1
|
Chen Y, Liu J, Fan Y, Xiang M, Kang S, Wei D, Liu X. SNARE Protein DdVam7 of the Nematode-Trapping Fungus Drechslerella dactyloides Regulates Vegetative Growth, Conidiation, and the Predatory Process via Vacuole Assembly. Microbiol Spectr 2022; 10:e0187222. [PMID: 36287065 PMCID: PMC9769606 DOI: 10.1128/spectrum.01872-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play conserved roles in membrane fusion events in eukaryotes and have been documented to be involved in fungal growth and pathogenesis. However, little is known about the roles of SNAREs in trap morphogenesis in nematode-trapping fungi (NTF). Drechslerella dactyloides, one of the constricting ring-forming NTF, captures free-living nematodes via rapid ring cell inflation. Here, we characterized DdVam7 of D. dactyloides, a homolog of the yeast SNARE protein Vam7p. Deletion of DdVam7 significantly suppressed vegetative growth and conidiation. The mutation significantly impaired trap formation and ring cell inflation, resulting in a markedly decreased nematode-trapping ability. A large vacuole could develop in ring cells within ~2.5 s after instant inflation in D. dactyloides. In the ΔDdVam7 mutant, the vacuoles were small and fragmented in hyphae and uninflated ring cells, and the large vacuole failed to form in inflated ring cells. The localization of DdVam7 in vacuoles suggests its involvement in vacuole fusion. In summary, our results suggest that DdVam7 regulates vegetative growth, conidiation, and the predatory process by mediating vacuole assembly in D. dactyloides, and this provides a basis for studying mechanisms of SNAREs in NTF and ring cell rapid inflation. IMPORTANCE D. dactyloides is a nematode-trapping fungus that can capture nematodes through a constricting ring, the most sophisticated trapping device. It is amazing that constricting ring cells can inflate to triple their size within seconds to capture a nematode. A large centrally located vacuole is a unique signature associated with inflated ring cells. However, the mechanism underpinning trap morphogenesis, especially vacuole dynamics during ring cell inflation, remains unclear. Here, we documented the dynamics of vacuole assembly during ring cell inflation via time-lapse imaging for the first time. We characterized a SNARE protein in D. dactyloides (DdVam7) that was involved in vacuole assembly in hyphae and ring cells and played important roles in vegetative growth, conidiation, trap morphogenesis, and ring cell inflation. Overall, this study expands our understanding of biological functions of the SNARE proteins and vacuole assembly in NTF trap morphogenesis and provides a foundation for further study of ring cell rapid inflation mechanisms.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
2
|
The Fungal Protein Mes1 Is Required for Morphogenesis and Virulence in the Dimorphic Phytopathogen Ustilago maydis. J Fungi (Basel) 2022; 8:jof8080759. [PMID: 35893127 PMCID: PMC9331856 DOI: 10.3390/jof8080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Polarized growth is a defining property of filamentous fungi, which plays an important role in different aspects of their biology, including virulence. However, little information is available about the determinants of cell surface organization and their role in polarized growth. The fungal protein MesA was identified in a genetic screen in Aspergillus nidulans and is involved in the stabilization of the polarity axes, but it has no evident role in budding yeast. In this work, I present evidence that in the dimorphic fungal phytopathogen Ustilago maydis MesA/Mes1 is involved in cell wall stability and polarized growth. mes1 mutants were more sensitive to drugs provoking cell wall stress, and they displayed a temperature-sensitive phenotype. Actin cytoskeleton was disorganized in a mes1 mutant, suggesting that there is a connection between Mes1, the actin cytoskeleton and polarized morphogenesis. The septin ring was also absent from the bud tip, but not the bud neck. Deletion of mes1 provoked defects in endocytosis and vacuolar organization in the cells. Mes1 was essential for strong polarized growth in the hyphal form, but it was dispensable during low or moderate polarized growth in the yeast form in U. maydis at a permissive temperature. Consistently, mes1 mutants showed delayed mating and they were avirulent.
Collapse
|
3
|
A Kinesin Vdkin2 Required for Vacuole Formation, Mycelium Growth, and Penetration Structure Formation of Verticillium dahliae. J Fungi (Basel) 2022; 8:jof8040391. [PMID: 35448622 PMCID: PMC9030024 DOI: 10.3390/jof8040391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
The soil-borne vascular fungus Verticillium dahliae infects hundreds of dicotyledonous plants, causing severe wilt diseases. During the initial colonization, V. dahliae develops a penetration peg to enable infection of cotton roots. In some phytopathogenic fungi, vacuoles play a critical role in normal formation of the infection structure. Kinesin 2 protein is associated with vacuole formation in Ustilago maydis. To identify the function of vacuoles in the V. dahliae infection structure, we identified VdKin2, an ortholog of kinesin 2, in V. dahliae and investigated its function through gene knockout. VdKin2 mutants showed severe defects in virulence and were suppressed during initial infection and root colonization based on observation of green fluorescent protein-labeled V. dahliae. We also found that deletion of VdKin2 compromised penetration peg formation and the derived septin neck. Disruption strains were viable and showed normal microsclerotia formation, whereas mycelium growth and conidial production were reduced, with shorter and more branched hyphae. Furthermore, the VdKin2 mutant, unlike wild-type V. dahliae, lacked a large basal vacuole, accompanied by a failure to generate concentrated lipid droplets. Taken together, VdKin2 regulates vacuole formation by V. dahliae, which is required for conidiation, mycelium growth, and penetration structure formation during initial plant root infection.
Collapse
|
4
|
Mazheika IS, Kamzolkina OV. Does macrovesicular endocytosis occur in fungal hyphae? FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Higuchi Y. Membrane traffic related to endosome dynamics and protein secretion in filamentous fungi. Biosci Biotechnol Biochem 2021; 85:1038-1045. [PMID: 33686391 DOI: 10.1093/bbb/zbab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, membrane-surrounded organelles are orchestrally organized spatiotemporally under environmental situations. Among such organelles, vesicular transports and membrane contacts occur to communicate each other, so-called membrane traffic. Filamentous fungal cells are highly polarized and thus membrane traffic is developed to have versatile functions. Early endosome (EE) is an endocytic organelle that dynamically exhibits constant long-range motility through the hyphal cell, which is proven to have physiological roles, such as other organelle distribution and signal transduction. Since filamentous fungal cells are also considered as cell factories, to produce valuable proteins extracellularly, molecular mechanisms of secretory pathway including protein glycosylation have been well investigated. In this review, molecular and physiological aspects of membrane traffic especially related to EE dynamics and protein secretion in filamentous fungi are summarized, and perspectives for application are also described.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Woraratanadharm T, Kmosek S, Banuett F. UmTea1, a Kelch and BAR domain-containing protein, acts at the cell cortex to regulate cell morphogenesis in the dimorphic fungus Ustilago maydis. Fungal Genet Biol 2018; 121:10-28. [PMID: 30205200 DOI: 10.1016/j.fgb.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The spatial organization of a cell is crucial for distribution of cell components and for cell morphogenesis in all organisms. Ustilago maydis, a basidiomycete fungus, has a yeast-like and a filamentous form. The former buds once per cell cycle at one of the cell poles, and can use the same site repeatedly or choose a new site at the same pole or opposite pole. The filamentous form consists of a long apical cell with short septate basal compartments lacking cytoplasm. It grows at the apex and can reverse growth forming a new growth zone at the basal end. We are interested in understanding how these different morphologies are generated. Here we present identification and characterization of U. maydis Tea1, a homologue of the fission yeast cell end marker Tea1. We demonstrate that UmTea1, a Kelch domain protein, interacts with itself and is an important determinant of the site of polarized growth: tea1 mutants bud simultaneously from both cell poles and form bifurcate buds. UmTea1 also regulates septum positioning, cell wall deposition, cell and neck width, coordination of nuclear division and cell separation, and localization of sterol-rich membrane domains. Some of these functions are shared with UmTea4, another cell end marker. We show that Tea1::GFP localizes to sites of polarized or potential polarized growth and to the septation site in the yeast-like form. Additionally, localization of Tea1::GFP as rings along the filament suggests that the filament undergoes septation. We hypothesize that Tea1 may act as a scaffold for the assembly of proteins that determine the site of polarized growth.
Collapse
Affiliation(s)
- Tad Woraratanadharm
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Stephanie Kmosek
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Flora Banuett
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States.
| |
Collapse
|
7
|
Zhou L, Obhof T, Schneider K, Feldbrügge M, Nienhaus GU, Kämper J. Cytoplasmic Transport Machinery of the SPF27 Homologue Num1 in Ustilago maydis. Sci Rep 2018; 8:3611. [PMID: 29483520 PMCID: PMC5832149 DOI: 10.1038/s41598-018-21628-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 01/15/2023] Open
Abstract
In the phytopathogenic basidiomycete Ustilago maydis, the Num1 protein has a pivotal function in hyphal morphogenesis. Num1 functions as a core component of the spliceosome-associated Prp19/CDC5 complex (NTC). The interaction of Num1 with the kinesin motor Kin1 suggests a connection between a component of the splicing machinery and cytoplasmic trafficking processes. Previously it was shown that Num1 localizes predominantly in the nucleus; however, due to the diffraction-limited spatial resolution of conventional optical microscopy, it was not possible to attribute the localization to specific structures within the cytoplasm. We have now employed super-resolution localization microscopy to visualize Num1 in the cytoplasm by fusing it to a tandem dimeric Eos fluorescent protein (tdEosFP). The Num1 protein is localized within the cytoplasm with an enhanced density in the vicinity of microtubules. Num1 movement is found predominantly close to the nucleus. Movement is dependent on its interaction partner Kin1, but independent of Kin3. Our results provide strong evidence that, in addition to its involvement in splicing in the nucleus, Num1 has an additional functional role in the cytosol connected to the Kin1 motor protein.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Theresa Obhof
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Karina Schneider
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, Düsseldorf, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| | - Jörg Kämper
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
8
|
Tayal P, Raj S, Sharma E, Kumar M, Dayaman V, Verma N, Jogawat A, Dua M, Kapoor R, Johri AK. A Botrytis cinerea KLP-7 Kinesin acts as a Virulence Determinant during Plant Infection. Sci Rep 2017; 7:10664. [PMID: 28878341 PMCID: PMC5587557 DOI: 10.1038/s41598-017-09409-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Botrytis cinerea is a necrotrophic pathogen that infects many important crops. In an attempt to unravel some novel factors that govern pathogenicity in B. cinerea, Agrobacterium tumefaciens mediated transformation (ATMT) was deployed, and a number of tagged transformants were generated. Among these, a mutant, BCM-29 exhibited slower growth rate, reduced conidia size, conidiation and penetration. The mutant was also defective in secretion of oxalic acid (OA) and exhibited reduced activities of polygalacturonase (PG) and pectin methyl esterases (PME). TAIL-PCR followed by BLAST search identified the tagged gene as KLP-7 that encodes for kinesin. Targeted deletion of KLP-7 resulted in several folds decrease in virulence of mutants as compared to WT, while complementation of the gene helped in rescue of virulence traits. This is the first time when a unique kinesin KLP-7 that is mainly found in the phylum Pezizomycotina has been linked to virulence in B. cinerea.
Collapse
Affiliation(s)
- Pamil Tayal
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sumit Raj
- School of Life Sciences, Jawaharlal Nehru University, Delhi, 110 067, India
| | - Esha Sharma
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, Delhi, 110 067, India
| | - Vikram Dayaman
- School of Life Sciences, Jawaharlal Nehru University, Delhi, 110 067, India
| | - Nidhi Verma
- School of Life Sciences, Jawaharlal Nehru University, Delhi, 110 067, India
| | - Abhimanyu Jogawat
- School of Life Sciences, Jawaharlal Nehru University, Delhi, 110 067, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Delhi, 110 067, India.
| |
Collapse
|
9
|
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
|
10
|
Filamentous actin accumulates during plant cell penetration and cell wall plug formation in Phytophthora infestans. Cell Mol Life Sci 2016; 74:909-920. [PMID: 27714409 PMCID: PMC5306229 DOI: 10.1007/s00018-016-2383-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 10/30/2022]
Abstract
The oomycete Phytophthora infestans is the cause of late blight in potato and tomato. It is a devastating pathogen and there is an urgent need to design alternative strategies to control the disease. To find novel potential drug targets, we used Lifeact-eGFP expressing P. infestans for high resolution live cell imaging of the actin cytoskeleton in various developmental stages. Previously, we identified actin plaques as structures that are unique for oomycetes. Here we describe two additional novel actin configurations; one associated with plug deposition in germ tubes and the other with appressoria, infection structures formed prior to host cell penetration. Plugs are composed of cell wall material that is deposited in hyphae emerging from cysts to seal off the cytoplasm-depleted base after cytoplasm retraction towards the growing tip. Preceding plug formation there was a typical local actin accumulation and during plug deposition actin remained associated with the leading edge. In appressoria, formed either on an artificial surface or upon contact with plant cells, we observed a novel aster-like actin configuration that was localized at the contact point with the surface. Our findings strongly suggest a role for the actin cytoskeleton in plug formation and plant cell penetration.
Collapse
|
11
|
|
12
|
Higuchi Y, Steinberg G. Early endosomes motility in filamentous fungi: How and why they move. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Chitinases Are Essential for Cell Separation in Ustilago maydis. EUKARYOTIC CELL 2015; 14:846-57. [PMID: 25934689 DOI: 10.1128/ec.00022-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
Chitin is an essential component of the fungal cell wall, providing rigidity and stability. Its degradation is mediated by chitinases and supposedly ensures the dynamic plasticity of the cell wall during growth and morphogenesis. Hence, chitinases should be particularly important for fungi with dramatic morphological changes, such as Ustilago maydis. This smut fungus switches from yeast to filamentous growth for plant infection, proliferates as a mycelium in planta, and forms teliospores for spreading. Here, we investigate the contribution of its four chitinolytic enzymes to the different morphological changes during the complete life cycle in a comprehensive study of deletion strains combined with biochemical and cell biological approaches. Interestingly, two chitinases act redundantly in cell separation during yeast growth. They mediate the degradation of remnant chitin in the fragmentation zone between mother and daughter cell. In contrast, even the complete lack of chitinolytic activity does not affect formation of the infectious filament, infection, biotrophic growth, or teliospore germination. Thus, unexpectedly we can exclude a major role for chitinolytic enzymes in morphogenesis or pathogenicity of U. maydis. Nevertheless, redundant activity of even two chitinases is essential for cell separation during saprophytic growth, possibly to improve nutrient access or spreading of yeast cells by wind or rain.
Collapse
|
14
|
Baeza-Montañez L, Gold SE, Espeso EA, García-Pedrajas MD. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:86-102. [PMID: 25208341 DOI: 10.1094/mpmi-07-14-0215-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ustilago maydis, causal agent of corn smut, can proliferate saprobically in a yeast form but its infectious filamentous form is an obligate parasite. Previously, we showed that Ust1, the first APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor functionally characterized in the phylum Basidiomycota, controlled morphogenesis and virulence in this species. Here, we further analyzed Ust1 function using multiple experimental approaches and determined that i) Ust1 activity was able to partially reverse stuA− conidiophore defects in Aspergillus nidulans; ii) in U. maydis, normal development and virulence were strongly dependent on precise induction or repression of Ust1 activity; iii) consistent with its role as a transcription factor regulating multiple processes, Ust1 accumulated in the nucleus at various stages of the life cycle; iv) however, it was undetectable at specific stages of pathogenic growth, indicating that Ust1 repression is part of normal development in planta; v) StuA response elements upstream of the ust1 open reading frame exhibited affinity for U. maydis DNA-binding proteins; vi) however, loss of regulated ust1 transcription had minor phenotypic effects; and vii) Ust1 was subject to post-translational phosphorylation but is not a target of cAMP signaling. Thus, the broad functional conservation between Ust1 and Ascomycota APSES proteins does not extend to the mechanisms regulating their activity.
Collapse
|
15
|
|
16
|
Li Z, Hao Y, Wang L, Xiang H, Zhou Z. Genome-wide identification and comprehensive analyses of the kinomes in four pathogenic microsporidia species. PLoS One 2014; 9:e115890. [PMID: 25549259 PMCID: PMC4280135 DOI: 10.1371/journal.pone.0115890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia–Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae–was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and candidate targets for the design of treatments for pathogenic diseases.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Linling Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
17
|
Castanheira S, Mielnichuk N, Pérez-Martín J. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis. Development 2014; 141:4817-26. [PMID: 25411209 DOI: 10.1242/dev.113415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.
Collapse
Affiliation(s)
- Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| | - Natalia Mielnichuk
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
18
|
Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM, Talbot NJ, Steinberg G. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. ACTA ACUST UNITED AC 2014; 204:989-1007. [PMID: 24637326 PMCID: PMC3998801 DOI: 10.1083/jcb.201309022] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Ustilago maydis Hook protein Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional early endosome trafficking by controlling attachment of both kinesin-3 and dynein. Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3– and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein.
Collapse
Affiliation(s)
- Ewa Bielska
- School of Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Steinberg G. Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol 2014; 20:10-8. [PMID: 24835422 PMCID: PMC4148197 DOI: 10.1016/j.mib.2014.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Hyphal growth of filamentous fungi requires microtubule-based long-distance motility of early endosomes. Since the discovery of this process in Ustilago maydis, our understanding of its molecular basis and biological function has greatly advanced. Studies in U. maydis and Aspergillus nidulans reveal a complex interplay of the motor proteins kinesin-3 and dynein, which co-operate to support bi-directional motion of early endosomes. Genetic screening has shed light on the molecular mechanisms underpinning motor regulation, revealing Hook protein as general motor adapters on early endosomes. Recently, fascinating insight into unexpected roles for endosome motility has emerged. This includes septin filament formation and cellular distribution of the machinery for protein translation.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
20
|
Wang H, Liu R, Wang J, Wang P, Shen Y, Liu G. The Arabidopsis kinesin gene AtKin-1 plays a role in the nuclear division process during megagametogenesis. PLANT CELL REPORTS 2014; 33:819-828. [PMID: 24667993 DOI: 10.1007/s00299-014-1594-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles. Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, 810001, China,
| | | | | | | | | | | |
Collapse
|
21
|
Valinluck M, Woraratanadharm T, Lu CY, Quintanilla RH, Banuett F. The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus Ustilago maydis. Fungal Genet Biol 2014; 66:54-68. [PMID: 24613993 DOI: 10.1016/j.fgb.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 02/08/2023]
Abstract
Positional cues localized to distinct cell domains are critical for the generation of cell polarity and cell morphogenesis. These cues lead to assembly of protein complexes that organize the cytoskeleton resulting in delivery of vesicles to sites of polarized growth. Tea4, an SH3 domain protein, was first identified in fission yeast, and is a critical determinant of the axis of polarized growth, a role conserved among ascomycete fungi. Ustilago maydis is a badiomycete fungus that exhibits a yeast-like form that is nonpathogenic and a filamentous form that is pathogenic on maize and teozintle. We are interested in understanding how positional cues contribute to generation and maintenance of these two forms, and their role in pathogenicity. We identified a homologue of fission yeast tea4 in a genetic screen for mutants with altered colony and cell morphology and present here analysis of Tea4 for the first time in a basidiomycete fungus. We demonstrate that Tea4 is an important positional marker for polarized growth and septum location in both forms. We uncover roles for Tea4 in maintenance of cell and neck width, cell separation, and cell wall deposition in the yeast-like form, and in growth rate, formation of retraction septa, growth reversal, and inhibition of budding in the filamentous form. We show that Tea4::GFP localizes to sites of polarized or potential polarized growth in both forms, as observed in ascomycete fungi. We demonstrate an essential role of Tea4 in pathogencity in the absence of cell fusion. Basidiomycete and ascomycete Tea4 homologues share SH3 and Glc7 domains. Tea4 in basidiomycetes has additional domains, which has led us to hypothesize that Tea4 has novel functions in this group of fungi.
Collapse
Affiliation(s)
- Michael Valinluck
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Tad Woraratanadharm
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Ching-yu Lu
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Rene H Quintanilla
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Flora Banuett
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States.
| |
Collapse
|
22
|
The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis. PLoS Genet 2014; 10:e1004046. [PMID: 24391515 PMCID: PMC3879195 DOI: 10.1371/journal.pgen.1004046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022] Open
Abstract
The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking. In eukaryotic cells, nascent mRNA is processed by splicing to remove introns and to join the exon sequences. The processed mRNA is then transported out of the nucleus and employed by ribosomes to synthesize proteins. Splicing is achieved by the spliceosome and associated protein complexes, among them the so-called NineTeen complex (NTC). We have identified the Num1 protein as one of the core components of the NTC in the fungus Ustilago maydis, and could show that it is required for polarized growth of the filamentous fungal cells. Consistent with the NTC function, cells with a num1-deletion show reduced splicing of mRNA. Moreover, we uncover a novel cytoplasmic function of the Num1 protein: It physically interacts with the microtubule-associated Kinesin 1 motor protein, and phenotypic analyses corroborate that both proteins are functionally connected. Our findings reveal a yet unidentified role of a global splicing factor during intracellular trafficking processes. A possible connection between these disparate mechanisms presumably resides in mRNA-export out of the nucleus and/or the transport of mRNA within the cytoplasm.
Collapse
|
23
|
Gao L, Kelliher T, Nguyen L, Walbot V. Ustilago maydis reprograms cell proliferation in maize anthers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:903-14. [PMID: 23795972 PMCID: PMC3769448 DOI: 10.1111/tpj.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/04/2013] [Accepted: 05/23/2013] [Indexed: 05/03/2023]
Abstract
The basidiomycete Ustilago maydis is a ubiquitous pathogen of maize (Zea mays), one of the world's most important cereal crops. Infection by this smut fungus triggers tumor formation in aerial plant parts within which the fungus sporulates. Using confocal microscopy to track U. maydis infection on corn anthers for 7 days post-injection, we found that U. maydis is located on the epidermis during the first 2 days, and has reached all anther lobe cell types by 3 days post-injection. Fungal infection alters cell-fate specification events, cell division patterns, host cell expansion and host cell senescence, depending on the developmental stage and cell type. Fungal effects on tassel and plant growth were also quantified. Transcriptome profiling using a dual organism microarray identified thousands of anther genes affected by fungal infection at 3 days post-injection during the cell-fate specification and rapid cell proliferation phases of anther development. In total, 4147 (17%) of anther-expressed genes were altered by infection, 2018 fungal genes were expressed in anthers, and 206 fungal secretome genes may be anther-specific. The results confirm that U. maydis deploys distinct genes to cause disease in specific maize organs, and suggest mechanisms by which the host plant is manipulated to generate a tumor.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | | | | | | |
Collapse
|
24
|
Ramanujam R, Calvert ME, Selvaraj P, Naqvi NI. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae. PLoS Pathog 2013; 9:e1003527. [PMID: 23935502 PMCID: PMC3731250 DOI: 10.1371/journal.ppat.1003527] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/15/2013] [Indexed: 11/18/2022] Open
Abstract
In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate) highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA), Adenylate cyclase and Pth11 (a non-canonical GPCR) in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation) of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.
Collapse
Affiliation(s)
- Ravikrishna Ramanujam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Meredith E. Calvert
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
25
|
Li D, Zhao Z, Huang Y, Lu Z, Yao M, Hao Y, Zhai C, Wang Y. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS One 2013; 8:e58623. [PMID: 23516518 PMCID: PMC3597732 DOI: 10.1371/journal.pone.0058623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.
Collapse
Affiliation(s)
- Delong Li
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhijian Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidan Huang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Lu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng Yao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Hao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhai
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Richards A, Gow NAR, Veses V. Identification of vacuole defects in fungi. J Microbiol Methods 2012; 91:155-63. [PMID: 22902527 DOI: 10.1016/j.mimet.2012.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022]
Abstract
Fungal vacuoles are involved in a diverse range of cellular functions, participating in cellular homeostasis, degradation of intracellular components, and storage of ions and molecules. In recent years there has been a significant increase in the number of studies linking these organelles with the regulation of growth and control of cellular morphology, particularly in those fungal species able to undergo yeast-hypha morphogenetic transitions. This has contributed to the refinement of previously published protocols and the development of new techniques, particularly in the area of live-cell imaging of membrane trafficking events and vacuolar dynamics. The current review outlines recent advances in the imaging of fungal vacuoles and assays for characterization of trafficking pathways, and other physiological activities of this important cell organelle.
Collapse
Affiliation(s)
- Andrea Richards
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | |
Collapse
|
27
|
Steinberg G. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers. PLoS One 2012; 7:e38181. [PMID: 22666476 PMCID: PMC3362563 DOI: 10.1371/journal.pone.0038181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/01/2012] [Indexed: 12/17/2022] Open
Abstract
The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles) has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs). When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T1/2∼2 min). Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a) Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b) the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c) fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the drug cargo, these results demonstrate the potential of Transfersomes in the treatment of all fungal diseases.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
28
|
Pérez-Martín J. Cell Cycle and Morphogenesis Connections During the Formation of the Infective Filament in Ustilago maydis. TOPICS IN CURRENT GENETICS 2012. [DOI: 10.1007/978-3-642-22916-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 2012; 125:2740-52. [DOI: 10.1242/jcs.101212] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive. Here, we solve the motor composition of transported mRNPs containing the RNA-binding protein Rrm4 of the pathogen Ustilago maydis. The underlying transport process determines the axis of polarity in infectious filaments. Plus end-directed Kin3, a Kinesin-3 type motor, mediates anterograde transport of mRNPs and is also present in transport units moving retrogradely. Split-dynein Dyn1/2 functions in retrograde movement of mRNPs. Plus end-directed conventional kinesin Kin1 is indirectly involved by transporting minus end-directed Dyn1/2 back to plus ends. Importantly, we additionally demonstrate that Rrm4-containing mRNPs co-localise with the t-SNARE Yup1 on shuttling endosomes and that functional endosomes are essential for mRNP movement. Either loss of Kin3 or removal of its lipid-binding pleckstrin homology domain abolish Rrm4-dependent movement without preventing co-localisation of Rrm4 and Yup1-positive endosomes. In summary, we uncovered the combination of motors required for mRNP shuttling along microtubules. Furthermore, intimately linked co-transport of endosomes and mRNPs suggests vesicle hitchhiking as novel mode of mRNP transport.
Collapse
|
30
|
Abstract
Genetic variation between individuals is essential to evolution and adaptation. However, intra-organismic genetic variation also shapes the life histories of many organisms, including filamentous fungi. A single fungal syncytium can harbor thousands or millions of mobile and potentially genotypically different nuclei, each having the capacity to regenerate a new organism. Because the dispersal of asexual or sexual spores propagates individual nuclei in many of these species, selection acting at the level of nuclei creates the potential for competitive and cooperative genome dynamics. Recent work in Neurospora crassa and Sclerotinia sclerotiorum has illuminated how nuclear populations are coordinated for fungal growth and other behaviors and has revealed both molecular and physical mechanisms for preventing and policing inter-genomic conflict. Recent results from population-level genomic studies in a variety of filamentous fungi suggest that nuclear exchange between mycelia and recombination between heterospecific nuclei may be of more importance to fungal evolution, diversity and the emergence of newly virulent strains than has previously been recognized.
Collapse
Affiliation(s)
- Marcus Roper
- Department of Mathematics, University of California, Berkeley, USA
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Chris Ellison
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| |
Collapse
|
31
|
Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 2011; 22:3645-57. [PMID: 21832152 PMCID: PMC3183019 DOI: 10.1091/mbc.e11-03-0217] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 μm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 μm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 2011; 36:59-77. [PMID: 21729109 DOI: 10.1111/j.1574-6976.2011.00296.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The maize pathogen Ustilago maydis has to undergo various morphological transitions for the completion of its sexual life cycle. For example, haploid cells respond to pheromone by forming conjugation tubes that fuse at their tips. The resulting dikaryon grows filamentously, expanding rapidly at the apex and inserting retraction septa at the basal pole. In this review, we present progress on the underlying mechanisms regulating such defined developmental programmes. The key findings of the postgenomic era are as follows: (1) endosomes function not only during receptor recycling, but also as multifunctional transport platforms; (2) a new transcriptional master regulator for pathogenicity is part of an intricate transcriptional network; (3) determinants for uniparental mitochondrial inheritance are encoded at the a2 mating-type locus; (4) microtubule-dependent mRNA transport is important in determining the axis of polarity; and (5) a battery of fungal effectors encoded in gene clusters is crucial for plant infection. Importantly, most processes are tightly controlled at the transcriptional, post-transcriptional and post-translational levels, resulting in a complex regulatory network. This intricate system is crucial for the timing of the correct order of developmental phases. Thus, new insights from all layers of regulation have substantially advanced our understanding of fungal development.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics 2011; 10:M111.011213. [PMID: 21808052 DOI: 10.1074/mcp.m111.011213] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-distance transport of mRNAs is crucial in determining spatio-temporal gene expression in eukaryotes. The RNA-binding protein Rrm4 constitutes a key component of microtubule-dependent mRNA transport in filaments of Ustilago maydis. Although a number of potential target mRNAs could be identified, cellular processes that depend on Rrm4-mediated transport remain largely unknown. Here, we used differential proteomics to show that ribosomal, mitochondrial, and cell wall-remodeling proteins, including the bacterial-type endochitinase Cts1, are differentially regulated in rrm4Δ filaments. In vivo UV crosslinking and immunoprecipitation and fluorescence in situ hybridization revealed that cts1 mRNA represents a direct target of Rrm4. Filaments of cts1Δ mutants aggregate in liquid culture suggesting an altered cell surface. In wild type cells Cts1 localizes predominantly at the growth cone, whereas it accumulates at both poles in rrm4Δ filaments. The endochitinase is secreted and associates most likely with the cell wall of filaments. Secretion is drastically impaired in filaments lacking Rrm4 or conventional kinesin Kin1 as well as in filaments with disrupted microtubules. Thus, Rrm4-mediated mRNA transport appears to be essential for efficient export of active Cts1, uncovering a novel molecular link between mRNA transport and the mechanism of secretion.
Collapse
Affiliation(s)
- Janine Koepke
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Freitag J, Lanver D, Böhmer C, Schink KO, Bölker M, Sandrock B. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis. PLoS Pathog 2011; 7:e1002044. [PMID: 21625538 PMCID: PMC3098242 DOI: 10.1371/journal.ppat.1002044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 12/24/2022] Open
Abstract
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently. Pathogens exhibit various developmental stages during the process of infection and proliferation. The basidiomycete Ustilago maydis is a model organism for plant pathogenic fungi. On the plant surface U. maydis grows as a cell-cycle arrested filament. Growth of infectious hyphae involves regular formation of retraction septa leaving empty sections behind. The tip cell forms an appressorium and penetrates the cuticle. In this study we identified for the first time a signaling module regulating formation of retraction septa in fungal hyphae. The module consists of the highly conserved small GTPase Cdc42, its activator Don1 and the actin-organizing formin Drf1. After penetration of the plant, cell cycle arrest is released and hyphal septation is resumed in planta but was found to be independent of Cdc42 and Drf1. Thus, during infection Cdc42 signaling and Drf1 coordinate hyphal septation events specifically in infectious hyphae in U. maydis. The inability to form retraction septa affects filament elongation and appressorium formation resulting in significantly reduced virulence. We observed a threshold size of the cytoplasm filled tip compartment above which appressorium formation is blocked. These findings highlight that formation of retraction septa, a common feature of filamentous fungi, is an important virulence determinant of U. maydis.
Collapse
Affiliation(s)
- Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Daniel Lanver
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Christian Böhmer
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Kay Oliver Schink
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
35
|
Schuster M, Kilaru S, Ashwin P, Lin C, Severs NJ, Steinberg G. Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J 2011; 30:652-64. [PMID: 21278707 DOI: 10.1038/emboj.2010.360] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023] Open
Abstract
Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet-like accumulation at MT plus-ends to receive kinesin-3-delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ∼55 dynein motors. About half of the motors are slowly turned over (T(1/2): ∼98 s) and they are kept at the plus-ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T(1/2): ∼10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ∼10% of the EEs fall off the MT plus-ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors.
Collapse
|
36
|
|
37
|
Treitschke S, Doehlemann G, Schuster M, Steinberg G. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. THE PLANT CELL 2010; 22:2476-94. [PMID: 20663961 PMCID: PMC2929105 DOI: 10.1105/tpc.110.075028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/26/2010] [Accepted: 07/08/2010] [Indexed: 05/23/2023]
Abstract
Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 microm at a velocity of approximately 1.75 microm/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles.
Collapse
Affiliation(s)
- Steffi Treitschke
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
38
|
Abstract
The localization and local translation of mRNAs constitute an important mechanism to promote the correct subcellular targeting of proteins. mRNA localization is mediated by the active transport of mRNPs, large assemblies consisting of mRNAs and associated factors such as RNA-binding proteins. Molecular motors move mRNPs along the actin or microtubule cytoskeleton for short-distance or long-distance trafficking, respectively. In filamentous fungi, microtubule-based long-distance transport of vesicles, which are involved in membrane and cell wall expansion, supports efficient hyphal growth. Recently, we discovered that the microtubule-mediated transport of mRNAs is essential for the fast polar growth of infectious filaments in the corn pathogen Ustilago maydis. Combining in vivo UV cross-linking and RNA live imaging revealed that the RNA-binding protein Rrm4, which constitutes an integral part of the mRNP transport machinery, mediates the transport of distinct mRNAs encoding polarity factors, protein synthesis factors, and mitochondrial proteins. Moreover, our results indicate that microtubule-dependent mRNA transport is evolutionarily conserved from fungi to higher eukaryotes. This raises the exciting possibility of U. maydis as a model system to uncover basic concepts of long-distance mRNA transport.
Collapse
|
39
|
Abstract
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
Collapse
|
40
|
FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F. graminearum. Curr Genet 2009; 55:593-600. [DOI: 10.1007/s00294-009-0272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 12/13/2022]
|
41
|
König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 2009; 28:1855-66. [PMID: 19494833 DOI: 10.1038/emboj.2009.145] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 05/08/2009] [Indexed: 11/09/2022] Open
Abstract
Cytoskeletal transport promotes polar growth in filamentous fungi. In Ustilago maydis, the RNA-binding protein Rrm4 shuttles along microtubules and is crucial for polarity in infectious filaments. Mutations in the RNA-binding domain cause loss of function. However, it was unclear which RNAs are bound and transported. Here, we applied in vivo RNA binding studies and live imaging to determine the molecular function of Rrm4. This new combination revealed that Rrm4 mediates microtubule-dependent transport of distinct mRNAs encoding, for example, the ubiquitin fusion protein Ubi1 and the small G protein Rho3. These transcripts accumulate in ribonucleoprotein particles (mRNPs) that move bidirectionally along microtubules and co-localise with Rrm4. Importantly, the 3' untranslated region of ubi1 containing a CA-rich binding site functions as zipcode during mRNA transport. Furthermore, motile mRNPs are not formed when the RNA-binding domain of Rrm4 is deleted, although the protein is still shuttling. Thus, Rrm4 constitutes an integral component of the transport machinery. We propose that microtubule-dependent mRNP trafficking is crucial for hyphal growth introducing U. maydis as attractive model for studying mRNA transport in higher eukaryotes.
Collapse
Affiliation(s)
- Julian König
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The vacuole has crucial roles in stress resistance and adaptation of the fungal cell. Furthermore, in Candida albicans it has been observed to undergo dramatic expansion during the initiation of hyphal growth, to produce highly "vacuolated" subapical compartments. We hypothesized that these functions may be crucial for survival within the host and tissue-invasive hyphal growth. We also considered the role of the late endosome or prevacuole compartment (PVC), a distinct organelle involved in vacuolar and endocytic trafficking. We identified two Rab GTPases, encoded by VPS21 and YPT72, required for trafficking through the PVC and vacuole biogenesis, respectively. Deletion of VPS21 or YPT72 led to mild sensitivities to some cellular stresses. However, deletion of both genes resulted in a synthetic phenotype with severe sensitivity to cellular stress and impaired growth. Both the vps21Delta and ypt72Delta mutants had defects in filamentous growth, while the double mutant was completely deficient in polarized growth. The defects in hyphal growth were not suppressed by an "active" RIM101 allele or loss of the hyphal repressor encoded by TUP1. In addition, both single mutants had significant attenuation in a mouse model of hematogenously disseminated candidiasis, while the double mutant was rapidly cleared. Histological examination confirmed that the vps21Delta and ypt72Delta mutants are deficient in hyphal growth in vivo. We suggest that the PVC and vacuole are required on two levels during C. albicans infection: (i) stress resistance functions required for survival within tissue and (ii) a role in filamentous growth which may aid host tissue invasion.
Collapse
|
43
|
Cánovas D, Pérez-Martín J. Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Fungal Genet Biol 2009; 46:190-200. [DOI: 10.1016/j.fgb.2008.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/21/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
44
|
Veses V, Richards A, Gow NAR. Vacuoles and fungal biology. Curr Opin Microbiol 2008; 11:503-10. [DOI: 10.1016/j.mib.2008.09.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
|
45
|
Veses V, Richards A, Gow NAR. Vacuole inheritance regulates cell size and branching frequency of Candida albicans hyphae. Mol Microbiol 2008; 71:505-19. [PMID: 19040629 PMCID: PMC2680324 DOI: 10.1111/j.1365-2958.2008.06545.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hyphal growth of Candida albicans is characterized by asymmetric cell divisions in which the subapical mother cell inherits most of the vacuolar space and becomes cell cycle arrested in G1, while the apical daughter cell acquires most of the cell cytoplasm and progresses through G1 into the next mitotic cell cycle. Consequently, branch formation in hyphal compartments is delayed until sufficient cytoplasm is synthesized to execute the G1 ‘START’ function. To test the hypothesis that this mode of vacuole inheritance determines cell cycle progression and therefore the branching of hyphae, eight tetracycline-regulated conditional mutants were constructed that were affected at different stages of the vacuole inheritance pathway. Under repressing conditions, vac7, vac8 and fab1 mutants generated mycelial compartments with more symmetrically distributed vacuoles and increased branching frequencies. Repression of VAC1, VAM2 and VAM3 resulted in sparsely branched hyphae, with large vacuoles and enlarged hyphal compartments. Therefore, during hyphal growth of C. albicans the cell cycle, growth and branch formation can be uncoupled, resulting in the investment of cytoplasm to support hyphal extension at the expense of hyphal branching.
Collapse
Affiliation(s)
- Veronica Veses
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
46
|
Carbó N, Pérez-Martín J. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Fungal Genet Biol 2008; 45:1315-27. [PMID: 18674629 DOI: 10.1016/j.fgb.2008.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/23/2008] [Accepted: 06/29/2008] [Indexed: 01/05/2023]
Abstract
The increasing evidence linking regulation of polar growth and pathogenicity in fungi has elicited a significant effort devoted to produce a better understanding of mechanisms determining polarization in pathogenic fungi. Here we characterize in the phytopathogenic basidiomycete Ustilago maydis, the Spa2 protein, a well-known component of polarisome, firstly described in Saccharomyces cerevisiae. U. maydis display a dimorphic switch between budding growth of hapoid cells and filamentous growth of the dikaryon. During yeast growth, a GFP-tagged Spa2 protein localized to distinct growth sites in a cell cycle-specific manner, while during hyphal growth is persistently located to hyphal tips. Deletion of spa2 gene produces rounder budding cells and thicker filaments than wild-type cells, suggesting a role of Spa2 for the determination of the growth area in U. maydis. We also address the connections between Spa2 and the actin- and microtubule-cytoskeleton. We found that the absence of Spa2 does not affect cytoskeleton organization and strikingly, interference with actin filament or microtubule formation does not affect the polar localization of Spa2. In contrast, defects in the small GTPase Rac1 seems to affect the ability of Spa2 to locate to precise sites at the tip cell. Finally, to our surprise, we found that cells defectives in Spa2 function were as pathogenic as wild-type cells.
Collapse
Affiliation(s)
- Natalia Carbó
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | |
Collapse
|
47
|
Fischer R, Zekert N, Takeshita N. Polarized growth in fungi--interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 2008; 68:813-26. [PMID: 18399939 DOI: 10.1111/j.1365-2958.2008.06193.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One kind of the most extremely polarized cells in nature are the indefinitely growing hyphae of filamentous fungi. A continuous flow of secretion vesicles from the hyphal cell body to the growing hyphal tip is essential for cell wall and membrane extension. Because microtubules (MT) and actin, together with their corresponding motor proteins, are involved in the process, the arrangement of the cytoskeleton is a crucial step to establish and maintain polarity. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, actin-mediated vesicle transportation is sufficient for polar cell extension, but in S. pombe, MTs are in addition required for the establishment of polarity. The MT cytoskeleton delivers the so-called cell-end marker proteins to the cell pole, which in turn polarize the actin cytoskeleton. Latest results suggest that this scenario may principally be conserved from S. pombe to filamentous fungi. In addition, in filamentous fungi, MTs could provide the tracks for long-distance vesicle movement. In this review, we will compare the interaction of the MT and the actin cytoskeleton and their relation to the cortex between yeasts and filamentous fungi. In addition, we will discuss the role of sterol-rich membrane domains in combination with cell-end marker proteins for polarity establishment.
Collapse
Affiliation(s)
- Reinhard Fischer
- Department of Applied Microbiology, University of Karlsruhe, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
48
|
Doehlemann G, Wahl R, Vranes M, de Vries RP, Kämper J, Kahmann R. Establishment of compatibility in the Ustilago maydis/maize pathosystem. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:29-40. [PMID: 17905472 DOI: 10.1016/j.jplph.2007.05.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 05/06/2023]
Abstract
The fungus Ustilago maydis is a biotrophic pathogen parasitizing on maize. The most prominent symptoms of the disease are large tumors in which fungal proliferation and spore differentiation occur. In this study, we have analyzed early and late tumor stages by confocal microscopy. We show that fungal differentiation occurs both within plant cells as well as in cavities where huge aggregates of fungal mycelium develop. U. maydis is poorly equipped with plant CWDEs and we demonstrate by array analysis that the respective genes follow distinct expression profiles at early and late stages of tumor development. For the set of three genes coding for pectinolytic enzymes, deletion mutants were generated by gene replacement. Neither single nor triple mutants were affected in pathogenic development. Based on our studies, we consider it unlikely that U. maydis feeds on carbohydrates derived from the digestion of plant cell wall material, but uses its set of plant CWDEs for softening the cell wall structure as a prerequisite for in planta growth.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Röhlk C, Rohlfs M, Leier S, Schliwa M, Liu X, Parsch J, Woehlke G. Properties of the Kinesin-1 motor DdKif3 from Dictyostelium discoideum. Eur J Cell Biol 2007; 87:237-49. [PMID: 18160177 DOI: 10.1016/j.ejcb.2007.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022] Open
Abstract
The amoeba Dictyostelium discoideum possesses genes for 13 different kinesins. Here we characterize DdKif3, a member of the Kinesin-1 family. Kinesin-1 motors form homodimers that can move micrometer-long distances on microtubules using the energy derived from ATP hydrolysis. We expressed recombinant motors in Escherichia coli and tested them in different in vitro assays. Full-length and truncated Kif3 motors were active in gliding and ATPase assays. They showed a strong dependence on ionic strength. Like the full-length motor, the truncated DdKif3-592 motor (aa 1-592; comprising motor domain, neck, and partial stalk) reached its maximum speed of around 2.0micrcom s(-1) at a potassium acetate concentration of 200mM. The shortened DdKif3-342 motor (aa 1-342; comprising motor domain, partial neck) showed a high ATP turnover, comparable to that of the fungal Kinesin-1, Nkin. Results from the duty cycle calculations and gliding assays indicate that DdKif3 is a processive motor. A GFP-fusion protein revealed a mainly cytoplasmic localization of DdKif3. Immunofluorescence staining makes an association with the endoplasmic reticulum or mitochondria unlikely. Despite a similar phylogenetic distance to both metazoa and fungi, in terms of its biochemical properties DdKif3 revealed a closer similarity to fungal than animal kinesins.
Collapse
Affiliation(s)
- Christian Röhlk
- Department of Physics, Technical University Munich, James-Franck-Strasse, D-85748 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Endocytosis in the shiitake mushroom Lentinula edodes and involvement of GTPase LeRAB7. EUKARYOTIC CELL 2007; 6:2406-18. [PMID: 17921351 DOI: 10.1128/ec.00222-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endocytosis is the process by which substrates enter a cell without passing through the plasma membrane but rather invaginate the cell membrane and form intracellular vesicles. Rab7 regulates endocytic trafficking between early and late endosomes and between late endosomes and lysosomes. LeRab7 in Lentinula edodes is strongly homologous to Rab7 in Homo sapiens. Receptors for activated C kinase-1 (LeRACK1) and Rab5 GTPase (LeRAB5) were isolated as interacting partners of LeRab7, and the interactions were confirmed by in vivo and in vitro protein interaction assays. The three genes showed differential expression in the various developmental stages of the mushroom. In situ hybridization showed that the three transcripts were localized in regions of active growth, such as the outer region of trama cells, and the subhymenium of the hymenophore of mature fruiting bodies and the prehymenophore of young fruiting bodies. The existence of endocytosis in the mycelium and hymenophores was confirmed by the internalization of FM4-64. LeRAB7 was partially colocalized with the AM4-64 and was located in the late endocytic pathway. This is the first report of the presence of endocytosis in homobasidiomycetes. LeRAB7, LeRAB5, and LeRACK1 may contribute to the growth of L. edodes and cell differentiation in hymenophores.
Collapse
|