1
|
Kröber T, Bartsch SM, Fiedler D. Pharmacological tools to investigate inositol polyphosphate kinases - Enzymes of increasing therapeutic relevance. Adv Biol Regul 2021; 83:100836. [PMID: 34802993 DOI: 10.1016/j.jbior.2021.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are a group of central eukaryotic metabolites and signaling molecules. Due to the diverse cellular functions and widespread diseases InsPs and PP-InsPs are associated with, pharmacological targeting of the kinases involved in their biosynthesis has become a significant research interest in the last decade. In particular, the development of inhibitors for inositol hexakisphosphate kinases (IP6Ks) has leaped forward, while other inositol phosphate kinases have received scant attention. This review summarizes the efforts undertaken so far for discovering potent and selective inhibitors for this diverse group of small molecule kinases. The benefits of pharmacological inhibition are highlighted, given the multiple kinase-independent functions of inositol phosphate kinases. The distinct structural families of InsP and PP-InsP kinases are presented, and we discuss how compound availability for different inositol phosphate kinase families varies drastically. Lead compound discovery and optimization for the inositol kinases would benefit from detailed structural information on the ATP-binding sites of these kinases, as well as reliable biochemical and cellular read-outs to monitor inositol phosphate kinase activity in complex settings. Efforts to further tune well-established inhibitors, while simultaneously reviving tool compound development for the more neglected kinases from this family are indisputably worthwhile, considering the large potential therapeutic benefits.
Collapse
Affiliation(s)
- Tim Kröber
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Simon M Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
2
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
3
|
Abstract
The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Franco-Echevarría E, Sanz-Aparicio J, Troffer-Charlier N, Poterszman A, González B. Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase. Protein J 2017; 36:240-248. [PMID: 28429156 DOI: 10.1007/s10930-017-9717-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) is an enzyme that catalyses the formation of phytic acid (IP6) from IP5 and ATP. In mammals, IP6 is involved in multiple events such as DNA repair and mRNA edit and it is the precursor of inositol pyrophosphates, emerging compounds shown to have an essential role in apoptosis. In addition, IP5 2-K have functions in cells independently of its catalytic activity, for example in rRNA biogenesis. We pursue the structure determination of a mammal IP5 2-K by Protein Crystallography. For this purpose, we have designed protocols for recombinant expression and purification of Mus musculus IP5 2-K (mIP5 2-K). The recombinant protein has been expressed in two different hosts, E. coli and insect cells using the LSLt and GST fusion proteins, respectively. Both macromolecule preparations yielded crystals of similar quality. Best crystals diffracted to 4.3 Å (E. coli expression) and 4.0 Å (insect cells expression) maximum resolution. Both type of crystals belong to space group P212121 with an estimated solvent content compatible with the presence of two molecules per asymmetric unit. Gel filtration experiments are in agreement with this enzyme being a monomer. Crystallographic data analysis is currently undergoing.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Julia Sanz-Aparicio
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
5
|
Franco-Echevarría E, Sanz-Aparicio J, Brearley CA, González-Rubio JM, González B. The crystal structure of mammalian inositol 1,3,4,5,6-pentakisphosphate 2-kinase reveals a new zinc-binding site and key features for protein function. J Biol Chem 2017; 292:10534-10548. [PMID: 28450399 PMCID: PMC5481561 DOI: 10.1074/jbc.m117.780395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) are part of a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana is a zinc metallo-enzyme, including two separated lobes (the N- and C-lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N- and C-lobes is conserved with A. thaliana IP5 2-K. A helical scaffold in the C-lobe constitutes the inositol phosphate-binding site, which, along with the participation of the N-lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologues from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Julia Sanz-Aparicio
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Charles A Brearley
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Juana M González-Rubio
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Beatriz González
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| |
Collapse
|
6
|
Abstract
To help define the molecular basis of cellular signalling cascades, and their biological functions, there is considerable value in utilizing a high-quality chemical 'probe' that has a well-defined interaction with a specific cellular protein. Such reagents include inhibitors of protein kinases and small molecule kinases, as well as mimics or antagonists of intracellular signals. The purpose of this review is to consider recent progress and promising future directions for the development of novel molecules that can interrogate and manipulate the cellular actions of inositol pyrophosphates (PP-IPs)--a specialized, 'energetic' group of cell-signalling molecules in which multiple phosphate and diphosphate groups are crammed around a cyclohexane polyol scaffold.
Collapse
|
7
|
Jiao C, Summerlin M, Bruzik KS, Hanakahi L. Synthesis of Biotinylated Inositol Hexakisphosphate To Study DNA Double-Strand Break Repair and Affinity Capture of IP6-Binding Proteins. Biochemistry 2015; 54:6312-22. [PMID: 26397942 DOI: 10.1021/acs.biochem.5b00642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inositol hexakisphosphate (IP6) is a soluble inositol polyphosphate, which is abundant in mammalian cells. Despite the participation of IP6 in critical cellular functions, few IP6-binding proteins have been characterized. We report on the synthesis, characterization, and application of biotin-labeled IP6 (IP6-biotin), which has biotin attached at position 2 of the myo-inositol ring via an aminohexyl linker. Like natural IP6, IP6-biotin stimulated DNA ligation by nonhomologous end joining (NHEJ) in vitro. The Ku protein is a required NHEJ factor that has been shown to bind IP6. We found that IP6-biotin could affinity capture Ku and other required NHEJ factors from human cell extracts, including the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and XLF. Direct binding studies with recombinant proteins show that Ku is the only NHEJ factor with affinity for IP6-biotin. DNA-PKcs, XLF, and the XRCC4:ligase IV complex interact with Ku in cell extracts and likely interact indirectly with IP6-biotin. IP6-biotin was used to tether streptavidin to Ku, which inhibited NHEJ in vitro. These proof-of-concept experiments suggest that molecules like IP6-biotin might be used to molecularly target biologically important proteins that bind IP6. IP6-biotin affinity capture experiments show that numerous proteins specifically bind IP6-biotin, including casein kinase 2, which is known to bind IP6, and nucleolin. Protein binding to IP6-biotin is selective, as IP3, IP4, and IP5 did not compete for binding of proteins to IP6-biotin. Our results document IP6-biotin as a useful tool for investigating the role of IP6 in biological systems.
Collapse
Affiliation(s)
- Chensong Jiao
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago , 833 South Wood Street (M/C 781), Chicago, Illinois 60612, United States
| | - Matthew Summerlin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago , Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, Illinois 61107, United States
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago , 833 South Wood Street (M/C 781), Chicago, Illinois 60612, United States
| | - Leslyn Hanakahi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago , Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, Illinois 61107, United States
| |
Collapse
|
8
|
Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochem J 2015; 466:105-14. [PMID: 25423617 PMCID: PMC4325516 DOI: 10.1042/bj20140798] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1Δ yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1Δ yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a β-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1Δ yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription. Inositol pyrophosphates are phosphate-rich metabolic messengers that regulate many cellular processes. We observed that RNA polymerase I is pyrophosphorylated by inositol pyrophosphates, and its transcription elongation activity was reduced in budding yeast strains devoid of inositol pyrophosphates.
Collapse
|
9
|
Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1. Proc Natl Acad Sci U S A 2015; 112:1773-8. [PMID: 25617365 DOI: 10.1073/pnas.1424642112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell-cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy.
Collapse
|
10
|
Discovery of InsP6-kinases as InsP6-dephosphorylating enzymes provides a new mechanism of cytosolic InsP6 degradation driven by the cellular ATP/ADP ratio. Biochem J 2014; 462:173-84. [PMID: 24865181 DOI: 10.1042/bj20130992] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
InsP6 (inositol hexakisphosphate), the most abundant inositol phosphate in metazoa, is pyrophosphorylated to InsP7 [5PP-InsP5 (diphosphoinositol pentakisphosphate)] by cytosolic and nuclear IP6Ks (InsP6 kinases) and to 1PP-InsP5 by another InsP6/InsP7 kinase family. MINPP1 (multiple inositol-polyphosphate phosphatase 1), the only known InsP6 phosphatase, is localized in the ER (endoplasmic reticulum) and lysosome lumina. A mechanism of cytosolic InsP6 dephosphorylation has remained enigmatic so far. In the present study, we demonstrated that IP6Ks change their kinase activity towards InsP6 at a decreasing ATP/ADP ratio to an ADP phosphotransferase activity and dephosphorylate InsP6. Enantio-selective analysis revealed that Ins(2,3,4,5,6)P5 is the main InsP5 product of the IP6K reaction, whereas the exclusive product of MINPP1 activity is the enantiomer Ins(1,2,4,5,6)P5. Whereas lentiviral RNAi-based depletion of MINPP1 at falling cellular ATP/ADP ratios had no significant impact on Ins(2,3,4,5,6)P5 production, the use of the selective IP6K inhibitor TNP [N2-(m-trifluorobenzyl),N6-(p-nitrobenzyl)purine] abolished the production of this enatiomer in different types of cells. Furthermore, by analysis of rat tissue and human blood samples all (main and minor) dephosphorylation products of InsP6 were detected in vivo. In summary, we identified IP6Ks as novel nuclear and cytosolic InsP6- (and InsP5-) dephosphorylating enzymes whose activity is sensitively driven by a decrease in the cellular ATP/ADP ratio, thus suggesting a role for IP6Ks as cellular adenylate energy 'sensors'.
Collapse
|
11
|
Mahboubi H, Stochaj U. Nucleoli and Stress Granules: Connecting Distant Relatives. Traffic 2014; 15:1179-93. [DOI: 10.1111/tra.12191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology; McGill University; 3655 Promenade Sir William Osler Montreal Quebec H3G 1Y6 Canada
| | - Ursula Stochaj
- Department of Physiology; McGill University; 3655 Promenade Sir William Osler Montreal Quebec H3G 1Y6 Canada
| |
Collapse
|