimulates integrin activation, localizes to focal adhesions and maintains cell edge protrusions, suggesting that other steps, downstream of talin proteolysis, are required for focal adhesion disassembly. Here we show that talin head binds Smurf1, an E3 ubiquitin ligase involved in cell polarity and migration, more tightly than full-length talin does and that this interaction leads to talin head ubiquitylation and degradation. We found that talin head is a substrate for Cdk5, a cyclin-dependent protein kinase that is essential for cell migration, synaptic transmission and cancer metastasis. Cdk5 phosphorylated talin head at Ser 425, inhibiting its binding to Smurf1, thus preventing talin head ubiquitylation and degradation. Expression of the mutant tal(S425A), which resists Cdk5 phosphorylation thereby increasing its susceptibility to Smurf1-mediated ubiqitylation, resulted in extensive focal adhesion turnover and inhibited cell migration. Thus, talin head produced by calpain-induced cleavage of talin is degraded through Smurf1-mediated ubiquitylation; moreover, phosphorylation by Cdk5 regulates the binding of Smurf1 to talin head, controlling talin head turnover, adhesion stability and ultimately, cell migration.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Medicine, University of California-San Diego, La Jolla, CA 92093
| | - Zenon Rajfur
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Nima Yousefi
- Department of Medicine, University of California-San Diego, La Jolla, CA 92093
| | - Zaozao Chen
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ken Jacobson
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Mark H. Ginsberg
- Department of Medicine, University of California-San Diego, La Jolla, CA 92093
| |
Collapse
|
24
|
Choi HS, Lee Y, Park KH, Sung JS, Lee JE, Shin ES, Ryu JS, Kim YH. Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population. J Hum Genet 2009; 54:298-303. [PMID: 19343042 DOI: 10.1038/jhg.2009.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5), a proline-directed serine/threonine kinase, which was originally known for its regulatory role in neuronal activities, has recently been suggested to play a role in extraneuronal activities. For example, a recent study detected overexpression of the CDK5 gene in non-small-cell lung cancer. Therefore, in order to explore the association of the CDK5 gene with lung cancer risk in a Korean population, the genotypes of the CDK5 promoter region were determined in 407 lung cancer patients and 402 normal participants. The result showed that the -904 G>A genotype affected susceptibility to lung cancer risk (odd ratios (OR)=1.53, 95% confidence interval (CI)=1.02-2.32). Furthermore, subsequent haplotype analysis of three single-nucleotide polymorphism (SNP) regions suggested that the A-G-C haplotype was associated with a higher overall risk of lung cancer (OR=1.59, 95% CI=1.16-2.18). These results suggest that CDK5 promoter polymorphisms contribute to the genetic susceptibility to lung cancer in the Korean population.
Collapse
Affiliation(s)
- Hyo Seon Choi
- Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University Anam Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Park KHJ, Vincent I. Presymptomatic biochemical changes in hindlimb muscle of G93A human Cu/Zn superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:462-8. [PMID: 18485920 PMCID: PMC2517142 DOI: 10.1016/j.bbadis.2008.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is primarily a motor neuron disorder. Intriguingly, early muscle denervation preceding motor neuron loss is observed in mouse models of ALS. Enhanced muscle vulnerability to denervation process has been suggested by accelerated muscle deterioration following peripheral nerve injury in an ALS mouse model. Here we provide evidence of biochemical changes in the hindlimb muscle of young, presymptomatic G93A hSOD1 transgenic mice. In this report, we demonstrate that cdk5 activity is reduced in hindlimb muscle of 27-day-old G93A hSOD1 transgenic mice. In vitro analysis revealed mutant hSOD1-mediated suppression of cdk5 activity. Furthermore, the decrease in muscle cdk5 activity was accompanied by a significant reduction in MyoD and cyclin D1 levels. These early muscle changes raise the possibility that the progressive deterioration of muscle function is potentiated by altered muscle biochemistry in these mice at a very young, presymptomatic age.
Collapse
Affiliation(s)
- Kevin H J Park
- Department of Paediatrics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4 Canada. <>
| | | |
Collapse
|
26
|
Hyder CL, Pallari HM, Kochin V, Eriksson JE. Providing cellular signposts - Post-translational modifications of intermediate filaments. FEBS Lett 2008; 582:2140-8. [DOI: 10.1016/j.febslet.2008.04.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
|
27
|
Dhariwala FA, Rajadhyaksha MS. An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 2008; 28:351-69. [PMID: 18183483 PMCID: PMC11520031 DOI: 10.1007/s10571-007-9242-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/14/2007] [Indexed: 12/23/2022]
Abstract
The proline-directed serine threonine kinase, Cdk5, is an unusual molecule that belongs to the well-known large family of proteins, cyclin-dependent kinases (Cdks). While it has significant homology with the mammalian Cdk2 and yeast cdc2, unlike the other Cdks, it has little role to play in cell cycle regulation and is activated by non-cyclin proteins, p35 and p39. It phosphorylates a spectrum of proteins, most of them associated with cell morphology and motility. A majority of known substrates of Cdk5 are cytoskeletal elements, signalling molecules or regulatory proteins. It also appears to be an important player in cell-cell communication. Highly conserved, Cdk5 is most abundant in the nervous system and is of special interest to neuroscientists as it appears to be indispensable for normal neural development and function. In normal cells, transcription and activity of Cdk5 is tightly regulated. Present essentially in post-mitotic neurons, its normal activity is obligatory for migration and differentiation of neurons in developing brain. Deregulation of Cdk5 has been implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. Regulators of Cdk5 activity are considered as potential therapeutic molecules for degenerative diseases. This review focuses on the role of Cdk5 in neural cells as regulator of cytoskeletal elements, axonal guidance, membrane transport, synaptogenesis and cell survival in normal and pathological conditions.
Collapse
Affiliation(s)
- Fatema A. Dhariwala
- Department of Life Sciences, Sophia College, B. Desai Road, Mumbai, 400026 India
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Center, Mumbai, 400085 India
| | | |
Collapse
|
28
|
Dobrowolny G, Aucello M, Molinaro M, Musarò A. Local expression of mIgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model. Neurol Res 2008; 30:131-6. [PMID: 18397603 DOI: 10.1179/174313208x281235] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
OBJECTIVE The functional connection between muscle and nerve is often altered in several neuromuscular diseases, including amyotrophic lateral sclerosis (ALS). Knowledge about the molecular and cellular mechanisms involved in the restorative reactions is important to our understanding of the processes involved in neuromuscular maintenance. We previously reported that muscle-restricted expression of a localized Igf-1 isoform maintained muscle integrity, stabilized neuromuscular junctions, reduced inflammation in the spinal cord and enhanced motor neuronal survival in SOD(G93A) mice, delaying the onset and progression of the disease. In this study, we analysed potential molecular pathways that are modulated by mIgf-1 to counteract muscle wasting and to preserve motor neurons activity. METHODS We performed molecular and morphologic analysis to address the specific proposed questions. RESULTS AND DISCUSSION Ubiquitin expression and caspase activity resulted markedly increased in SOD(G93A) muscle but maintained at very low levels in the SOD(G93A) x MLC/mIgf-1 (SOD(G93A)/mIgf-1) transgenic muscle. In addition, CDK5 expression, a serine-threonine protein kinase that has been implicated in a number of physiologic processes in nerve and muscle cells, was reduced in SOD(G93A) muscle but increased in SOD(G93A)/mIgf-1 muscle. Notably, while the toxic p25 protein accumulated in SOD(G93A) muscle, no accumulation was evident in the SOD(G93A)/mIgf-1 muscle. The maintenance of muscle phenotype was also associated with maintenance of a normal peripheral nerve, and a greater number of myelinated axons. CONCLUSION These observations offer novel insights into the role of mIgf-1 in the attenuation of muscle wasting in the mouse model of ALS disease.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Histology and Medical Embryology, Centro Eccellenza BEMM and IIM, University of Rome La Sapienza, Via A. Scarpa, 14 Rome 00161, Italy
| | | | | | | |
Collapse
|
29
|
Imanishi SY, Kochin V, Ferraris SE, de Thonel A, Pallari HM, Corthals GL, Eriksson JE. Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by microLC-ESI-Q-TOF MS/MS. Mol Cell Proteomics 2007; 6:1380-91. [PMID: 17510049 DOI: 10.1074/mcp.m600480-mcp200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent advances in instrument control and enrichment procedures have enabled us to quantify large numbers of phosphoproteins and record site-specific phosphorylation events. An intriguing problem that has arisen with these advances is to accurately validate where phosphorylation events occur, if possible, in an automated manner. The problem is difficult because MS/MS spectra of phosphopeptides are generally more complicated than those of unmodified peptides. For large scale studies, the problem is even more evident because phosphorylation sites are based on single peptide identifications in contrast to protein identifications where at least two peptides from the same protein are required for identification. To address this problem we have developed an integrated strategy that increases the reliability and ease for phosphopeptide validation. We have developed an off-line titanium dioxide (TiO(2)) selective phosphopeptide enrichment procedure for crude cell lysates. Following enrichment, half of the phosphopeptide fractionated sample is enzymatically dephosphorylated, after which both samples are subjected to LC-MS/MS. From the resulting MS/MS analyses, the dephosphorylated peptide is used as a reference spectrum against the original phosphopeptide spectrum, in effect generating two peptide spectra for the same amino acid sequence, thereby enhancing the probability of a correct identification. The integrated procedure is summarized as follows: 1) enrichment for phosphopeptides by TiO(2) chromatography, 2) dephosphorylation of half the sample, 3) LC-MS/MS-based analysis of phosphopeptides and corresponding dephosphorylated peptides, 4) comparison of peptide elution profiles before and after dephosphorylation to confirm phosphorylation, and 5) comparison of MS/MS spectra before and after dephosphorylation to validate the phosphopeptide and its phosphorylation site. This phosphopeptide identification represents a major improvement as compared with identifications based only on single MS/MS spectra and probability-based database searches. We investigated an applicability of this method to crude cell lysates and demonstrate its application on the large scale analysis of phosphorylation sites in differentiating mouse myoblast cells.
Collapse
Affiliation(s)
- Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, FIN-20521 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
Muñoz JP, Huichalaf CH, Orellana D, Maccioni RB. cdk5 modulates beta- and delta-catenin/Pin1 interactions in neuronal cells. J Cell Biochem 2007; 100:738-49. [PMID: 17009320 DOI: 10.1002/jcb.21041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cdk5/p35 complex has been implicated in a variety of functions related to brain development, including axonal outgrown and neuronal migration. In this study, by co-immunoprecipitation and pull-down experiments, we have shown that the cdk5/p35 complex associates with and phosphorylates the neuronal delta-catenin. Immunocytochemical studies of delta-catenin and the cdk5-activator p35 in primary cortical neurons indicated that these proteins co-localize in the cell body of neuronal cells. In addition, cdk5 co-localized with beta-catenin in the cell-cell contacts and plasma membrane of undifferentiated and differentiated N2A cells. In this context, we identified Ser(191) and Ser(246) on beta-catenin structure as specific phosphorylation sites for cdk5/p35 complex. Moreover, Pin1, a peptidyl-prolyl isomerase (PPIase) directly bound to both, beta- and delta-catenin, once they have been phosphorylated by the cdk5/p35 complex. Studies indicate that the cdk5/p35 protein kinase system is directly involved in the regulatory mechanisms of neuronal beta- and delta-catenin.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
31
|
Bertelli E, Regoli M, Fonzi L, Occhini R, Mannucci S, Ermini L, Toti P. Nestin expression in adult and developing human kidney. J Histochem Cytochem 2007; 55:411-21. [PMID: 17210924 DOI: 10.1369/jhc.6a7058.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nestin is considered a marker of neurogenic and myogenic precursor cells. Its arrangement is regulated by cyclin-dependent kinase 5 (CDK5), which is expressed in murine podocytes. We investigated nestin expression in human adult and fetal kidney as well as CDK5 presence in adult human podocytes. Confocal microscopy demonstrated that adult glomeruli display nestin immunoreactivity in vimentin-expressing cells with the podocyte morphology and not in cells bearing the endothelial marker CD31. Glomerular nestin-positive cells were CDK5 immunoreactive as well. Western blotting of the intermediate filament-enriched cytoskeletal fraction and coimmunoprecipitation of nestin with anti-CDK5 antibodies confirmed these results. Nestin was also detected in developing glomeruli within immature podocytes and a few other cells. Confocal microscopy of experiments conducted with antibodies against nestin and endothelial markers demonstrated that endothelial cells belonging to capillaries invading the lower cleft of S-shaped bodies and the immature glomeruli were nestin immunoreactive. Similar experiments carried out with antibodies raised against nestin and alpha-smooth muscle actin showed that the first mesangial cells that populate the developing glomeruli expressed nestin. In conclusion, nestin is expressed in the human kidney from the first steps of glomerulogenesis within podocytes, mesangial, and endothelial cells. This expression, restricted to podocytes in mature glomeruli, appears associated with CDK5.
Collapse
Affiliation(s)
- Eugenio Bertelli
- Dept. of Pharmacology Giorgio Segre, Section of Anatomy, University of Siena, Via Aldo Moro 4, I-53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rosales JL, Sarker K, Ho N, Broniewska M, Wong P, Cheng M, van der Hoorn FA, Lee KY. ODF1 phosphorylation by Cdk5/p35 enhances ODF1-OIP1 interaction. Cell Physiol Biochem 2007; 20:311-8. [PMID: 17762160 DOI: 10.1159/000107517] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2007] [Indexed: 11/19/2022] Open
Abstract
Cdk5 and p35 are integral components of the sperm tail outer dense fibers (ODFs), which contribute to the distinct morphology and function of the sperm tail. In this study, we sought to characterize and investigate the significance of Cdk5/p35 association with ODFs. We show that ODF2 interacts with Cdk5 and p35 but not with the Cdk5/p35 heterodimer. By using deletion mutants, the ODF2 binding region in p35 was mapped to residues 122 to 198. This overlaps the Cdk5 binding region in p35, explaining the inability of ODF2 to bind to the Cdk5/p35 complex. In vitro phosphorylation assay showed that although Cdk5/p35 does not phosphorylate ODF2, it phosphorylates ODF1. Mass spectrometry revealed that Cdk5/p35 specifically phosphorylates Ser193 in the ODF1 C-terminal region containing the Cys-X-Pro motif, the interaction site for the novel RING finger protein, ODF1 interacting protein (OIP1), a candidate E3 ubiquitin ligase, that also localizes in the sperm tail. Cdk5 phosphorylation of ODF1 Ser193 results in enhanced ODF1-OIP1 interaction. These findings suggest that Cdk5 may be important in promoting ODF1 degradation, and potentially, the detachment and fragmentation of the sperm tail following fertilization.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Puente LG, Voisin S, Lee REC, Megeney LA. Reconstructing the regulatory kinase pathways of myogenesis from phosphopeptide data. Mol Cell Proteomics 2006; 5:2244-51. [PMID: 16971385 DOI: 10.1074/mcp.m600134-mcp200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multiple kinase activities are required for skeletal muscle differentiation. However, the mechanisms by which these kinase pathways converge to coordinate the myogenic process are unknown. Using multiple phosphoprotein and phosphopeptide enrichment techniques we obtained phosphopeptides from growing and differentiating C2C12 muscle cells and determined specific peptide sequences using LC-MS/MS. To place these phosphopeptides into a rational context, a bioinformatics approach was used. Phosphorylation sites were matched to known site-specific and to site non-specific kinase-substrate interactions, and then other substrates and upstream regulators of the implicated kinases were incorporated into a model network of protein-protein interactions. The model network implicated several kinases of known relevance to myogenesis including AKT, GSK3, CDK5, p38, DYRK, and MAPKAPK2 kinases. This combination of proteomics and bioinformatics technologies should offer great utility as the volume of protein-protein and kinase-substrate information continues to increase.
Collapse
Affiliation(s)
- Lawrence G Puente
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, and Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is recognized as an essential molecule in the brain, where it regulates several neuronal activities, including cytoskeletal remodeling and synaptic transmission. While activity of Cdk5 has primarily been associated with neurons, there are now substantial data indicating that the kinase's activity and function are more general. An increasing body of evidence has established Cdk5 kinase activity, the presence of the Cdk5 activators, p35 and p39, and Cdk5 functions in non-neuronal cells, including myocytes, pancreatic beta-cells, monocytic and neutrophilic leucocytes, glial cells and germ cells. In this review, we present the diverse roles of Cdk5 in several extraneuronal paradigms. The unique properties of each of the different cell types appear to involve distinct means of Cdk5 regulation and function. The potential mechanisms through which Cdk5 regulates extraneuronal cell activities such as exocytosis, gene transcription, wound healing and senescence are discussed.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, The Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
35
|
Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD, Eriksson JE. A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J 2006; 25:4808-19. [PMID: 17036052 PMCID: PMC1618100 DOI: 10.1038/sj.emboj.7601366] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 09/01/2006] [Indexed: 02/06/2023] Open
Abstract
The intermediate filament protein, nestin, has been implicated as an organizer of survival-determining signaling molecules. When nestin expression was related to the sensitivity of neural progenitor cells to oxidant-induced apoptosis, nestin displayed a distinct cytoprotective effect. Oxidative stress in neuronal precursor cells led to downregulation of nestin with subsequent activation of cyclin-dependent kinase 5 (Cdk5), a crucial kinase in the nervous system. Nestin downregulation was a prerequisite for the Cdk5-dependent apoptosis, as overexpression of nestin efficiently inhibited induction of apoptosis, whereas depletion of nestin by RNA interference had a sensitizing effect. When the underlying link between nestin and Cdk5 was analyzed, we observed that nestin serves as a scaffold for Cdk5, with binding restricted to a specific region following the alpha-helical domain of nestin, and that the presence and organization of nestin regulated the sequestration and activity of Cdk5, as well as the ubiquitylation and turnover of its regulator, p35. Our data imply that nestin is a survival determinant whose action is based upon a novel mode of Cdk5 regulation, affecting the targeting, activity, and turnover of the Cdk5/p35 signaling complex.
Collapse
Affiliation(s)
- Cecilia M Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Hanna-Mari Pallari
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland
| | - Tao He
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Ying-Hao Chou
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Åbo Akademi University, BioCity, Turku, Finland
| |
Collapse
|
36
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.
Collapse
Affiliation(s)
- Marco Angelo
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
37
|
Zelenka PS, Smith J. Therapeutic potential of CDK5 inhibitors to promote corneal epithelial wound healing. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.7.875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Lu G, Seta KA, Millhorn DE. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes. J Biol Chem 2005; 280:21731-8. [PMID: 15824106 DOI: 10.1074/jbc.m412498200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells.
Collapse
Affiliation(s)
- Gang Lu
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
39
|
Wood DR, Nye JS, Lamb NJC, Fernandez A, Kitzmann M. Intracellular retention of caveolin 1 in presenilin-deficient cells. J Biol Chem 2004; 280:6663-8. [PMID: 15613480 DOI: 10.1074/jbc.m410332200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in genes encoding presenilins (PS1 and PS2) are responsible for the majority of early onset familial Alzheimer's disease. PS, a critical component of gamma-secretase, is responsible for the intramembranous cleavage of amyloid precursor protein and Notch. Other physiological functions have been assigned to PS without any clear identification of the mechanisms underlying these multiple biological roles. The early embryonic lethality of PS1 and PS2 double knock-out (PS1/2 null) mice prevents the evaluation of physiological roles of PS. To investigate new functions for presenilins, we performed a proteomic approach by using cells derived from PS1/2 null blastocysts and wild type controls. We identified a presenilin-dependent cell-surface binding of albumin. Binding of albumin depends on intact caveolae on the cellular surface. Abnormal caveolin 1 localization in PS1/2 null cells was associated with a loss of caveolae and an absence of caveolin 1 expression within lipid rafts. Expressing PS1 or PS2 but not the intracellular form of Notch1 in PS1/2 null cells restored normal caveolin 1 localization, demonstrating that presenilins are required for the subcellular trafficking of caveolin 1 independently from Notch activity. Despite an expression of both caveolin 1 and PS1 within lipid raft-enriched fractions after sucrose density centrifugation in wild type cells, no direct interaction between these two proteins was detected, implying that presenilins affect caveolin 1 trafficking in an indirect manner. We conclude that presenilins are required for caveolae formation by controlling transport of intracellular caveolin 1 to the plasma membrane.
Collapse
Affiliation(s)
- Douglas R Wood
- Department of Urology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
40
|
Griffin SV, Hiromura K, Pippin J, Petermann AT, Blonski MJ, Krofft R, Takahashi S, Kulkarni AB, Shankland SJ. Cyclin-dependent kinase 5 is a regulator of podocyte differentiation, proliferation, and morphology. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1175-85. [PMID: 15466384 PMCID: PMC1618643 DOI: 10.1016/s0002-9440(10)63378-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in renal physiology, including the prevention of proteinuria. Cyclin-dependent kinase 5 (CDK5) has been shown to influence several cellular processes in other terminally differentiated cells, in particular neurons. In this study, we examined the role of CDK5 in podocyte differentiation, proliferation, and morphology. In conditionally immortalized mouse podocytes in culture, CDK5 increased in association with podocyte differentiation. During mouse glomerulogenesis in vivo, CDK5 expression was predominantly detected in podocytes from the capillary loop stage to maturation and persisted in the podocytes of adult glomeruli. In contrast, CDK5 was markedly decreased in the proliferating and dedifferentiated podocytes of mice with anti-glomerular basement membrane nephritis and in human immunodeficiency virus transgenic mice. p35, the activator of CDK5, was also detected in podocytes and the p35/CDK5 complex was active. Cell fractionation studies showed that active p35/CDK5 was mainly localized to the plasma membrane. Specific inhibition of CDK5 in differentiated cultured podocytes, either pharmacologically or with siRNA, induced shape changes, with cellular elongation and loss of process formation compared to the characteristic arborized phenotype. These data suggest a role for CDK5 as a regulator of podocyte differentiation, proliferation, and morphology.
Collapse
Affiliation(s)
- Sian V Griffin
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Box 356521, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rosales JL, Ernst JD, Hallows J, Lee KY. GTP-dependent secretion from neutrophils is regulated by Cdk5. J Biol Chem 2004; 279:53932-6. [PMID: 15492003 DOI: 10.1074/jbc.m408467200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown evidence for the existence of a calcium-independent, GTP-regulated mechanism of secretion from neutrophils, but this secretory mechanism remains to be fully elucidated. Cyclin-dependent kinase 5 (Cdk5), the various substrates of which include Munc18 and synapsin 1, has been implicated in neuronal secretion. Although the Cdk5 activator, p35, and Cdk5-p35 activity are primarily associated with neurons, we report here that p35 also exists in neutrophils and that an active Cdk5-p35 complex is present in these cells. Cdk5-p35 activity in human neutrophils is mostly localized in secretory granules, which show an increase in Cdk5-p35 level and activity upon GTP stimulation. The potent Cdk5 inhibitor, roscovitine, completely blocks GTP-stimulated granule Cdk5 activity, which accompanies lactoferrin secretion from neutrophil-specific granules. Roscovitine also inhibits GTP-induced lactoferrin secretion and surface localization of the secretion markers, CD63 and CD66b, to a certain extent. Furthermore, neutrophils from wild-type mice treated with roscovitine and neutrophils from p35(-/-) mice exhibit comparable surface expression levels of both CD63 and CD66b upon GTP stimulation. Although our data suggest that other molecules control GTP-induced secretion from neutrophils, it is clear that Cdk5-p35 is required to elicit the maximum GTP-induced secretory response. Our observation that multiple proteins in neutrophil granules serve as specific substrates of Cdk5 further supports the premise that the kinase is a key component of the GTP-regulated secretory apparatus in neutrophils.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, Cancer Biology and Neuroscience Research Groups, The University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
42
|
Zhu B, Gulick T. Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity. Mol Cell Biol 2004; 24:8264-75. [PMID: 15340086 PMCID: PMC515034 DOI: 10.1128/mcb.24.18.8264-8275.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) transcription factors play pivotal roles in cardiac, muscle, and neuron gene expression. All products of MEF2 genes have a common amino-terminal DNA binding and dimerization domain, but the four vertebrate MEF2 gene transcripts are alternatively spliced among coding exons to produce splicing isoforms. In MEF2C alone, alternative splice acceptors in the last exon give forms that include or exclude a short domain that we designate gamma. We show that MEF2C is expressed exclusively as gamma- isoforms in heart tissue and predominantly as gamma- in other adult tissues and in differentiating myocytes. MEF2C gamma- isoforms are much more robust than gamma+ forms in activating MEF2-responsive reporters in transfected fibroblasts despite indistinguishable expression levels, and they better synergize with MyoD in promoting myogenic conversion. One-hybrid transcription assays using Gal4-MEF2C fusions give similar distinctions between gamma- and gamma+ isoforms in all cell types tested, including myocytes. Cis effects of gamma on MEF2C DNA binding, dimerization, protein stability, or response to CaM or p38 mitogen-activated protein kinase signaling are not apparent, and the isolated gamma domain represses transcription when fused to Gal4. One phosphoserine residue is present within the gamma domain according to tandem mass spectrometry, and mutation of this residue abolishes gamma-mediated transrepression. A similar activity is present in the constitutive gamma domain and serine phosphoacceptor of MEF2A. Our findings indicate that gamma functions autonomously as a phosphoserine-dependent transrepressor to downregulate transactivation function of MEF2 factors and that alternative splicing and serine phosphorylation converge to provide complex combinatorial control of MEF2C activity.
Collapse
Affiliation(s)
- Bangmin Zhu
- Diabetes Research Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
43
|
Chen F, Wang Q, Wang X, Studzinski GP. Up-regulation of Egr1 by 1,25-dihydroxyvitamin D3 contributes to increased expression of p35 activator of cyclin-dependent kinase 5 and consequent onset of the terminal phase of HL60 cell differentiation. Cancer Res 2004; 64:5425-33. [PMID: 15289351 DOI: 10.1158/0008-5472.can-04-0806] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in differentiation therapy of cancer are likely to depend on improved understanding of molecular events that underlie cell differentiation. We reported recently that cyclin-dependent kinase (Cdk)5 and p35Nck5a (p35) are expressed in human leukemia HL60 cells induced to differentiate to monocytes by an exposure to 1,25-dihydroxyvitamin D(3) (1,25D(3)), form a complex, and this complex has kinase activity (F. Chen and G. P. Studzinski, Blood 2001;97:3763). This laboratory has also provided evidence that the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is active in the early (24-48 h) stages of HL60 cell differentiation induced by 1,25D(3) but declines in the later, terminal phase of this form of differentiation (X. Wang and G. P. Studzinski, J Cell Biochem 2001;80:471). We examine now the hypothesis that Egr1 protein contributes to the up-regulation of p35 gene transcription and, thus, activated Cdk5/p35 kinase phosphorylates and inactivates mitogen-activated protein/extracellular signal-regulated kinase kinase 1 (MEK1). Our data show that in 1,25D(3)-treated cells, p35 and Egr1 protein levels are elevated in a dose-dependent manner at the onset of the late stage of differentiation. We show also that 1,25D(3) treatment of HL60 cells markedly increases the binding of Egr1 to an element in the p35 gene promoter, whereas transfection of an excess of this Egr1-binding oligonucleotide ("promoter decoy") reduces p35 gene transcription and cell differentiation. Additionally, Cdk5/p35 phosphorylates MEK1 and inhibits its ability to phosphorylate its downstream target Erk2. These data suggest that in 1,25D(3)-treated HL60 cells, Egr1 up-regulates p35 gene transcription and that Cdk5/p35 kinase inactivates the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway by phosphorylation of MEK1, and this contributes to terminal differentiation of these cells.
Collapse
Affiliation(s)
- Fei Chen
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
44
|
Gao CY, Stepp MA, Fariss R, Zelenka P. Cdk5 regulates activation and localization of Src during corneal epithelial wound closure. J Cell Sci 2004; 117:4089-98. [PMID: 15280426 DOI: 10.1242/jcs.01271] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that Cdk5, a member of the cyclin-dependent-kinase family, regulates adhesion and migration in a mouse corneal epithelial cell line. Here, we extend these findings to corneal wound healing in vivo and examine the mechanism linking Cdk5 to cytoskeletal reorganization and migration. Cdk5 was overexpressed in the corneal epithelium of transgenic mice under control of the ALDH3 promoter. Elevated Cdk5 expression retarded corneal debridement wound closure in these animals and suppressed remodeling of the actin cytoskeleton. Conversely, the Cdk5 inhibitor, olomoucine, accelerated debridement wound healing in organ cultured eyes of normal mice, caused migrating cells to separate from the epithelial cell sheet, and increased the level of activated Src(pY416) along the wound edge. To explore the relationship between Cdk5 and Src in greater detail, we examined scratch-wounded cultures of corneal epithelial cells. Src was activated in cells along the wound edge and blocking this activation with the Src kinase inhibitor, PP1, inhibited wound closure by 85%. Inhibiting Cdk5 activity with olomoucine or a dominant negative construct, Cdk5T33, increased the concentration of Src(pY416), shifted its subcellular localization to the cell periphery and enhanced wound closure. Cdk5(pY15), an activated form of Cdk5, also appeared along the wound edge. Inhibiting Src activity with PP1 blocked the appearance of Cdk5(pY15), suggesting that Cdk5 phosphorylation is Src dependent. Cdk5 and Src co-immunoprecipitated from scratch-wounded cultures, demonstrating that both kinases are part of an intracellular protein complex. These findings indicate that Cdk5 exerts its effects on cell migration during corneal epithelial wound healing by regulating the activation and localization of Src.
Collapse
Affiliation(s)
- Chun Y Gao
- National Eye Institute, NIH, Building 7, 7 Memorial Drive MSC 0704, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
45
|
Sarker KP, Lee KY. L6 myoblast differentiation is modulated by Cdk5 via the PI3K–AKT–p70S6K signaling pathway. Oncogene 2004; 23:6064-70. [PMID: 15208659 DOI: 10.1038/sj.onc.1207819] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cdk5 regulates myogenesis but the signaling cascade through which Cdk5 modulates this process remains to be characterized. Here, we investigated whether PI3K, Akt, p70S6K, p38 MAPK, p44/42 MAPK, and Egr-1 serve as upstream regulators of Cdk5 during L6 myoblast differentiation. Upon serum reduction, we found that besides elevated expression of Cdk5 and its activator, p35, and increased Cdk5/p35 activity, Egr-1, Akt, p70S6K, and p38 MAPK activity were upregulated in differentiating L6 cells. However, p44/42 MAPK was downregulated and SAPK/JNK was unaffected. LY294002, a PI3K inhibitor, blocked the activation of Akt and p70S6K, indicating that Akt and p70S6K activation is linked to PI3K activation. The lack of LY294002 effect on p38 MAPK suggests that p38 MAPK activation is not associated with PI3K activation. Rapamycin, a specific inhibitor of FRAP/mTOR (the upstream kinase of p70S6K), also blocked p70S6K activation, indicating the involvement of FRAP/mTOR activation. LY294002 and rapamycin also blocked the enhancement of Egr-1 level, Cdk5 activity, and myogenin expression, suggesting that upregulation of these factors is coupled to PI3K-p70S6K activation. Overexpression of dominant-negative-Akt also reduced Cdk5/p35 activity and myogenin expression, indicating that the PI3K-p70S6K-Egr-1-Cdk5 signaling cascade is linked to Akt activation. SB2023580, a p38 MAPK inhibitor, had no effect on p70S6K, Egr-1, or Cdk5 activity, suggesting that p38 MAPK activation lies in a pathway distinct from the PI3K-Akt-p70S6K-Egr-1 pathway that we identify as the upstream modulator of Cdk5 activity during L6 myoblast differentiation.
Collapse
Affiliation(s)
- Krishna P Sarker
- Department of Cell Biology and Anatomy, Cancer Biology and Neuroscience Research Groups, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
46
|
Chang THT, Primig M, Hadchouel J, Tajbakhsh S, Rocancourt D, Fernandez A, Kappler R, Scherthan H, Buckingham M. An enhancer directs differential expression of the linked Mrf4 and Myf5 myogenic regulatory genes in the mouse. Dev Biol 2004; 269:595-608. [PMID: 15110722 DOI: 10.1016/j.ydbio.2004.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 02/03/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
The myogenic regulatory factors, Mrf4 and Myf5, play a key role in skeletal muscle formation. An enhancer trap approach, devised to isolate positive-acting elements from a 200-kb YAC covering the mouse Mrf4-Myf5 locus in a C2 myoblast assay, yielded an enhancer, A17, which mapped at -8 kb 5' of Mrf4 and -17 kb 5' of Myf5. An E-box bound by complexes containing the USF transcription factor is critical for enhancer activity. In transgenic mice, A17 gave two distinct and mutually exclusive expression profiles before birth, which correspond to two phases of Mrf4 transcription. Linked to the Tk or Mrf4 minimal promoters, the nlacZ reporter was expressed either in embryonic myotomes, or later in fetal muscle, with the majority of Mrf4 lines showing embryonic expression. When linked to the Myf5 minimal promoter, only fetal muscle expression was detected. These observations identify A17 as a sequence that targets sites of myogenesis in vivo and raise questions about the mutually exclusive modes of expression and possible promoter/enhancer interactions at the Mrf4-Myf5 locus.
Collapse
Affiliation(s)
- Ted Hung-Tse Chang
- Département de Biologie du Développement, CNRS URA 2578, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fu AKY, Fu WY, Ng AKY, Chien WWY, Ng YP, Wang JH, Ip NY. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A 2004; 101:6728-33. [PMID: 15096606 PMCID: PMC404113 DOI: 10.1073/pnas.0307606100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Indexed: 11/18/2022] Open
Abstract
The activity of cyclin-dependent kinase 5 (Cdk5) depends on the association with one of its activators, p35 and p39, which are prominently expressed in the nervous system. Studies on the repertoire of protein substrates for Cdk5 have implicated the involvement of Cdk5 in neuronal migration and synaptic plasticity. Our recent analysis of the sequence of signal transducer and activator of transcription (STAT)3, a key transcription factor, reveals the presence of potential Cdk5 phosphorylation site. We report here that the Cdk5/p35 complex associates with STAT3 and phosphorylates STAT3 on the Ser-727 residue in vitro and in vivo. Intriguingly, whereas the Ser phosphorylation of STAT3 can be detected in embryonic and postnatal brain and muscle of wild-type mice, it is essentially absent from those of Cdk5-deficient embryos. In addition, treatment of cultured myotubes with neuregulin enhances the Ser phosphorylation of STAT3 and transcription of STAT3 target genes, such as c-fos and junB, in a Cdk5-dependent manner. Both the DNA-binding activity of STAT3 and the transcription of specific target genes, such as fibronectin, are reduced in Cdk5-deficient muscle. Taken together, these results reveal a physiological role of Cdk5 in regulating STAT3 phosphorylation and modulating its transcriptional activity.
Collapse
Affiliation(s)
- Amy K Y Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Zapata-Torres G, Opazo F, Salgado C, Muñoz JP, Krautwurst H, Mascayano C, Sepúlveda-Boza S, Maccioni RB, Cassels BK. Effects of natural flavones and flavonols on the kinase activity of Cdk5. JOURNAL OF NATURAL PRODUCTS 2004; 67:416-420. [PMID: 15043421 DOI: 10.1021/np034011s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A number of natural and synthetic flavonoids have been assessed previously with regard to their effects on the activity of cyclin-dependent kinases (Cdk1 and -2) related to the inhibition of cell cycle progression. On the other hand, the Cdk5/p35 system is of major importance in neuronal migration phenomena and brain development, and its deregulation is implicated in neurodegenerative diseases, particularly Alzheimer's. Here we show that some natural flavonoids inhibit the activity of the Cdk5/p35 system in the micromolar range, while others are practically inactive. Ring B-unsubstituted and highly methoxylated flavones were inactive or gave irreproducible results, and 6-methoxyapigenin and 6-methoxyluteolin were the most potent Cdk5 complex inhibitors within this series, while the common flavonols kaempferol and quercetin showed intermediate behavior. The reported crystal structure of the Cdk5 complex with its activator p25 was used for docking studies, which also led to the identification of the two 6-methoxyflavones, kaempferol and quercetin, as well as the untested 6-methoxy derivatives of kaempferol and quercetin and the corresponding 6-hydroxy analogues as compounds exhibiting a good fit to the active site of the enzyme.
Collapse
Affiliation(s)
- Gerald Zapata-Torres
- Millennium Institute for Advanced Studies in Cell Biology and Biotechnology (CBB) and Department of Chemistry, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Rosales JL, Lee BC, Modarressi M, Sarker KP, Lee KY, Jeong YG, Oko R, Lee KY. Outer dense fibers serve as a functional target for Cdk5.p35 in the developing sperm tail. J Biol Chem 2003; 279:1224-32. [PMID: 14581463 DOI: 10.1074/jbc.m310867200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdk5 is ubiquitously expressed in all tissues, but its activators, p35 and p39, are principally found in brain, and Cdk5 activity has mostly been associated with brain development, particularly neuronal differentiation and migration. Here we show that the p35 transcript and protein are also present in the testis, and an active Cdk5.p35 complex exists in this tissue as well. Cdk5 and p35 are prominently observed in elongating spermatid tails, particularly over the tail outer dense fibers (ODF). The appearance of Cdk5.p35 proceeds from the proximal to the distal end of elongating spermatids, coinciding with the proximal to distal assembly of ODF along the length of the tail axoneme. Incidentally, increased Cdk5.p35 activity is observed in isolated elongating spermatids and at a time when elongating spermatids appear in the developing testis, suggesting a role for Cdk5.p35 in spermiogenesis. The presence of Cdk5 and p35 in ODF isolated from rat sperm tails implies a strong association among these proteins. In vitro ODF phosphorylation by Cdk5.p35 and decreased in vivo sperm tail ODF phosphorylation in p35-deficient mice indicate that Cdk5.p35 is an integral component of ODF and that ODF is a functional Cdk5.p35 target in the testis. Our results demonstrate for the first time that Cdk5.p35 may participate in the regulation of sperm tail development via a mechanism involving ODF phosphorylation. Apparently, as in brain development, Cdk5.p35 plays a part in testis development.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|