1
|
Duan K, Zhou M, Wang Y, Oberholzer J, Lo JF. Visualizing hypoxic modulation of beta cell secretions via a sensor augmented oxygen gradient. MICROSYSTEMS & NANOENGINEERING 2023; 9:14. [PMID: 36760229 PMCID: PMC9902275 DOI: 10.1038/s41378-022-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
One distinct advantage of microfluidic-based cell assays is their scalability for multiple concentrations or gradients. Microfluidic scaling can be extremely powerful when combining multiple parameters and modalities. Moreover, in situ stimulation and detection eliminates variability between individual bioassays. However, conventional microfluidics must combat diffusion, which limits the spatial distance and time for molecules traveling through microchannels. Here, we leveraged a multilayered microfluidic approach to integrate a novel oxygen gradient (0-20%) with an enhanced hydrogel sensor to study pancreatic beta cells. This enabled our microfluidics to achieve spatiotemporal detection that is difficult to achieve with traditional microfluidics. Using this device, we demonstrated the in situ detection of calcium, insulin, and ATP (adenosine triphosphate) in response to glucose and oxygen stimulation. Specifically, insulin was quantified at levels as low as 25 pg/mL using our imaging technique. Furthermore, by analyzing the spatial detection data dynamically over time, we uncovered a new relationship between oxygen and beta cell oscillations. We observed an optimum oxygen level between 10 and 12%, which is neither hypoxic nor normoxic in the conventional cell culture sense. These results provide evidence to support the current islet oscillator model. In future applications, this spatial microfluidic technique can be adapted for discrete protein detection in a robust platform to study numerous oxygen-dependent tissue dysfunctions.
Collapse
Affiliation(s)
- Kai Duan
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Mengyang Zhou
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Yong Wang
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Jose Oberholzer
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Joe F. Lo
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| |
Collapse
|
2
|
Suarez Castellanos I, Singh T, Balteanu B, Bhowmick DC, Jeremic A, Zderic V. Calcium-dependent ultrasound stimulation of secretory events from pancreatic beta cells. J Ther Ultrasound 2017; 5:30. [PMID: 29214024 PMCID: PMC5715497 DOI: 10.1186/s40349-017-0108-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Our previous studies have indicated that ultrasound can stimulate the release of insulin from pancreatic beta cells, providing a potential novel treatment for type 2 diabetes. The purpose of this study was to explore the temporal dynamics and Ca2+-dependency of ultrasound-stimulated secretory events from dopamine-loaded pancreatic beta cells in an in vitro setup. METHODS Carbon fiber amperometry was used to detect secretion from INS-1832/13 beta cells in real time. The levels of released insulin were also measured in response to ultrasound treatment using insulin-specific ELISA kit. Beta cells were exposed to continuous wave 800 kHz ultrasound at intensities of 0.1 W/cm2, 0.5 W/cm2 and 1 W/cm2 for several seconds. Cell viability tests were done with trypan blue dye exclusion test and MTT analysis. RESULTS Carbon fiber amperometry experiments showed that application of 800 kHz ultrasound at intensities of 0.5 and 1 W/cm2 was capable of stimulating secretory events for durations lasting as long as the duration of the stimulus. Furthermore, the amplitude of the detected peaks was reduced by 64% (p < 0.01) when extracellular Ca2+ was chelated with 10 mM EGTA in cells exposed to ultrasound intensity of 0.5 W/cm2. Measurements of released insulin in response to ultrasound stimulation showed complete inhibition of insulin secretion by chelating extracellular Ca2+ with 10 mM EGTA (p < 0.01). Viability studies showed that 800 kHz, 0.5 W/cm2 ultrasound did not cause any significant effects on viability and metabolic activity in cells exposed to ultrasound as compared to sham-treated cells. CONCLUSIONS Our results demonstrated that application of ultrasound was capable of stimulating the release of insulin from pancreatic beta cells in a safe, controlled and Ca2+-dependent manner.
Collapse
Affiliation(s)
- Ivan Suarez Castellanos
- Department of Biomedical Engineering, The George Washington University, 800 22nd St. NW rm 5290, Washington, District of Columbia 20052 USA
| | - Tania Singh
- Department of Biomedical Engineering, The George Washington University, 800 22nd St. NW rm 5290, Washington, District of Columbia 20052 USA
| | - Bogdan Balteanu
- Department of Biomedical Engineering, The George Washington University, 800 22nd St. NW rm 5290, Washington, District of Columbia 20052 USA
| | - Diti Chatterjee Bhowmick
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia USA
| | - Aleksandar Jeremic
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, 800 22nd St. NW rm 5290, Washington, District of Columbia 20052 USA
| |
Collapse
|
3
|
Mackay L, Mikolajewicz N, Komarova SV, Khadra A. Systematic Characterization of Dynamic Parameters of Intracellular Calcium Signals. Front Physiol 2016; 7:525. [PMID: 27891096 PMCID: PMC5102910 DOI: 10.3389/fphys.2016.00525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022] Open
Abstract
Dynamic processes, such as intracellular calcium signaling, are hallmark of cellular biology. As real-time imaging modalities become widespread, a need for analytical tools to reliably characterize time-series data without prior knowledge of the nature of the recordings becomes more pressing. The goal of this study is to develop a signal-processing algorithm for MATLAB that autonomously computes the parameters characterizing prominent single transient responses (TR) and/or multi-peaks responses (MPR). The algorithm corrects for signal contamination and decomposes experimental recordings into contributions from drift, TRs, and MPRs. It subsequently provides numerical estimates for the following parameters: time of onset after stimulus application, activation time (time for signal to increase from 10 to 90% of peak), and amplitude of response. It also provides characterization of the (i) TRs by quantifying their area under the curve (AUC), response duration (time between 1/2 amplitude on ascent and descent of the transient), and decay constant of the exponential decay region of the deactivation phase of the response, and (ii) MPRs by quantifying the number of peaks, mean peak magnitude, mean periodicity, standard deviation of periodicity, oscillatory persistence (time between first and last discernable peak), and duty cycle (fraction of period during which system is active) for all the peaks in the signal, as well as coherent oscillations (i.e., deterministic spikes). We demonstrate that the signal detection performance of this algorithm is in agreement with user-mediated detection and that parameter estimates obtained manually and algorithmically are correlated. We then apply this algorithm to study how metabolic acidosis affects purinergic (P2) receptor-mediated calcium signaling in osteoclast precursor cells. Our results reveal that acidosis significantly attenuates the amplitude and AUC calcium responses at high ATP concentrations. Collectively, our data validated this algorithm as a general framework for comprehensively analyzing dynamic time-series.
Collapse
Affiliation(s)
- Laurent Mackay
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Nicholas Mikolajewicz
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada; Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada; Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|
4
|
Chen Y, Xu J, Liao H, Ma Z, Zhang Y, Chen H, Huang Z, Hu J. Prostaglandin E2 and Connexin 43 crosstalk in the osteogenesis induced by extracorporeal shockwave. Med Hypotheses 2016; 94:123-5. [PMID: 27515217 DOI: 10.1016/j.mehy.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023]
Abstract
As a type of mechanical stimulation, extracorporeal shockwave (ESW) has been widely used in the clinic to treat bone fracture delayed union and non-unions. A large number of studies have shown beneficial effects of ESW in promoting fracture healing by inducing bone regeneration; however, the underlying mechanisms remain unclear. ESW has been shown to induce the production of prostaglandin E2 (PGE2), which is essential for gap junction intercellular communication in response to mechanical stress. Among the 19 known gap junction subunits, connexin43 (Cx43) is the most prevalent for mediating the response of mechanical stress. However, to our knowledge, the effect of ESW on Cx43 expression has not been reported before. Herein, we propose that a crosstalk between PGE2 and Cx43 is involved in the enhancement of osteogenesis induced by ESW. We review the currently available data to propose an unrevealed, but important mechanism via which ESW treatment affects osteogenic differentiation of bone marrow stromal cells.
Collapse
Affiliation(s)
- Youbin Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiankun Xu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Orthopedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Haojie Liao
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zebin Ma
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuantao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongjiang Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhonglian Huang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
5
|
Suarez Castellanos IM, Balteanu B, Singh T, Zderic V. Therapeutic Modulation of Calcium Dynamics Using Ultrasound and Other Energy-Based Techniques. IEEE Rev Biomed Eng 2016; 9:177-191. [DOI: 10.1109/rbme.2016.2555760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Pérez-Armendariz EM. Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology 2013; 75:557-66. [PMID: 23973309 DOI: 10.1016/j.neuropharm.2013.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
The prevalence of diabetes at a global scale has markedly increased during the last three decades. Diabetes is a chronic disease that includes a group of metabolic disorders, in which high serum glucose levels is a common factor. Insulin is the only hormone that decreases serum glucose levels. Therefore, it is relevant to deepen our understanding of cell mechanisms that regulate insulin production and release. Insulin is produced in pancreatic islet beta cells. They are excitable cells and most of them are electrically coupled through gap junction channels. Connexin 36 (Cx36) has been identified at junctional membranes of islet beta cells in both rodents and humans. Co-localization of Cx36 with Cx30.2 has been recently identified. Functional studies in Cx36 deficient mice have provided direct evidence that Cx36 gap junction channels are necessary for the synchronization of [Ca(2+)]i oscillations in islet beta cells. The latter allows for the generation of insulin pulses in a single perfused islet. Moreover, Cx36 deficient mice were found to have altered serum insulin pulse dynamics and to be glucose intolerant. In addition, Cx36 has been recently identified as an early gene that is specifically expressed in embryonic beta cells, whose transcript and protein are upregulated in unison with the main wave of beta cell differentiation. In conclusion, Cx36 is critical for endocrine pancreatic function and may represent a molecular target for future prevention and treatment of diabetes. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- E Martha Pérez-Armendariz
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, UNAM, México D.F. 04510, Mexico; Hospital General de México, Hospital General de México/Unidad de Medicina Experimental, Facultad de Medicina, UNAM, Dr Balmis 148, Colonia Doctores, Delegación Cuahutémoc, CP 06726 Ciudad de México, Mexico; Departamento of Biología Celular yTisular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, UNAM, Mexico D.F. 04510, Mexico.
| |
Collapse
|
7
|
Gap junction proteins on the move: connexins, the cytoskeleton and migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:94-108. [PMID: 22613178 DOI: 10.1016/j.bbamem.2012.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 01/08/2023]
Abstract
Connexin43 (Cx43) has roles in cell-cell communication as well as channel independent roles in regulating motility and migration. Loss of function approaches to decrease Cx43 protein levels in neural cells result in reduced migration of neurons during cortical development in mice and impaired glioma tumor cell migration. In other cell types, correlations between Cx43 expression and cell morphology, adhesion, motility and migration have been noted. In this review we will discuss the common themes that have been revealed by a detailed comparison of the published results of neuronal cells with that of other cell types. In brief, these comparisons clearly show differences in the stability and directionality of protrusions, polarity of movement, and migration, depending on whether a) residual Cx43 levels remain after siRNA or shRNA knockdown, b) Cx43 protein levels are not detectable as in cells from Cx43(-/-) knockout mice or in cells that normally have no endogenous Cx43 expression, c) gain-of-function approaches are used to express Cx43 in cells that have no endogenous Cx43 and, d) Cx43 is over-expressed in cells that already have low endogenous Cx43 protein levels. What is clear from our comparisons is that Cx43 expression influences the adhesiveness of cells and the directionality of cellular processes. These observations are discussed in light of the ability of cells to rearrange their cytoskeleton and move in an organized manner. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
8
|
Alam MJ, Bhayana L, Devi GR, Singh HD, Singh RKB, Sharma BI. Intercellular synchronization of diffusively coupled Ca(2+) oscillators. J Chem Biol 2012; 5:27-34. [PMID: 22962563 PMCID: PMC3251645 DOI: 10.1007/s12154-011-0066-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 08/25/2011] [Indexed: 01/23/2023] Open
Abstract
We examine the synchrony in the dynamics of localized [Ca(2 + )](i) oscillations among a group of cells exhibiting such complex Ca(2 + ) oscillations, connected in the form of long chain, via diffusing coupling where cytosolic Ca(2 + ) and inositol 1,4,5-triphosphate are coupling molecules. Based on our numerical results, we could able to identify three regimes, namely desynchronized, transition and synchronized regimes in the (T - k(e)) (time period-coupling constant) and (A - k(e)) (amplitude-coupling constant) spaces which are supported by phase plots (Δϕ verses time) and recurrence plots, respectively. We further show the increase of synchronization among the cells as the number of coupling molecules increases in the (T - k(e)) and (A - k(e)) spaces.
Collapse
Affiliation(s)
- Md. Jahoor Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Latika Bhayana
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Gurumayum Reenaroy Devi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Heisnam Dinachandra Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - R. K. Brojen Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | | |
Collapse
|
9
|
Tsaneva-Atanasova K, Sherman A. Accounting for near-normal glucose sensitivity in Kir6.2[AAA] transgenic mice. Biophys J 2010; 97:2409-18. [PMID: 19883583 DOI: 10.1016/j.bpj.2009.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/03/2009] [Accepted: 07/28/2009] [Indexed: 11/17/2022] Open
Abstract
K(ir)6.2[AAA] transgenic mouse islets exhibit mosaicism such that approximately 70% of the beta-cells have nonfunctional ATP-sensitive potassium (K(ATP)) channels, whereas the remainder have normal K(ATP) function. Despite this drastic reduction, the glucose dose-response curve is only shifted by approximately 2 mM. We use a previously published mathematical model, in which K(ATP) conductance is increased by rises in cytosolic calcium through indirect effects on metabolism, to investigate how cells could compensate for the loss of K(ATP) conductance. Compensation is favored by the assumption that only a small fraction of K(ATP) channels are open during oscillations, which renders it easy to upregulate the open fraction via a modest elevation of calcium. We show further that strong gap-junctional coupling of both membrane potential and calcium is needed to overcome the stark heterogeneity of cell properties in these mosaic islets.
Collapse
Affiliation(s)
- Krasimira Tsaneva-Atanasova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Huo B, Lu XL, Costa KD, Xu Q, Guo XE. An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium 2010; 47:234-41. [PMID: 20060586 DOI: 10.1016/j.ceca.2009.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/07/2009] [Accepted: 12/07/2009] [Indexed: 11/15/2022]
Abstract
To investigate the roles of intercellular gap junctions and extracellular ATP diffusion in bone cell calcium signaling propagation in bone tissue, in vitro bone cell networks were constructed by using microcontact printing and self-assembled monolayer technologies. In the network, neighboring cells were interconnected through functional gap junctions. A single cell at the center of the network was mechanically stimulated by using an AFM nanoindenter. Intracellular calcium ([Ca2+](i)) responses of the bone cell network were recorded and analyzed. In the untreated groups, calcium propagation from the stimulated cell to neighboring cells was observed in 40% of the tests. No significant difference was observed in this percentage when the intercellular gap junctions were blocked. This number, however, decreased to 10% in the extracellular ATP-pathway-blocked group. When both the gap junction and ATP pathways were blocked, intercellular calcium waves were abolished. When the intracellular calcium store in ER was depleted, the indented cell can generate calcium transients, but no [Ca2+](i) signal can be propagated to the neighboring cells. No [Ca2+](i) response was detected in the cell network when the extracellular calcium source was removed. These findings identified the biochemical pathways involved in the calcium signaling propagation in bone cell networks.
Collapse
Affiliation(s)
- Bo Huo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
11
|
Kawai T, Abe H, Wakabayashi KI, Oka Y. Calcium oscillations in the olfactory nonsensory cells of the goldfish, Carassius auratus. Biochim Biophys Acta Gen Subj 2009; 1790:1681-8. [PMID: 19800938 DOI: 10.1016/j.bbagen.2009.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/02/2009] [Accepted: 09/28/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND The olfactory nonsensory cells contribute to the maintenance of normal functions of the olfactory epithelium (OE). Specifically, the ciliated nonsensory cells of teleosts play important roles in the odorant detection by OE in aqueous environment. Their cilia show strong beating activities and cause water flow at the OE surface, making the detection of odorants by OE more efficient. Because intracellular Ca2+ level has been reported to play an important role in ciliary beating, the ciliary beating activity may be regulated by intracellular Ca2+ dynamics of these ciliated nonsensory cells. METHODS We performed Ca2+ imaging experiments to analyze the Ca2+ dynamics in acutely dissociated OE cells of the goldfish. Furthermore, we examined the contribution of the Ca2+ dynamics to the ciliary beating frequency (CBF) at the surface of the intact OE. RESULTS Olfactory nonsensory cells showed both spontaneous intracellular Ca2+ oscillations and propagating intercellular Ca2+ waves. Application of 2-aminoethoxydiphenylborate (2-APB), which antagonizes IP3-induced Ca2+ release from intracellular stores suppressed these Ca2+ oscillations. Furthermore, 2-APB application to the intact OE lamellae resulted in the decrease of CBF at the surface of the OE. CONCLUSIONS These results indicate that spontaneous intracellular calcium oscillations persistently up-regulate the ciliary beating at the surface of the OE in teleosts. GENERAL SIGNIFICANCE Ciliary beating activity at the surface of OE can be regulated by the Ca2+ dynamics of olfactory nonsensory cells. Because this ciliary movement causes inflow of external fluid into the nostril, this regulation is suggested to influence the efficiency of odorant detection by OE.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
12
|
Petit P, Lajoix AD, Gross R. P2 purinergic signalling in the pancreatic beta-cell: control of insulin secretion and pharmacology. Eur J Pharm Sci 2009; 37:67-75. [PMID: 19429412 DOI: 10.1016/j.ejps.2009.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
Extracellular adenosine triphosphate is able to modulate pancreatic beta-cell function, acting on P2 purinergic ionotropic (P2X) and metabotropic (P2Y) receptors. Physiologically, ATP entrains beta-cells into a common rhythm by coordinating Ca(2+) oscillations; it plays a central role in insulin secretion pulsatility. ATP also triggers a positive feedback signal amplifying glucose-induced insulin release, which argues for a potential pharmacological application. ATP has consistently been shown to increase cytoplasmic free calcium concentration, notably in human tissue. Acting on P2X receptors, of which different molecular subtypes are expressed in beta-cells, it leads to a transient insulin release that may involve a closure of K(ATP) channels or a rapidly decaying inward current. Activation of G-protein-coupled P2Y receptors triggers different signalling pathways and amplifies insulin release in a glucose-dependent way. It has recently been shown that pancreatic beta-cells express different molecular subtypes of receptors, which may explain the complex interaction of P2Y ligands on high- and low-affinity binding sites. Despite the complexity of this purinergic pharmacology, consistent pre-clinical data suggest the potential of P2Y receptor agonists as drug candidates for type 2 diabetes.
Collapse
Affiliation(s)
- Pierre Petit
- Montpellier I University and CNRS UMR 5232, Centre for Pharmacology and Innovation in Diabetes, Montpellier, France.
| | | | | |
Collapse
|
13
|
Wojtusciszyn A, Armanet M, Morel P, Berney T, Bosco D. Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia 2008; 51:1843-52. [PMID: 18665347 DOI: 10.1007/s00125-008-1103-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/01/2008] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS We assessed the heterogeneity of insulin secretion from human isolated beta cells and its regulation by cell-to-cell contacts. METHODS Insulin secretion from single and paired cells was assessed by a reverse haemolytic plaque assay. The percentage of plaque-forming cells, the mean plaque area and the total plaque development were evaluated after 1 h of stimulation with different secretagogues. RESULTS Not all beta cells were surrounded by a haemolytic plaque under all conditions tested. A small fraction of the beta cell population (20%) secreted more than 90% and 70% of total insulin at 2.2 and 22.2 mmol/l glucose, respectively. Plaque-forming cells, mean plaque area and total plaque development were increased at 12.2 and 22.2 compared with 2.2 mmol/l glucose. Insulin secretion of single beta cells was similar at 12.2 and 22.2 mmol/l glucose. Insulin secretion of beta cell pairs was increased compared with that of single beta cells and was higher at 22.2 than at 12.2 mmol/l glucose. Insulin secretion of beta cells in contact with alpha cells was also increased compared with single beta cells, but was similar at 22.2 compared with 12.2 mmol/l glucose. Delta and other non-beta cells did not increase insulin secretion of contacting beta cells compared with that of single beta cells. Differences in insulin secretion between 22.2 and 12.2 mmol/l glucose were observed in murine but not in human islets. CONCLUSIONS/INTERPRETATION Human beta cells are highly heterogeneous in terms of insulin secretion so that a small fraction of beta cells contributes to the majority of insulin secreted. Homologous and heterologous intercellular contacts have a significant impact on insulin secretion and this could be related to the particular architecture of human islets.
Collapse
Affiliation(s)
- A Wojtusciszyn
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, 1 rue Michel Servet, Genève-4, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:165-223. [PMID: 17964923 DOI: 10.1016/s0074-7696(07)64004-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes in the gut. Intestinal villi are motile, equipped with chemosensors and mechanosensors, and transduce signaling to sensory neurons, but the exact mechanisms have not yet been elucidated. Subepithelial fibroblasts located under the villous epithelium form contractile cellular networks via gap junctions. The networks ensheathe lamina propria and are in close contact with epithelium, neural and capillary networks, smooth muscles, and immune cells. Unique characteristics of subepithelial fibroblasts have been revealed by primary cultures isolated from rat duodenal villi. They include rapid reversal changes in cell shape by cAMP reagents and endothelins, cell shape-dependent mechanosensitivity that induces ATP release as a paracrine mediator, contractile ability, and expression of various receptors for vasoactive and neuroactive substances. Herein, we review these characteristics that play a key role in the villi. They serve as a barrier/sieve, flexible mechanical frame, mechanosensor, and signal transduction machinery in the intestinal villi, which are regulated locally and dynamically by rapid cell shape conversion.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | |
Collapse
|
15
|
Gimi B, Leoni L, Oberholzer J, Braun M, Avila J, Wang Y, Desai T, Philipson LH, Magin RL, Roman BB. Functional MR microimaging of pancreatic beta-cell activation. Cell Transplant 2006; 15:195-203. [PMID: 16719054 DOI: 10.3727/000000006783982151] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The increasing incidence of diabetes and the need to further understand its cellular basis has resulted in the development of new diagnostic and therapeutic techniques. Nonetheless, the quest to noninvasively ascertain beta-cell mass and function has not been achieved. Manganese (Mn)-enhanced MRI is presented here as a tool to image beta-cell functionality in cell culture and isolated islets. Similar to calcium, extracellular Mn was taken up by glucose-activated beta-cells resulting in 200% increase in MRI contrast enhancement, versus nonactivated cells. Similarly, glucose-activated islets showed an increase in MRI contrast up to 45%. Although glucose-stimulated Ca influx was depressed in the presence of 100 microM Mn, no significant effect was seen at lower Mn concentrations. Moreover, islets exposed to Mn showed normal glucose sensitivity and insulin secretion. These results demonstrate a link between image contrast enhancement and beta-cell activation in vitro, and provide the basis for future noninvasive in vivo imaging of islet functionality and beta-cell mass.
Collapse
Affiliation(s)
- Barjor Gimi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kerkweg U, de Groot H. ATP-induced calcium increase as a potential first signal in mechanical tissue trauma. A laser scanning microscopic study on cultured mouse skeletal myocytes. Shock 2006; 24:440-6. [PMID: 16247330 DOI: 10.1097/01.shk.0000176185.89793.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is known that after major tissue trauma, local incidents in the mechanically destroyed muscle tissue form the basis of subsequently occurring severe inflammatory reactions, the very first events taking place immediately after myocyte destruction have not been studied on the single cell level thus far. Therefore, in this study, the reaction of cultured C2C12 mouse skeletal myocytes to lethal injury was examined using laser scanning microscopy. Mechanical rupture of one single myocyte induced an immediate accumulation of calcium in its cytosol and nuclei, as detected by an increase in the fluorescence intensity of the intracellular calcium-sensitive dye Fluo-3. The intracellular calcium elevation propagated further to the adjacent, noninjured myocytes in a wave-like fashion within seconds. The calcium increase detected in these neighboring cells was higher and up to 1000 times more extended than the physiological calcium spike that induces C2C12 myocyte contraction. Wave propagation did not depend on gap junctional communication but occurred via liberation of nucleotides, mainly ATP, but presumably also UTP and others, from the destroyed cell and subsequent calcium release from the sarcoplasmic reticulum via a purinoceptor-mediated mechanism in the adjacent cells. These findings suggest a decisive role of ATP and related nucleotides in the pathogenesis of tissue trauma because they appear to initiate the signaling mechanism from injured myocytes to the surrounding tissue and potentially to the whole body.
Collapse
Affiliation(s)
- Uta Kerkweg
- Institut für Physiologische Chemie, Universitätsklinikum Essen, 45122 Essen, Germany
| | | |
Collapse
|
17
|
Tsaneva-Atanasova K, Zimliki CL, Bertram R, Sherman A. Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Biophys J 2006; 90:3434-46. [PMID: 16500973 PMCID: PMC1440728 DOI: 10.1529/biophysj.105.078360] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell coupling is important for the normal function of the beta-cells of the pancreatic islet of Langerhans, which secrete insulin in response to elevated plasma glucose. In the islets, electrical and metabolic communications are mediated by gap junctions. Although electrical coupling is believed to account for synchronization of the islets, the role and significance of diffusion of calcium and metabolites are not clear. To address these questions we analyze two different mathematical models of islet calcium and electrical dynamics. To study diffusion of calcium, we use a modified Morris-Lecar model. Based on our analysis, we conclude that intercellular diffusion of calcium is not necessary for islet synchronization, at most supplementing electrical coupling. Metabolic coupling is investigated with a recent mathematical model incorporating glycolytic oscillations. Bifurcation analysis of the coupled system reveals several modes of behavior, depending on the relative strength of electrical and metabolic coupling. We find that whereas electrical coupling always produces synchrony, metabolic coupling can abolish both oscillations and synchrony, explaining some puzzling experimental observations. We suggest that these modes are generic features of square-wave bursters and relaxation oscillators coupled through either the activation or recovery variable.
Collapse
Affiliation(s)
- Krasimira Tsaneva-Atanasova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
18
|
Luther MJ, Hauge-Evans A, Souza KLA, Jörns A, Lenzen S, Persaud SJ, Jones PM. MIN6 beta-cell-beta-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem Biophys Res Commun 2006; 343:99-104. [PMID: 16529716 DOI: 10.1016/j.bbrc.2006.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 02/02/2006] [Indexed: 11/17/2022]
Abstract
Insulin-secreting MIN6 cells show greatly enhanced secretory responsiveness to nutrients when grown as islet-like structures (pseudoislets). Since beta-cells use different mechanisms to respond to nutrient and non-nutrient stimuli, we have now investigated the role of homotypic beta-cell interactions in secretory responses to pharmacological or receptor-operated non-nutrient stimuli in MIN6 pseudoislets. In addition to an enhanced secretory responsiveness to glucose, insulin secretion from MIN6 pseudoislets was also enhanced by non-nutrients, including carbachol, tolbutamide, PMA, and forskolin. The improved secretory responsiveness was dependent on the cells being configured as pseudoislets and was lost on dispersal of the pseudoislets into single cells and regained on the re-formation of pseudoislet structures. These observations emphasise the importance of islet anatomy on secretory responsiveness, and demonstrate that homotypic beta-cell interactions play an important role in generating physiologically appropriate insulin secretory responses to both nutrient and non-nutrient stimuli.
Collapse
Affiliation(s)
- Melanie J Luther
- Beta Cell Development and Function Group, King's College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Furuya K, Sokabe M, Furuya S. Characteristics of subepithelial fibroblasts as a mechano-sensor in the intestine: cell-shape-dependent ATP release and P2Y1 signaling. J Cell Sci 2005; 118:3289-304. [PMID: 16030139 DOI: 10.1242/jcs.02453] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subepithelial fibroblasts form a cellular network just under the epithelium of the gastrointestinal tract. Using primary cultured cells isolated from rat duodenal villi, we previously found that subepithelial fibroblasts reversibly changed cell morphology between flat and stellate-shape depending on intracellular cAMP levels. In this paper, we examined cell-cell communication via released ATP and Ca2+ signaling in the cellular network. Subepithelial fibroblasts were sensitive to mechanical stress such as ;touching' a cell with a fine glass rod and ;stretching' cells cultured on elastic silicone chamber. Mechanical stimulations evoked Ca2+-increase in the cells and ATP-release from the cells. The released ATP activated P2Y receptors on the surrounding cells and propagated Ca2+-waves through the network. Concomitant with Ca2+-waves, a transient contraction of the network was observed. Histochemical, RT-PCR, western blotting and Ca2+ response analyses indicated P2Y1 is a dominant functional subtype. ATP-release and Ca2+ signaling were cell-shape dependent, i.e. they were abolished in stellate-shaped cells treated with dBcAMP, and recovered or further enhanced in re-flattened cells treated with endothelin. The response to ATP also decreased in stellate-shaped cells. These findings indicate cAMP-mediated intracellular signaling causes cell-shape change, which accompanies the changes in mechano- and ATP sensitivities. Using a co-culture system of neuronal cells (NG108-15) with subepithelial fibroblasts, we confirmed that mechanically induced Ca2+-waves propagated to neurons. From these findings we propose that subepithelial fibroblasts work as a mechanosensor in the intestine. Uptake of food, water and nutrients may cause mechanical stress on subepithelial fibroblasts in the villi. The ATP released by mechanical stimulation elicits Ca2+-wave propagation through the network via P2Y1 activation and also activates P2X on terminals of mucosal sensory neurons to regulate peristaltic motility.
Collapse
Affiliation(s)
- Kishio Furuya
- Cell Mechano-Sensing Project, ICORP and SORST, Japan Science and Technology Agency, Nagoya, 466-8550, Japan.
| | | | | |
Collapse
|
21
|
Salehi A, Qader SS, Quader SS, Grapengiesser E, Hellman B. Inhibition of purinoceptors amplifies glucose-stimulated insulin release with removal of its pulsatility. Diabetes 2005; 54:2126-31. [PMID: 15983214 DOI: 10.2337/diabetes.54.7.2126] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
External ATP has been proposed to be an autocrine regulator of glucose-stimulated insulin secretion and responsible for the synchronization of the Ca2+ rhythmicity in the beta-cells required for a pulsatile release of insulin from the pancreas. The importance of external ATP for glucose-stimulated insulin release was evaluated in rats with the aid of 2-deoxy-N-methyladenosine-3,5-bisphosphate (MRS 2179), an inhibitor of the purinoceptors known to affect the Ca2+ signaling in beta-cells. The concentration of cytoplasmic Ca2+ was measured in single beta-cells and small aggregates with ratiometric fura-2 technique and the release of insulin recorded from isolated islets and the perfused pancreas. Addition of 1 micromol/l ATP induced premature cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations similar to those found in beta-cells exposed to 20 mmol/l glucose. In most experiments, the presence of 10 micromol/l MRS 2179 did not remove the glucose-induced [Ca2+]i rhythmicity in single beta-cells or the synchronization seen in coupled cells. Nevertheless, the same concentration of MRS 2179 promptly interrupted the pulsatility (frequency 0.22 +/- 0.01/min) of insulin secretion, raising the total amounts released from the pancreas. Prolonged exposure of islets to 1 and 10 micromol/l MRS 2179 enhanced insulin secretion at 20 mmol/l glucose 33% (P < 0.05) and 63% (P < 0.01), respectively, without affecting the release at 3 mmol/l glucose. The results support the idea that neural ATP signals entrain the islets into a common rhythm resulting in pulsatile release of insulin and that glucose stimulation of the secretory activity is counteracted by accumulation of inhibitory ATP around the beta-cells.
Collapse
Affiliation(s)
- Albert Salehi
- Institute of Physiological Sciences, University of Lund, Lund, Sweden
| | | | | | | | | |
Collapse
|
22
|
Klepeis VE, Weinger I, Kaczmarek E, Trinkaus-Randall V. P2Y receptors play a critical role in epithelial cell communication and migration. J Cell Biochem 2005; 93:1115-33. [PMID: 15449317 DOI: 10.1002/jcb.20258] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.
Collapse
Affiliation(s)
- Veronica E Klepeis
- Department of Pathology, Boston University School of Medicine, Boston, MA, 02118
| | | | | | | |
Collapse
|
23
|
Leite AR, Carvalho CPF, Furtado AG, Barbosa HCL, Boschero AC, Collares-Buzato CB. Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Can J Physiol Pharmacol 2005; 83:142-51. [PMID: 15791287 DOI: 10.1139/y04-133] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal and neonatal pancreatic islets present a lower insulin secretory response as compared with adult islets. Prolonged culturing leads to an improvement of the glucose-induced insulin secretion response in neonatal pancreatic islets that may involve regulation of gap junction mediated cell communication. In this study, we investigated the effect of culturing neonatal islet cells for varying periods of time and with different glucose medium concentrations on the cellular expression of the endocrine pancreatic gap junction associated connexin (Cx) 36 and Cx43. We report here that the 7-d culture induced upregulation of the expression of these junctional proteins in neonatal islets in a time-dependent manner. A correlation was observed between the increased mRNA and protein expression of Cx36 and Cx43 and the increased insulin secretion following islet culturing. In addition, increasing glucose concentration within the culture medium induced a concentration-dependent enhancement of Cx36 islet expression, but not of Cx43 expression in cultured neonatal islets. In conclusion, we suggest that the regulation of gap junctional proteins by culture medium containing factors and glucose may be an important event for the maturation process of beta cells observed at in vitro conditions.
Collapse
Affiliation(s)
- A R Leite
- Department of Physiology and Biophysics, Universidade Estadual de Campinas, Brasil
| | | | | | | | | | | |
Collapse
|
24
|
Rocheleau JV, Walker GM, Head WS, McGuinness OP, Piston DW. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc Natl Acad Sci U S A 2004; 101:12899-903. [PMID: 15317941 PMCID: PMC516492 DOI: 10.1073/pnas.0405149101] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pancreatic islet is a functional microorgan involved in maintaining normoglycemia through regulated secretion of insulin and other hormones. Extracellular glucose stimulates insulin secretion from islet beta cells through an increase in redox state, which can be measured by NAD(P)H autofluorescence. Glucose concentrations over approximately 7 mM generate synchronous oscillations in beta cell intracellular Ca2+ concentration ([Ca2+]i), which lead to pulsatile insulin secretion. Prevailing models assume that the pancreatic islet acts as a functional syncytium, and the whole islet [Ca2+]i response has been modeled in terms of islet bursting and pacemaker models. To test these models, we developed a microfluidic device capable of partially stimulating an islet, while allowing observation of the NAD(P)H and [Ca2+]i responses. We show that beta cell [Ca2+]i oscillations occur only within regions stimulated with more than approximately 6.6 mM glucose. Furthermore, we show that tolbutamide, an antagonist of the ATP-sensitive K+ channel, allows these oscillations to travel farther into the nonstimulated regions of the islet. Our approach shows that the extent of Ca2+ propagation across the islet depends on a delicate interaction between the degree of coupling and the extent of ATP-sensitive K+-channel activation and illustrates an experimental paradigm that will have utility for many other biological systems.
Collapse
Affiliation(s)
- Jonathan V Rocheleau
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
25
|
Zarkovic M, Henquin JC. Synchronization and entrainment of cytoplasmic Ca2+ oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Am J Physiol Endocrinol Metab 2004; 287:E340-7. [PMID: 15126238 DOI: 10.1152/ajpendo.00069.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to pancreatic islets, isolated beta-cells stimulated by glucose display irregular and asynchronous increases in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). Here, clusters of 5-30 cells were prepared from a single mouse islet or from pools of islets, loaded with fura-2, and studied with a camera-based system. [Ca(2+)](i) oscillations were compared in pairs of clusters by computing the difference in period and a synchronization index lambda. During perifusion with 12 mM glucose, the clusters exhibited regular [Ca(2+)](i) oscillations that were quasi-perfectly synchronized (Delta period of 1.4% and index lambda close to 1.0) between cells of each cluster. In contrast, separate clusters were not synchronized, even when prepared from one single islet. Pairs of clusters neighboring on the same coverslip were not better synchronized than pairs of clusters examined separately (distinct coverslips). We next attempted to synchronize clusters perifused with 12 mM glucose by applying external signals. A single pulse of 20 mM glucose, 10 mM amino acids, or 10 microM tolbutamide transiently altered [Ca(2+)](i) oscillations but did not reset the clusters to oscillate synchronously. On a background of 12 mM glucose, repetitive applications (1 min/5 min) of 10 microM tolbutamide, but not of 20 mM glucose, synchronized separate clusters. Our results identify a level of beta-cell heterogeneity intermediate between single beta-cells and the whole islet. They do not support the idea that substances released by islet cells serve as paracrine synchronizers. However, synchronization can be achieved by an external signal, if this signal has a sufficient strength to overwhelm the intrinsic rhythm of glucose-induced oscillations and is repetitively applied.
Collapse
Affiliation(s)
- Milos Zarkovic
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium
| | | |
Collapse
|
26
|
Furuya K, Akita K, Sokabe M. [Extracellular ATP mediated mechano-signaling in mammary glands]. Nihon Yakurigaku Zasshi 2004; 123:397-402. [PMID: 15170079 DOI: 10.1254/fpj.123.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ATP, an important and ubiquitous extracellular signaling molecule, is often released by mechanical stimuli and plays an essential role in mechano-signaling. In lactating mammary glands, secretory epithelial (SE) cells form alveoli in which milk is held, and myoepithelial (ME) cells surrounding the alveoli contract in response to oxytocin to expel milk. Previously we found that the contraction of ME cells worked as a mechanical stress to SE cells and caused ATP-release in cultured mammary epithelial cells. The released ATP activated P2Y2 in surrounding SE cells and P2Y1 in ME cells. We already reported that ATP synergistically enhanced oxytocin response in ME cells. These findings mean that ME and SE cells interact mutually via released ATP to enhance the milk ejection. Recently, we found that cell-stretch also induced Ca(2+)-increases and ATP-release. The stretching of alveoli should occur by milk filling. So, only the milk-filled alveoli (but not empty alveoli) are surrounded by ATP. The ATP lowers the threshold of the oxytocin receptors and enables the milk-filled alveoli to contract in response to oxytocin at a concentration in the blood. Slight but apparent constitutive-ATP-release was observed in non-stimulated cells and the release was enhanced in Ca(2+)-free solution. The pathway of ATP-release is not yet clear, but pharmacologically, there seems to be two or more pathways.
Collapse
|
27
|
Abstract
The death of hair cells in the inner ear as a result of exposure to loud noise can lead to irreversible deafness. New work shows that the mammalian cochlea can sense noxious sounds and use Ca(2+) waves to rapidly propagate hair cell damage signals.
Collapse
Affiliation(s)
- Brian M McDermott
- Laboratory of Sensory Neuroscience, The Rockefeller University (314), 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
28
|
Hellman B, Dansk H, Grapengiesser E. Pancreatic beta-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 2004; 286:E759-65. [PMID: 14722025 DOI: 10.1152/ajpendo.00452.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of external ATP for intercellular communication was studied in glucose-stimulated pancreatic beta-cells isolated from ob/ob mice. Digital image analyses with fura-2 revealed spontaneous transients of cytoplasmic Ca2+ appearing in synchrony in the absence of cell contacts. After removal of slow oscillations with methoxyverapamil, addition of ATP (0.1-100 microM) resulted in prompt firing of a transient, followed by suppression of the generation and synchronization of spontaneously occurring transients. It was possible to trigger transients during the suppressive phase by raising the concentration of ATP. The dual action of ATP was mimicked by ADP or 2-methylthio-ATP but not by AMP or UTP. The number of spontaneous transients and their synchronization were reduced in the presence of the dephosphorylating agent apyrase. Additional evidence that intermittent release of ATP participates in the generation of spontaneous Ca2+ transients was obtained from the suppression observed from use of antagonists of the purinoceptors [suramin (0.3-30 microM), pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS; 10-30 microM) and 2-deoxy-N-methyladenosine (MRS 2179; 0.3-30 microM)] or from counteracting beta-cell release of ATP by inhibiting exocytosis with 100 nM epinephrine, 100 nM somatostatin, or lowering the temperature below 30 degrees C. The data indicate that ATP has time-dependent actions (prompt stimulation followed by inhibition) on the generation of Ca2+ transients mediated by P2Y receptors. It is proposed that beta-cells both receive a neural ATP signal with coordinating effects on their Ca2+ oscillations and propagate this message to adjacent cells via intermittent release of ATP combined with gap junction coupling.
Collapse
Affiliation(s)
- Bo Hellman
- Department of Medical Cell Biology, Biomedicum,University of Uppsala, SE 751 23 Uppsala, Sweden
| | | | | |
Collapse
|
29
|
Lin GC, Rurangirwa JK, Koval M, Steinberg TH. Gap junctional communication modulates agonist-induced calcium oscillations in transfected HeLa cells. J Cell Sci 2004; 117:881-7. [PMID: 14762115 DOI: 10.1242/jcs.00942] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gap junctional communication modulates intercellular calcium signaling in many cell types. We have investigated whether gap junctional communication modulates calcium oscillatory behavior of cells responding to an agonist. Extracellular UTP induced calcium oscillations in 70% of HeLa cells cultured in monolayer, and neighboring cells oscillated independently of each other. In HeLa cell transfectants expressing connexin43 (HeLa/Cx43), extracellular UTP induced calcium transients, but calcium oscillations occurred in only 10% of cells. Inhibition of gap junctional communication with anandamide in HeLa/Cx43 transfectants substantially restored oscillations (55% of cells). In HeLa/Cx45 transfectants, UTP initiated calcium oscillations similar to those seen in HeLa cells (63% of cells), but HeLa/Cx46 transfectants demonstrated calcium oscillations that were dampened compared to those of the parental HeLa cells, and occurred in only 40% of cells. These experiments demonstrate that gap junctional communication modulates calcium oscillatory behavior in cell monolayers, presumably by allowing cells to share a small molecule such as inositol trisphosphate. These studies suggest that gap junctional communication may alter the nature of signals induced by calcium mobilizing agonists in a connexin-dependent fashion by modulating calcium oscillatory behavior.
Collapse
Affiliation(s)
- George C Lin
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
30
|
Lundquist I, Alm P, Salehi A, Henningsson R, Grapengiesser E, Hellman B. Carbon monoxide stimulates insulin release and propagates Ca2+ signals between pancreatic beta-cells. Am J Physiol Endocrinol Metab 2003; 285:E1055-63. [PMID: 14534076 DOI: 10.1152/ajpendo.00498.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key question for understanding the mechanisms of pulsatile insulin release is how the underlying beta-cell oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) are synchronized within and among the islets in the pancreas. Nitric oxide has been proposed to coordinate the activity of the beta-cells by precipitating transients of [Ca2+]i. Comparing ob/ob mice and lean controls, we have now studied the action of carbon monoxide (CO), another neurotransmitter with stimulatory effects on cGMP production. A strong immunoreactivity for the CO-producing constitutive heme oxygenase (HO-2) was found in ganglionic cells located in the periphery of the islets and in almost all islet endocrine cells. Islets from ob/ob mice had sixfold higher generation of CO (1 nmol.min-1.mg protein-1) than the lean controls. This is 100-fold the rate for their constitutive production of NO. Moreover, islets from ob/ob mice showed a threefold increase in HO-2 expression and expressed inducible HO (HO-1). The presence of an excessive islet production of CO in the ob/ob mouse had its counterpart in a pronounced suppression of the glucose-stimulated insulin release from islets exposed to the HO inhibitor Zn-protoporhyrin (10 microM) and in a 16 times higher frequency of [Ca2+]i transients in their beta-cells. Hemin (0.1 and 1.0 microM), the natural substrate for HO, promoted the appearance of [Ca2+]i transients, and 10 microM of the HO inhibitors Zn-protoporphyrin and Cr-mesoporphyrin had a suppressive action both on the firing of transients and their synchronization. It is concluded that the increased islet production of CO contributes to the hyperinsulinemia in ob/ob mice. In addition to serving as a positive modulator of glucose-stimulated insulin release, CO acts as a messenger propagating Ca2+ signals with coordinating effects on the beta-cell rhythmicity.
Collapse
Affiliation(s)
- Ingmar Lundquist
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, BMC F13, S-221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Nihei OK, Campos de Carvalho AC, Spray DC, Savino W, Alves LA. A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am J Physiol Cell Physiol 2003; 285:C1304-C1313. [PMID: 12878492 DOI: 10.1152/ajpcell.00568.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We here describe intercellular calcium waves as a novel form of cellular communication among thymic epithelial cells. We first characterized the mechanical induction of intercellular calcium waves in different thymic epithelial cell preparations: cortical 1-4C18 and medullary 3-10 thymic epithelial cell lines and primary cultures of thymic "nurse" cells. All thymic epithelial preparations responded with intercellular calcium wave propagation after mechanical stimulation. In general, the propagation efficacy of intercellular calcium waves in these cells was high, reaching 80-100% of the cells within a given confocal microscopic field, with a mean velocity of 6-10 microm/s and mean amplitude of 1.4- to 1.7-fold the basal calcium level. As evaluated by heptanol and suramin treatment, our results suggest the participation of both gap junctions and P2 receptors in the propagation of intercellular calcium waves in thymic nurse cells and the more prominent participation of gap junctions in thymic epithelial cell lines. Finally, in cocultures, the transmission of intercellular calcium wave was not observed between the mechanically stimulated thymic epithelial cell and adherent thymocytes, suggesting that intercellular calcium wave propagation is limited to thymic epithelial cells and does not affect the neighboring thymocytes. In conclusion, these data describe for the first time intercellular calcium waves in thymic epithelial cells and the participation of both gap junctions and P2 receptors in their propagation.
Collapse
Affiliation(s)
- O K Nihei
- Laboratory on Thymus Research, Department of Immunology, Institute Oswaldo Cruz, The Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
32
|
Yao J, Suwa M, Li B, Kawamura K, Morioka T, Oite T. ATP-dependent mechanism for coordination of intercellular Ca2+ signaling and renin secretion in rat juxtaglomerular cells. Circ Res 2003; 93:338-45. [PMID: 12869388 DOI: 10.1161/01.res.0000086802.21850.5d] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A change in intracellular Ca2+ is considered to be the common final signaling pathway through which renin secretion is governed. Therefore, information relating to the generation, control, and processing of Ca2+ signaling in juxtaglomerular cells (JG) will be critical for understanding JG cell behavior. In this study, we investigated the means by which JG cells harmonize their intracellular Ca2+ signals and explored the potential role of these mechanisms in renin secretion. Mechanical stimulation of a single JG cell initiated propagation of an intercellular Ca2+ wave to up to 11.9+/-4.1 surrounding cells, and this was prevented in the presence of the ATP-degrading enzyme, apyrase (1.7+/-0.7 cells), or by desensitization of purinergic receptors via pretreatment of cells with ATP (1.8+/-0.9 cells), thus implicating ATP as a mediator responsible for the propagation of intercellular Ca2+ signaling. Consistent with this, JG cells were demonstrated not to express the gap junction protein connexin43, and neither did they possess functional gap junction communication. Furthermore, massive mechanical stretching of JG cells elicited a 3-fold increase in ATP release. Administration of ATP into isolated perfused rat kidneys induced a rapid, potent, and persistent inhibition of renin secretion, together with a transient elevation of renal vascular resistance. ATP (1 mmol/L) caused up to 79% reduction of the renin secretion activated by lowering the renal perfusion flow (P<0.01). Taken together, our results indicate that under mechanical stimulation, ATP functions as a paracellular mediator to regulate renin secretion, possibly through modulating intra- and intercellular Ca2+ signals.
Collapse
Affiliation(s)
- Jian Yao
- Department of Cellular Physiology, Institute of Nephrology, Postgraduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Caton D, Calabrese A, Mas C, Serre-Beinier V, Charollais A, Caille D, Zufferey R, Trono D, Meda P. Lentivirus-mediated transduction of connexin cDNAs shows level- and isoform-specific alterations in insulin secretion of primary pancreatic beta-cells. J Cell Sci 2003; 116:2285-94. [PMID: 12697840 DOI: 10.1242/jcs.00442] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have generated novel lentiviral vectors to integrate various connexin cDNAs into primary, non-dividing cells. We have used these vectors to test whether proper control of insulin secretion depends on a specific connexin isoform and/or on its level of expression. We have observed that transduced connexin32, connexin36 and connexin43 were expressed by primary adult beta-cells at membrane interfaces, were packed into typical gap junction plaques and formed functional channels that allowed a variable coupling, depending on the type and level of connexin expressed. The infected cells spontaneously reaggregated into three-dimensional pseudo-islet organs that could be maintained in culture. We have found that pseudo-islets made by cells transduced with either GFP- or connexin43-expressing lentivirus released insulin in response to various secretagogues similarly to controls. By contrast, pseudo-islets made by cells expressing connexin32, a connexin exogenous to pancreatic islets, or over-expressing connexin36, the endogenous islet connexin, featured a marked decrease in the secretory response to glucose. The data show: (1) that lentiviral vectors allow stable modulation of various connexin in primary, non-proliferating cells; (2) that specific connexin isoforms affect insulin secretion differently; and (3) that adequate levels of coupling via connexin36 channels are required for proper beta-cell function.
Collapse
Affiliation(s)
- David Caton
- Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, Ehrlich BE, Nathanson MH. Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci U S A 2003; 100:2975-80. [PMID: 12606721 PMCID: PMC151451 DOI: 10.1073/pnas.0536590100] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nuclear calcium (Ca(2+)) regulates a number of important cellular processes, including gene transcription, growth, and apoptosis. However, it is unclear whether Ca(2+) signaling is regulated differently in the nucleus and cytosol. To investigate this possibility, we examined subcellular mechanisms of Ca(2+) release in the HepG2 liver cell line. The type II isoform of the inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) was expressed to a similar extent in the endoplasmic reticulum and nucleus, whereas the type III InsP(3)R was concentrated in the endoplasmic reticulum, and the type I isoform was not expressed. Ca(2+) signals induced by low InsP(3) concentrations started earlier or were larger in the nucleus than in the cytosol, indicating higher sensitivity of nuclear Ca(2+) stores for InsP(3). Nuclear InsP(3)R channels were active at lower InsP(3) concentrations than InsP(3)R from cytosol. Enriched expression of type II InsP(3)R in the nucleus results in greater sensitivity of the nucleus to InsP(3), thus providing a mechanism for independent regulation of Ca(2+)-dependent processes in this cellular compartment.
Collapse
Affiliation(s)
- M F Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, CEP 30310-100, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Terasawa E, Richter TA, Keen KL. A role for non-neuronal cells in synchronization of intracellular calcium oscillations in primate LHRH neurons. PROGRESS IN BRAIN RESEARCH 2003; 141:283-91. [PMID: 12508575 DOI: 10.1016/s0079-6123(02)41099-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Ei Terasawa
- Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715-1299, USA.
| | | | | |
Collapse
|
36
|
Grapengiesser E, Gylfe E, Dansk H, Hellman B. Stretch activation of Ca2+ transients in pancreatic beta cells by mobilization of intracellular stores. Pancreas 2003; 26:82-6. [PMID: 12499922 DOI: 10.1097/00006676-200301000-00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Nonadrenergic, noncholinergic neurons have been proposed to synchronize pulsatile insulin release from the islets in the pancreas by triggering transient increases of the cytoplasmic Ca2+ concentration ([Ca2+]i) in beta-cells via an inositol trisphoshate-dependent mechanism. AIMS To test whether pancreatic beta-cells respond to stretch activation with similar types of transients and whether these Ca signals propagate to other beta-cells in the presence and absence of cell contacts. METHODOLOGY Single cells and small aggregates were prepared from beta-cell-rich islets from mice. After 2-5 days of culture, [Ca2+]i was measured with digital imaging and the indicator fura-2 during superfusion with a medium containing 20 mmol/L glucose and 50 micromol/L methoxyverapamil. Membrane stretch was induced by osmotic swelling or focal touch stimulation. RESULTS Lowering the medium osmolarity with 100-102 mOSM/L by removal of sucrose or by dilution resulted in a 2-3-fold increase in the number of transients during an initial 5-minute period. Sucrose omission was stimulatory also after isosmolar replacement with readily penetrating urea. The intracellular Ca2+-ATPase inhibitor thapsigargin suppressed both the spontaneously occurring transients and those initiated by volume expansion. Touch stimuli induced [Ca2+]i transients, which rapidly propagated to cells within the same aggregate or lacking contact. CONCLUSION The observations support the idea that beta-cells both receive and regenerate extracellular signals triggering [Ca2+]i transients. Touch stimulation is a useful tool for investigating the propagation of [Ca2+]i signals between pancreatic beta-cells lacking physical contact.
Collapse
Affiliation(s)
- Eva Grapengiesser
- Department of Medical Cell Biology, Uppsala University, Biomedicum, Uppsala, Sweden
| | | | | | | |
Collapse
|
37
|
Koval M. Sharing signals: connecting lung epithelial cells with gap junction channels. Am J Physiol Lung Cell Mol Physiol 2002; 283:L875-93. [PMID: 12376339 DOI: 10.1152/ajplung.00078.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.
Collapse
Affiliation(s)
- Michael Koval
- Department of Physiology and Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
38
|
O'Neill AF, Hagar RE, Zipfel WR, Nathanson MH, Ehrlich BE. Regulation of the type III InsP(3) receptor by InsP(3) and calcium. Biochem Biophys Res Commun 2002; 294:719-25. [PMID: 12056830 DOI: 10.1016/s0006-291x(02)00524-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been proposed that the inositol 1,4,5-trisphosphate receptor (InsP(3)R) type III acts as a trigger for InsP(3)-mediated calcium (Ca(2+)) signaling, because this InsP(3) isoform lacks feedback inhibition by cytosolic Ca(2+). We tested this hypothesis in RIN-m5F cells, which express predominantly the type III receptor. Extracellular ATP increases Ca(2+) in these cells, and we found that this effect is independent of extracellular Ca(2+) but is blocked by the InsP(3)R antagonist heparin. There was a dose-dependent increase in the number of cells responding to ATP and two-photon flash photolysis of caged-Ca(2+) heightened the sensitivity of RIN-m5F cells to this increase. These findings provide evidence that Ca(2+) increases the sensitivity of the InsP(3)R type III in intact cells and supports the idea that this isoform can act as a trigger for hormone-induced Ca(2+) signaling.
Collapse
|
39
|
Dorff G, Grapengiesser E, Hellman B. Insulin-secreting INS-1 cells generate a novel type of poorly synchronized Ca2+ transients. Biochem Biophys Res Commun 2002; 293:842-6. [PMID: 12054547 DOI: 10.1016/s0006-291x(02)00311-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pancreatic beta-cells have an intrinsic oscillatory Ca2+ activity supposed to be synchronized among the islets by cytoplasmic Ca2+ transients elicited by nonadrenergic, noncholinergic (NANC) neurons. To improve the understanding of this process, the cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in two insulin-releasing cell lines using dual wavelength microfluorometry and the indicator fura-2. INS-1 cells but not RINm5F cells were found to generate transients of [Ca2+]i in the presence of the Ca2+ channel blocker methoxyverapamil. These transients differed from those occurring in native beta-cells persisting in the presence of thapsigargin or during prolonged exposure to ATP. Moreover, the [Ca2+]i transients were poorly synchronized whether or not the INS-1 cells had physical contact. If appearing in native beta-cells, the type of [Ca2+]i transients now observed may interfere with the coordination of the beta-cell rhythmicity evoked by NANC neurons.
Collapse
Affiliation(s)
- Gernot Dorff
- Department of Medical Cell Biology, Uppsala University, Biomedicum, Box 571, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
40
|
Squires PE, Persaud SJ, Hauge-Evans AC, Gray E, Ratcliff H, Jones PM. Co-ordinated Ca(2+)-signalling within pancreatic islets: does beta-cell entrainment require a secreted messenger. Cell Calcium 2002; 31:209-19. [PMID: 12098223 DOI: 10.1016/s0143-4160(02)00034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isolated beta-cells are heterogeneous in sensory, biosynthetic and secretory capabilities, however, to enable efficient and appropriate secretion, cellular activity within the intact islet is synchronised. Historically, the entrainment of activity to a common pattern has been attributed to gap-junction mediated cell-to-cell communication. Although clearly influential, the possibility remains for other local synchronising mechanisms. In this study, we have used small clusters of insulin-secreting MIN6 cells to assess how contact-dependent, homotypic interactions between cells influences nutrient- and non-nutrient- evoked Ca(2+)-handling and insulin secretion, and to determine whether a secreted product plays a role in the synchronisation of oscillatory activity. Tolbutamide evoked a concentration-dependent recruitment of active cells within cell clusters, both in terms of numbers of cells and amplitude of the evoked Ca(2+)-response. The change in [Ca(2+)](i) was characteristically oscillatory above a mean elevated plateau, and was in phase between member cells of an individual cluster. Even at maximal concentrations (100 microM) some cells within a cluster responded before their immediate neighbours. Subsequent oscillatory behaviour then became entrained between member cells within that cluster. Inhibiting exocytosis using the microtubule inhibitors vincristine and nocodazole, or the adrenergic agent noradrenaline, did not prevent tolbutamide-evoked oscillatory changes in [Ca(2+)](i) but did reduce the probability of obtaining synchronous activity within an individual cluster. Above a threshold glucose concentration, the number of cells secreting insulin increased, without a commensurate change in secretory efficiency. This recruitment of cells secreting insulin mirrored Ca(2+) data that showed a glucose-dependent increase in cell number, without a change in the mean basal-to-peak change in [Ca(2+)](i). Together these data suggest that synchronised behaviour in MIN6 cells is dependent, in part, on a secreted factor that acts in a local paracrine fashion to recruit heterogeneous individual cellular activity into an organised group response.
Collapse
Affiliation(s)
- P E Squires
- Molecular Physiology, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Aslanidi OV, Mornev OA, Vesterager M, Sørensen MP, Christiansen PL. A model for glucose-induced wave propagation in pancreatic islets of Langerhans. J Theor Biol 2002; 215:273-86. [PMID: 12054836 DOI: 10.1006/jtbi.2001.2517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A reaction-diffusion type model is constructed, describing the spatio-temporal dynamics of the basic intracellular variables assumed to be involved in the initiation of the insulin secretion process by beta -cells in the pancreatic islets of Langerhans. The model includes equations for the electric membrane potential of the cells, with respective kinetics for ionic currents, for concentrations of both free and stored intracellular calcium, and for the intra- and extracellular concentrations of glucose. An empirical expression connecting the equation for the intracellular glucose concentration to the electrical equation is introduced. The model reproduces the events observed in experiments in vitro upon external glucose application to the islets of Langerhans, such as usual bursting oscillations of the membrane potential and corresponding oscillations of the intracellular calcium concentration. It also allows simulation of electric wave propagation through the islet, initiated by the spatial gradient of glucose concentration within the islet. The gradient emerges due to glucose diffusing into the islets from the external medium, being high at the edges. The latter results show that glucose diffusion presents a means for wave initiation in the islets, which supports our previous assumption (Aslanidi et al., 2001).
Collapse
Affiliation(s)
- O V Aslanidi
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia.
| | | | | | | | | |
Collapse
|
42
|
Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa JI, Matsuzawa Y. Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 2002; 51:114-23. [PMID: 11756330 DOI: 10.2337/diabetes.51.1.114] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One subtype of maturity-onset diabetes of the young (MODY)-3 results from mutations in the gene encoding hepatocyte nuclear factor (HNF)-1 alpha. We generated transgenic mice expressing a naturally occurring dominant-negative form of human HNF-1 alpha (P291fsinsC) in pancreatic beta-cells. A progressive hyperglycemia with age was seen in these transgenic mice, and the mice developed diabetes with impaired glucose-stimulated insulin secretion. The pancreatic islets exhibited abnormal architecture with reduced expression of glucose transporter (GLUT2) and E-cadherin. Blockade of E-cadherin-mediated cell adhesion in pancreatic islets abolished the glucose-stimulated increases in intracellular Ca(2+) levels and insulin secretion, suggesting that loss of E-cadherin in beta-cells is associated with impaired insulin secretion. There was also a reduction in beta-cell number (50%), proliferation rate (15%), and pancreatic insulin content (45%) in 2-day-old transgenic mice and a further reduction in 4-week-old animals. Our findings suggest various roles for HNF-1 alpha in normal glucose metabolism, including the regulation of glucose transport, beta-cell growth, and beta-cell-to-beta-cell communication.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Klepeis VE, Cornell-Bell A, Trinkaus-Randall V. Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J Cell Sci 2001; 114:4185-95. [PMID: 11739651 DOI: 10.1242/jcs.114.23.4185] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper characterizes the early responses of epithelial cells to injury. Ca2+ is an important early messenger that transiently increases in the cytoplasm of cells in response to external stimuli. Its elevation leads to the regulation of signaling pathways responsible for the downstream events important for wound repair, such as cell migration and proliferation. Live cell imaging in combination with confocal laser scanning microscopy of fluo-3 AM loaded cells was performed. We found that mechanical injury in a confluent region of cells creates an elevation in Ca2+ that is immediately initiated at the wound edge and travels as a wave to neighboring cells, with [Ca2+]i returning to background levels within two minutes. Addition of epidermal growth factor (EGF), but not platelet-derived growth factor-BB, resulted in increased [Ca2+]i, and EGF specifically enhanced the amplitude and duration of the injury-induced Ca2+ wave. Propagation of the Ca2+ wave was dependent on intracellular Ca2+ stores, as was demonstrated using both thapsigargin and Ca2+ chelators (EGTA and BAPTA/AM). Injury-induced Ca2+ waves were not mediated via gap junctions, as the gap-junction inhibitors 1-heptanol and 18α-glycyrrhetinic acid did not alter wave propagation, nor did the cells recover in photobleaching experiments. Additional studies also demonstrated that the wave could propagate across an acellular region. The propagation of the injury-induced Ca2+ wave occurs via diffusion of an extracellular mediator, most probably via a nucleotide such as ATP or UTP, that is released upon cell damage.
Movies available on-line
Collapse
Affiliation(s)
- V E Klepeis
- Department of Pathology, Cognetix, Inc., Ivoryton, CT 06442, USA
| | | | | |
Collapse
|
44
|
Steinberg TH, Jørgensen NR, Bong JS, Henriksen Z, Atal N, Lin GC, Bennett BD, Eriksen EF, Sørensen OH, Civitelli R. P2-mediated responses in osteoclasts and osteoclast-like cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Patiño R, Yoshizaki G, Thomas P, Kagawa H. Gonadotropic control of ovarian follicle maturation: the two-stage concept and its mechanisms. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:427-39. [PMID: 11399477 DOI: 10.1016/s1096-4959(01)00344-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most research on the control of oocyte maturation by luteinizing hormone (LH) in teleosts and amphibians has focused on the production and action of maturation-inducing hormone (MIH), the follicular hormone that directly triggers the resumption of oocyte meiosis. However, current information indicates that LH regulates maturation in two stages, and that 'oocyte maturation' can be appropriately described within the broader context of 'ovarian follicle maturation'. During the first stage of maturation the follicle (somatic) cells acquire the ability to produce MIH and the oocyte to respond to MIH (i.e. oocyte maturational competence, OMC), whereas in the second stage the follicle cells produce MIH and, consequently, the oocyte is released from meiotic arrest. A number of factors such as insulin-like growth factor-I, serotonin, and others may mediate or modulate the OMC-inducing action of LH. Like the acquisition of MIH-producing ability, the acquisition of OMC requires activation of the protein kinase A pathway. Two major cellular events associated with OMC acquisition are increases in homologous and heterologous gap junction contacts and in oocyte MIH receptor activity. The increased oocyte MIH receptor activity is presumably associated with OMC acquisition, but the significance of changes in gap junction contacts is at present uncertain. To eliminate inconsistency and ambiguity associated with current terminology we propose that the term, ovarian follicle (or oocyte) maturation be used for teleosts without qualifiers such as 'final' to define the first and second stages of follicular maturation.
Collapse
Affiliation(s)
- R Patiño
- U.S. Geological Survey Texas Cooperative Fish & Wildlife Research Unit, Texas Tech University, 79409-2120, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
46
|
Aslanidi OV, Mornev OA, Skyggebjerg O, Arkhammar P, Thastrup O, Sørensen MP, Christiansen PL, Conradsen K, Scott AC. Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans. Biophys J 2001; 80:1195-209. [PMID: 11222284 PMCID: PMC1301315 DOI: 10.1016/s0006-3495(01)76096-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In response to glucose application, beta-cells forming pancreatic islets of Langerhans start bursting oscillations of the membrane potential and intracellular calcium concentration, inducing insulin secretion by the cells. Until recently, it has been assumed that the bursting activity of beta-cells in a single islet of Langerhans is synchronized across the whole islet due to coupling between the cells. However, time delays of several seconds in the activity of distant cells are usually observed in the islets of Langerhans, indicating that electrical/calcium wave propagation through the islets can occur. This work presents both experimental and theoretical evidence for wave propagation in the islets of Langerhans. Experiments with Fura-2 fluorescence monitoring of spatiotemporal calcium dynamics in the islets have clearly shown such wave propagation. Furthermore, numerical simulations of the model describing a cluster of electrically coupled beta-cells have supported our view that the experimentally observed calcium waves are due to electric pulses propagating through the cluster. This point of view is also supported by independent experimental results. Based on the model equations, an approximate analytical expression for the wave velocity is introduced, indicating which parameters can alter the velocity. We point to the possible role of the observed waves as signals controlling the insulin secretion inside the islets of Langerhans, in particular, in the regions that cannot be reached by any external stimuli such as high glucose concentration outside the islets.
Collapse
Affiliation(s)
- O V Aslanidi
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, 142290 Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Isakson BE, Evans WH, Boitano S. Intercellular Ca2+ signaling in alveolar epithelial cells through gap junctions and by extracellular ATP. Am J Physiol Lung Cell Mol Physiol 2001; 280:L221-8. [PMID: 11159000 DOI: 10.1152/ajplung.2001.280.2.l221] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inter- and extracellular-mediated changes in intracellular Ca2+ concentration ([Ca2+]i) can ensure coordinated tissue function in the lung. Cultured rat alveolar epithelial cells (AECs) have been shown to respond to secretagogues with increases in [Ca2+]i and have been shown to be gap junctionally coupled. However, communication of [Ca2+]i changes in AECs is not well defined. Monolayers of AECs were mechanically perturbed and monitored for [Ca2+]i changes. Perturbation of AECs was administered by a glass probe to either mechanically stimulate or mechanically wound individual cells. Both approaches induced a change in [Ca2+]i in the stimulated cell that was propagated to neighboring cells (Ca2+ waves). A connexin mimetic peptide shown to uncouple gap junctions eliminated Ca2+ waves in mechanically stimulated cells but had no effect on mechanically wounded cells. In contrast, apyrase, an enzyme that effectively removes ATP from the extracellular milieu, had no effect on mechanically stimulated cells but severely restricted mechanically wounded Ca2+ wave propagation. We conclude that AECs have the ability to communicate coordinated Ca2+ changes using both gap junctions and extracellular ATP.
Collapse
Affiliation(s)
- B E Isakson
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071-3166, USA
| | | | | |
Collapse
|
48
|
Abstract
In this study, gap junction-deficient C6 glioma cells, transfected with either connexin 43 (Cx43) or 32 (Cx32), have been used to evaluate the ability of these connexins to pass intercellular Ca2+ waves. Ca2+ waves, observed with fluorescence imaging using fura-2 or fluo-3, were initiated by mechanical stimulation in the presence of a supra-perfusion of the extracellular fluid or by the non-contact technique of flash photolysis of intracellular caged-IP3. Following manual mechanical stimulation, the parental C6 glioma cells and cells expressing Cx43 and Cx32 gap junctions all propagated intercellular Ca2+ waves. Ca2+ waves in cells expressing Cx43 traveled approximately twice the distance as compared to waves in cells expressing Cx32 or parental cells. The cells expressing Cx43 were also about twice as sensitive to ATP as cells expressing Cx32. In the presence of a supra-perfusion of extracellular fluid, the Ca2+ waves in parental cells were almost abolished while the mechanically induced Ca2+ waves in the cells expressing Cx43 and Cx32 propagate similar but limited distances of several cells in a direction opposite to the fluid flow. The photolytic release of IP3, but not Ca2+, in cells expressing Cx43 or Cx32 resulted in the propagation of Ca2+ waves that traveled distances similar to those observed in the presence of supra-perfusion. Parental C6 glioma cells did not initiate intercellular Ca2+ waves when stimulated by photolysis. From these studies we conclude that (1) both Cx43 and Cx32 based gap junctions are permeable to IP3 and can serve to communicate Ca2+ waves, (2) that Ca2+ wave propagation via gap junctions was dependent on the diffusion of IP3 but not Ca2+, (3) that an extracellular messenger capable of communicating waves is released from only the stimulated cell, and (4) that simultaneous intracellular and extracellular signaling can occur to enhance the propagation of intercellular Ca2+ waves.
Collapse
Affiliation(s)
- T Fry
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
49
|
Grafstein B, Liu S, Cotrina ML, Goldman SA, Nedergaard M. Meningeal cells can communicate with astrocytes by calcium signaling. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200001)47:1<18::aid-ana6>3.0.co;2-n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Terasawa E. Luteinizing hormone-releasing hormone (LHRH) neurons: mechanism of pulsatile LHRH release. VITAMINS AND HORMONES 2001; 63:91-129. [PMID: 11358119 DOI: 10.1016/s0083-6729(01)63004-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many types of neurons and glia exhibit oscillatory changes in membrane potentials and cytoplasmic Ca2+ concentrations. In neurons and neuroendocrine cells an elevation of intracellular Ca2+ concentration is associated with neurosecretion. Since both oscillatory membrane potentials and intracellular Ca2+ oscillations have been described in primary LHRH neurons and in GT1 cells, it is evident that an endogenous pulse-generator/oscillator is present in the LHRH neuron in vitro. The hourly rhythms of LHRH neurosecretion appear to be the synchronization of a population of LHRH neurons. How a network of LHRH neurons synchronizes their activity, i.e., whether by the result of synaptic mechanisms or electrical coupling through gap junctions or through a diffusible substance(s), remains to be clarified. Even though LHRH neurons themselves possess an endogenous pulse-generating mechanism, they may be controlled by other neuronal and nonneuronal elements in vivo. NE, NPY, glutamate, and GABA are neurotransmitters possibly controlling pulsatile LHRH release, and NO, cAMP, and ATP may be diffusible substances involved in pulsatile LHRH release without synaptic input. Although synaptic inputs to the perikarya of LHRH neurons could control the activity of LHRH neurons, a line of evidence suggests that direct neuronal and nonneuronal inputs, especially those from astrocytes to LHRH neuroterminals, appear to be more important for pusatile LHRH release.
Collapse
Affiliation(s)
- E Terasawa
- Wisconsin Regional Primate Research Center, Department of Pediatrics, and Center for Neuroscience, University of Wisconsin-Madison, 53715, USA
| |
Collapse
|