1
|
Gigante ED, Caspary T. Signaling in the primary cilium through the lens of the Hedgehog pathway. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e377. [PMID: 32084300 DOI: 10.1002/wdev.377] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Cilia are microtubule-based, cell-surface projections whose machinery is evolutionarily conserved. In vertebrates, cilia are observed on almost every cell type and are either motile or immotile. Immotile sensory, or primary cilia, are responsive to extracellular ligands and signals. Cilia can be thought of as compartments, functionally distinct from the cell that provides an environment for signaling cascades. Hedgehog is a critical developmental signaling pathway which is functionally linked to primary cilia in vertebrates. The major components of the vertebrate Hedgehog signaling pathway dynamically localize to the ciliary compartment and ciliary membrane. Critically, G-protein coupled receptor (GPCR) Smoothened, the obligate transducer of the pathway, is enriched and activated in the cilium. While Smoothened is the most intensely studied ciliary receptor, many GPCRs localize within cilia. Understanding the link between Smoothened and cilia defines common features, and distinctions, of GPCR signaling within the primary cilium. This article is categorized under: Signaling Pathways > Global Signaling Mechanisms Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Eduardo D Gigante
- Graduate Program in Neuroscience, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Fisch C, Dupuis-Williams P. [The rebirth of the ultrastructure of cilia and flagella]. Biol Aujourdhui 2012; 205:245-67. [PMID: 22251859 DOI: 10.1051/jbio/2011023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/14/2022]
Abstract
The sensory and motility functions of eukaryotic cilia and flagella are essential for cell survival in protozoans and for cell differentiation and homoeostasis in metazoans. Ciliary biology has benefited early on from the input of electron microscopy. Over the last decade, the visualization of cellular structures has greatly progressed, thus it becomes timely to review the ultrastructure of cilia and flagella. Briefly touching upon the typical features of a 9+2 axoneme, we dwell extensively on the transition zone, the singlet zone, the ciliary necklace, cap and crown. The relation of the singlet zone to sensory and/or motile function, the link of the ciliary cap to microtubule dynamics and to ciliary beat, the involvement of the ciliary crown in ovocyte and mucosal propulsion, and the role of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier will all be discussed.
Collapse
Affiliation(s)
- Cathy Fisch
- ATIGE Centriole et Pathologies Associées, INSERM/UEVE U829, 91000 Évry, France.
| | | |
Collapse
|
3
|
Aubusson-Fleury A, Lemullois M, de Loubresse NG, Laligné C, Cohen J, Rosnet O, Jerka-Dziadosz M, Beisson J, Koll F. FOR20, a conserved centrosomal protein, is required for assembly of the transition zone and basal body docking at the cell surface. J Cell Sci 2012; 125:4395-404. [DOI: 10.1242/jcs.108639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Within the FOP family of centrosomal proteins, the conserved FOR20 protein has been implicated in the control of primary cilium assembly in human cells. To ascertain its role in ciliogenesis, we have investigated the function of its ortholog, PtFOR20p, in a multiciliated unicellular organism, Paramecium. By a combined functional and cytological analysis, we found that PtFOR20p specifically localizes at basal bodies and is required to build the transition zone, a prerequisite to their maturation and docking at the cell surface, hence to ciliogenesis. We also found that PtCen2p (one of the two basal body specific centrins, ortholog of HsCen2) is required to recruit PtFOR20p at the developing basal body and to control its length. In contrast, the other basal body specific centrin, PtCen3p, is not needed for assembly of the transition zone, but is required downstream, for basal body docking. Comparison of the structural defects induced by depletion of PtFOR20p, PtCen2p or PtCen3p respectively illustrates the dual role of the transition zone in the biogenesis of the basal body and in cilium assembly. The multiple potential roles of the transition zone during basal body biogenesis and the evolutionary conserved function of the FOP proteins in microtubule membrane interactions are discussed.
Collapse
|
4
|
Abstract
Eukaryotic cilia and flagella perform motility and sensory functions which are essential for cell survival in protozoans, and to organism development and homoeostasis in metazoans. Their ultrastructure has been studied from the early beginnings of electron microscopy, and these studies continue to contribute to much of our understanding about ciliary biology. In the light of the progress made in the visualization of cellular structures over the last decade, we revisit the ultrastructure of cilia and flagella. We briefly describe the typical features of a 9+2 axoneme before focusing extensively on the transition zone, the ciliary necklace, the singlet zone, the ciliary cap and the ciliary crown. We discuss how the singlet zone is linked to sensory and/or motile function, the contribution of the ciliary crown to ovocyte and mucosal propulsion, and the relationship between the ciliary cap and microtubule growth and shortening, and its relation to ciliary beat. We further examine the involvement of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier.
Collapse
|
5
|
Ma L, Jarman AP. Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation. J Cell Sci 2011; 124:2622-30. [PMID: 21750193 PMCID: PMC3138703 DOI: 10.1242/jcs.084798] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant number of ciliary disease genes have been found to encode proteins that localise to the basal body. By contrast, a large number of basal-body-associated proteins remain to be characterised. Here, we report the identification of a new basal body protein that is required for ciliogenesis in Drosophila. Dilatory (DILA) is a predicted coiled-coil protein homologous to vertebrate AZI1 (also known as CEP131). Mutations in dila specifically exhibit defects in ciliated cells (sensory neurons and sperm). Several features of the neuronal phenotype suggest a defect in intraflagellar transport. In sensory neuron cilia, DILA protein localises to the ciliary base, including the basal body and putative transition zone, and it interacts genetically with the ciliary coiled-coil protein, Uncoordinated. These data implicate DILA in regulating intraflagellar transport at the base of sensory cilia.
Collapse
Affiliation(s)
- Lina Ma
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
6
|
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Abstract
Immunogold electron microscopy is a classic high-resolution method for the selective localization of macromolecules in the context of cells and subcellular structures. Specific antibodies are used to affix small particles of colloidal gold, which are easily visible in the electron microscope, to the macromolecule of interest. There are different immunogold-labeling techniques; in the postembedding immunogold-labeling technique, the biological material is first fixed, dehydrated, and embedded in resin and the antibody reactions are done on the sectioned material. In the preembedding immunogold-labeling technique, the antibody reactions are carried out prior to fixation, dehydration, and resin embedding of the biological specimen. The whole-mount immunogold-labeling technique does not involve resin embedding at all; the material is applied to an electron microscopy grid and the antibody reactions are carried out on the grid. The aim of this chapter is to describe in detail postembedding and preembedding techniques applicable for the immunogold labeling of components of Chlamydomonas flagella and basal bodies. Special emphasis is put on the flat embedding of Chlamydomonas cells, which allows the analysis of individual flagella along their whole length, a method especially suitable to the study of intraflagellar transport (IFT). Depending on the fixation protocol and resin used, such flat embeddings can be utilized for the localization of components of the IFT machinery by postembedding immunogold labeling or the ultrastructural analysis of the IFT complex by standard electron microscopy or electron tomography.
Collapse
|
8
|
Lukasiewicz KB, Lingle WL. Aurora A, centrosome structure, and the centrosome cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:602-619. [PMID: 19774610 DOI: 10.1002/em.20533] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The centrosome, also known as the microtubule organizing center of the cell, is a membrane-less organelle composed of a pair of barrel-shaped centrioles surrounded by electron-dense pericentriolar material. The centrosome progresses through the centrosome cycle in step with the cell cycle such that centrosomes are duplicated in time to serve as the spindle poles during mitosis and that each resultant daughter cell contains a single centrosome. Regulation of the centrosome cycle with relation to the cell cycle is an essential process to maintain the ratio of one centrosome per new daughter cell. Numerous mitosis-specific kinases have been implicated in this regulation, and phosphorlyation plays an important role in coordinating the centrosome and cell cycles. Centrosome amplification can occur when the cycles are uncoupled, and this amplification is associated with cancer and with an increase in the levels of chromosomal instability. The aurora kinases A, B, and C are serine/threonine kinases that are active during mitosis. Aurora A is associated with centrosomes, being localized at the centrosome just prior to the onset of mitosis and for the duration of mitosis. Overexpression of aurora A leads to centrosome amplification and cellular transformation. The activity of aurora A is regulated by phosphorlyation and proteasomal degradation.
Collapse
Affiliation(s)
- Kara B Lukasiewicz
- Section on Cell Cycle Regulation, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
9
|
|
10
|
|
11
|
Geimer S, Melkonian M. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 2004; 117:2663-74. [PMID: 15138287 DOI: 10.1242/jcs.01120] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biflagellate unicellular green alga Chlamydomonas reinhardtii is a classic model organism for the analysis of flagella and their organizers, the basal bodies. In this cell, the two flagella-bearing basal bodies, along with two probasal bodies and an array of fibers and microtubules, form a complex organelle called the basal apparatus. The ultrastructure of the basal apparatus was analysed in detail by serial thin-section electron microscopy of isolated cytoskeletons and several newly discovered features are described, including a marker for the rotational asymmetry inherent in the basal bodies and probasal bodies. In addition, the complex three-dimensional basal apparatus ultrastructure is resolved and illustrated, including the attachment sites of all basal apparatus elements to specific microtubular triplets of the basal bodies and probasal bodies. These data will facilitate both the localization of novel basal apparatus proteins and the analysis of mutants and RNA interference cells with only subtle defects in basal apparatus ultrastructure. The early harbinger of radial asymmetry described here could play a crucial role during basal body maturation by orienting the asymmetric attachment of the various associated fibers and therefore might define the orientation of the basal bodies and, ultimately, the direction of flagellar beating.
Collapse
Affiliation(s)
- Stefan Geimer
- Botanisches Institut, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany.
| | | |
Collapse
|
12
|
Gomperts BN, Gong-Cooper X, Hackett BP. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci 2004; 117:1329-37. [PMID: 14996907 DOI: 10.1242/jcs.00978] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead box transcription factor Foxj1 is required for cilia formation and left-right axis determination. To define the role of Foxj1 in ciliogenesis, microarray analysis was performed to identify differentially expressed genes in the pulmonary epithelium of foxj1(+/+) and foxj1(-/-) mice. In the absence of Foxj1, the expression of calpastatin, an inhibitor of the protease calpain, decreased. RNase protection confirmed the decrease in calpastatin expression and decreased calpastatin was detected in the proximal pulmonary epithelium of foxj1(-/-) mice by immunohistochemistry. No change was detected in the expression of calpain 2 in the pulmonary epithelium by western blot or immunohistochemistry. By western blot and immunofluorescence, ezrin, a substrate for calpain, was also found to decrease in the pulmonary epithelium of foxj1(-/-) mice. No change in ezrin gene expression was found by RT-PCR. A decrease in ezrin binding phosphoprotein-50 (EBP-50) was also detected by immunofluorescence in the foxj1(-/-) mouse pulmonary epithelium. Immunoelectron microscopy demonstrated ezrin associated with the basal bodies of cilia in the pulmonary epithelium. Treatment of tracheal explants from foxj1(-/-) mice with a calpain inhibitor resulted in a partial reappearance of cilia observed in these mice. Additionally, following treatment of foxj1(-/-) tracheal explants with calpain inhibitor, basal bodies were observed in an apical location along with relocalization of ezrin and EBP-50. Regulation of calpain activity by calpastatin thus provides a mechanism for regulating the anchoring of basal bodies to the apical cytoskeleton in ciliated cells. In the absence of Foxj1, decreased calpastatin expression with decreased ezrin and EBP-50 results in an inability of basal bodies to anchor to the apical cytoskeleton and subsequent failure of axonemal formation.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Developmental Biology Research Unit, The Edward R. Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Moreno-Borchart AC, Knop M. Prospore membrane formation: how budding yeast gets shaped in meiosis. Microbiol Res 2003; 158:83-90. [PMID: 12906380 DOI: 10.1078/0944-5013-00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During meiosis in Saccharomyces cerevisiae four daughter cells, called spores, are generated within the boundaries of the mother cell. This cell differentiation process requires de novo synthesis of prospore membranes (PSMs), which are the precursors of the spore plasma membranes. Assembly of these membranes is initiated at the spindle pole bodies (SPBs) during meiosis II. At this stage of the cell cycle, 4 SPBs are present. Two different meiosis-specific structures are known to be required for PSM formation. At the SPBs, specialized attachments, called the meiotic plaques, provide the required functionality necessary for the recruitment and assembly of the membranes. During subsequent membrane elongation, a second structure becomes important. This proteinaceous assembly forms a coat, called the leading edge protein coat (LEP coat), which covers the boundaries of the membranes. Assembly of the coat occurs at sites next to the SPBs, whereas its disassembly is concomitant to the closure of the membranes. This mini review discusses our current understanding of how the meiotic plaque and the LEP coat might function during biogenesis of the prospore membrane.
Collapse
|
14
|
Klink VP, Wolniak SM. Changes in the abundance and distribution of conserved centrosomal, cytoskeletal and ciliary proteins during spermiogenesis in Marsilea vestita. CELL MOTILITY AND THE CYTOSKELETON 2003; 56:57-73. [PMID: 12905531 DOI: 10.1002/cm.10134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spermiogenesis in the male gametophytes of the water fern Marsilea vestita is a precise and rapid process resulting in the production of ciliated gametes. Development begins from a single cell within the microspore wall that undergoes nine rapid cell division cycles in distinct planes to produce 32 spermatids that are surrounded by 7 sterile cells. Thereafter, the de novo formation of basal bodies occurs in a discrete cytoplasmic particle known as a blepharoplast, with the subsequent formation of a complex ciliary apparatus in elongating spermatids. The rate and extent of development appear to be controlled at a post-transcriptional level, where the sudden translation of specific stored mRNAs (e.g., centrin) results in the formation of particular structures in the cells (e.g., blepharoplasts). We show here that additional centrosomal and cytoskeletal antigens known as SF assemblin, p95 kDa protein, delta tubulin, gamma tubulin, Xgrip109, Aik, CTR453, RanBPM, BX63, RSP6, and alpha tubulin each exhibit specific localization patterns both on immunoblots of gametophyte protein isolates and in fixed cells. BAp90, PP4, and RLC exhibit specific localization patterns in fixed cells. We show that the antigens exhibit complex patterns of abundance during spermiogenesis. In an attempt to identify regulatory agents involved in spermiogenesis, we employed a RNAi-based screen of 41 randomly selected gametophyte cDNAs on developing populations of synchronously growing gametophytes. The gametophytes treated with each of the RNAi probes exhibited arrest at a specific stage of development. A consequence of anomalous development was the block to assembly of the ciliary apparatus, an effect highlighted by altered staining with anti-centrin, anti-beta-tubulin, and anti-RSP6 antibodies. Our results show that complex, integrated processes of translation and protein partitioning apparently underlie the assembly of the ciliary apparatus during spermiogenesis in male gametophytes of M. vestita.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
15
|
O'Toole ET, Giddings TH, McIntosh JR, Dutcher SK. Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii. Mol Biol Cell 2003; 14:2999-3012. [PMID: 12857881 PMCID: PMC165693 DOI: 10.1091/mbc.e02-11-0755] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3-D Fine Structure, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | | | |
Collapse
|
16
|
Sakaushi S, Mizutani T, Miyamura S, Hori T. Isolation of the MLS-type Flagellar Apparatus from the an-1 mutant of Fern Lygodium japonicum and Its Preliminary Immunological Analysis. CYTOLOGIA 2003. [DOI: 10.1508/cytologia.68.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Uetake Y, Kato KH, Washitani-Nemoto S, Nemoto Si SI. Nonequivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies. Dev Biol 2002; 247:149-64. [PMID: 12074559 DOI: 10.1006/dbio.2002.0682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is believed that in most animals only the paternal centrosome provides the division poles for mitosis in zygotes. This paternal inheritance of the centrosomes depends on the selective loss of the maternal centrosome. In order to understand the mechanism of centrosome inheritance, the behavior of all maternal centrosomes/centrioles was investigated throughout the meiotic and mitotic cycles by using starfish eggs that had polar body (PB) formation suppressed. In starfish oocytes, the centrioles do not duplicate during meiosis II. Hence, each centrosome of the meiosis II spindle has only one centriole, whereas in meiosis I, each has a pair of centrioles. When two pairs of meiosis I centrioles were retained in the cytoplasm of oocytes by complete suppression of PB extrusion, they separated into four single centrioles in meiosis II. However, after completion of the meiotic process, only two of the four single centrioles were found in addition to the pronucleus. When the two single centrioles of a meiosis II spindle were retained in the oocyte cytoplasm by suppressing the extrusion of the second PB, only one centriole was found with the pronucleus after the completion of the meiotic process. When these PB-suppressed eggs were artificially activated to drive the mitotic cycles, all the surviving single centrioles duplicated repeatedly to form pairs of centrioles, which could organize mitotic spindles. These results indicate that the maternal centrioles are not equivalent in their intrinsic stability and reproductive capacity. The centrosomes with the reproductive centrioles are selectively cast off into the PBs, resulting in the mature egg inheriting a nonreproductive centriole, which would degrade shortly after the completion of meiosis.
Collapse
Affiliation(s)
- Yumi Uetake
- Department of Biology, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan.
| | | | | | | |
Collapse
|
18
|
Lechtreck KF, Bornens M. Basal body replication in green algae--when and where does it start? Eur J Cell Biol 2001; 80:631-41. [PMID: 11713867 DOI: 10.1078/0171-9335-00199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Basal body duplication in the green alga Spermatozopsis similis was reinvestigated using GT335, an antibody binding to polyglutamylated tubulins, and antibodies directed to p210, a component of the flagellar transition region which represents the distal border of the basal body. p210 was also detected in small spots at the base of each basal body which increased in size prior to mitosis. The presence of p210 on one of the microtubular flagellar roots suggested a transport of basal body material along these tracks. Immunogold electron microscopy confirmed the presence of p210 in the probasal bodies. Further, small probasal bodies are apparently connected to the mature basal bodies by centrin fibers as observed after artificially induced basal body separation in Xenopus egg extract. While basal bodies grew, most of the p210 remained at the tip of elongating basal bodies, but two or four additional spots were observed in distinct patterns near the base of the basal bodies. In cytokinesis, basal body pairs separated and p210 was observed in a strong signal at the tip and a weaker one in the vicinity of the proximal end of each basal body. We interpret the data as indicating that a new p210-containing structure forms near the proximal end of the basal bodies during basal body elongation, representing the precursor of the next generation of basal bodies. Thus, basal bodies appear to seed the succeeding generation already during their own development, a mechanism which could ensure the correct number and position of basal bodies.
Collapse
Affiliation(s)
- K F Lechtreck
- Botanisches Institut, Universität zu Köln, Cologne/Germany.
| | | |
Collapse
|
19
|
Abstract
Centrioles are among the most beautiful and mysterious of all cell organelles. Although the ultrastructure of centrioles has been studied in great detail ever since the advent of electron microscopy, these studies raised as many questions as they answered, and for a long time both the function and mode of duplication of centrioles remained controversial. It is now clear that centrioles play an important role in cell division, although cells have backup mechanisms for dividing if centrioles are missing. The recent identification of proteins comprising the different ultrastructural features of centrioles has proven that these are not just figments of the imagination but distinct components of a large and complex protein machine. Finally, genetic and biochemical studies have begun to identify the signals that regulate centriole duplication and coordinate the centriole cycle with the cell cycle.
Collapse
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
20
|
Silflow CD, LaVoie M, Tam LW, Tousey S, Sanders M, Wu W, Borodovsky M, Lefebvre PA. The Vfl1 Protein in Chlamydomonas localizes in a rotationally asymmetric pattern at the distal ends of the basal bodies. J Cell Biol 2001; 153:63-74. [PMID: 11285274 PMCID: PMC2185524 DOI: 10.1083/jcb.153.1.63] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the unicellular alga Chlamydomonas, two anterior flagella are positioned with 180 degrees rotational symmetry, such that the flagella beat with the effective strokes in opposite directions (Hoops, H.J., and G.B. Witman. 1983. J. Cell Biol. 97:902-908). The vfl1 mutation results in variable numbers and positioning of flagella and basal bodies (Adams, G.M.W., R.L. Wright, and J.W. Jarvik. 1985. J. Cell Biol. 100:955-964). Using a tagged allele, we cloned the VFL1 gene that encodes a protein of 128 kD with five leucine-rich repeat sequences near the NH(2) terminus and a large alpha-helical-coiled coil domain at the COOH terminus. An epitope-tagged gene construct rescued the mutant phenotype and expressed a tagged protein (Vfl1p) that copurified with basal body flagellar apparatuses. Immunofluorescence experiments showed that Vfl1p localized with basal bodies and probasal bodies. Immunogold labeling localized Vfl1p inside the lumen of the basal body at the distal end. Distribution of gold particles was rotationally asymmetric, with most particles located near the doublet microtubules that face the opposite basal body. The mutant phenotype, together with the localization results, suggest that Vfl1p plays a role in establishing the correct rotational orientation of basal bodies. Vfl1p is the first reported molecular marker of the rotational asymmetry inherent to basal bodies.
Collapse
Affiliation(s)
- C D Silflow
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marshall WF, Vucica Y, Rosenbaum JL. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr Biol 2001; 11:308-17. [PMID: 11267867 DOI: 10.1016/s0960-9822(01)00094-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Centriole duplication is a key step in the cell cycle whose mechanism is completely unknown. Why new centrioles always form next to preexisting ones is a fundamental question. The simplest model is that preexisting centrioles nucleate the assembly of new centrioles, and that although centrioles can in some cases form de novo without this nucleation, the de novo assembly mechanism should be too slow to compete with normal duplication in order to maintain fidelity of centriole duplication. RESULTS We have measured the rate of de novo centriole assembly in vegetatively dividing cells that normally always contain centrioles. By using mutants of Chlamydomonas that are defective in centriole segregation, we obtained viable centrioleless cells that continue to divide, and find that within a single generation, 50% of these cells reacquire new centrioles by de novo assembly. This suggests that the rate of de novo assembly is approximately half the rate of templated duplication. A mutation in the VFL3 gene causes a complete loss of the templated assembly pathway without eliminating de novo assembly. A mutation in the centrin gene also reduced the rate of templated assembly. CONCLUSIONS These results suggest that there are two pathways for centriole assembly, namely a templated pathway that requires preexisting centrioles to nucleate new centriole assembly, and a de novo assembly pathway that is normally turned off when centrioles are present.
Collapse
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
22
|
Preble AM, Giddings TH, Dutcher SK. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii. Genetics 2001; 157:163-81. [PMID: 11139500 PMCID: PMC1461482 DOI: 10.1093/genetics/157.1.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
bld2-1 mutant Chlamydomonas reinhardtii strains assemble basal bodies with singlet microtubules; bld2-1 cells display flagellar assembly defects as well as positioning defects of the mitotic spindle and cleavage furrow. To further understand the role of the BLD2 gene, we have isolated three new bld2 alleles and three partially dominant extragenic suppressors, rgn1-1, rgn1-2, and rgn1-3. bld2 rgn1-1 strains have phenotypes intermediate between those of bld2 and wild-type strains with respect to flagellar number, microtubule rootlet organization, cleavage furrow positioning, and basal body structural phenotypes. Instead of the triplet microtubules of wild-type cells, bld2 rgn1-1 basal bodies have mixtures of no, singlet, doublet, and triplet microtubules. The bld2-4 allele was made by insertional mutagenesis and identified in a noncomplementation screen in a diploid strain. The bld2-4 allele has a lethal phenotype based on mitotic segregation in diploid strains and in haploid strains generated by meiotic recombination. The lethal phenotype in haploid strains is suppressed by rgn1-1; these suppressed strains have similar phenotypes to other bld2 rgn1-1 double mutants. It is likely that BLD2 is an essential gene that is needed for basal body assembly and function.
Collapse
Affiliation(s)
- A M Preble
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | |
Collapse
|
23
|
Brugerolle G, Bricheux G, Coffe G. Centrin protein and genes in Trichomonas vaginalis and close relatives. J Eukaryot Microbiol 2000; 47:129-38. [PMID: 10750840 DOI: 10.1111/j.1550-7408.2000.tb00022.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anti-centrin monoclonal antibodies 20H5 and 11B2 produced against Clamydomononas centrin decorated the group of basal bodies as well as very closely attached structures in all trichomonads studied and in the devescovinids Foaina and Devescovina. Moreover, these antibodies decorated the undulating membrane in Trichomonas vaginalis, Trichomitus batrachorum, and Tritrichomonas foetus, and the cresta in Foaina. Centrin was not demonstrated in the dividing spindle and paradesmosis. Immunogold labeling, both in pre- and post-embedding, confirmed that centrin is associated with the basal body cylinder and is a component of the nine anchoring arms between the terminal plate of flagellar bases and the plasma-membrane. Centrin is also associated with the hook-shaped fibers attached to basal bodies (F1, F3), the X-fiber, and along sigmoid fibers (F2) at the pelta-axostyle junction, which is the microtubule organizing center for pelta-axostyle microtubules. There was no labeling on the striated costa and parabasal fibers nor on microtubular pelta-axostyle, but the fibrous structure inside the undulating membrane was labeled in T. vaginalis. Two proteins of 22-20 kDa corresponding to the centrin molecular mass were recognized by immunoblotting using these antibodies in the three trichomonad species examined. By screening a T. vaginalis cDNA library with 20H5 antibody, two genes encoding identical protein sequences were found. The sequence comprises the 4 typical EF-hand Ca++-binding domains present in every known centrin. Trichomonad centrin is closer to the green algal cluster (70% identity) than to the yeast Cdc31 cluster (55% identity) or the Alveolata cluster (46% identity).
Collapse
Affiliation(s)
- G Brugerolle
- Biologie des Protistes, UPRESA 6023, Université Blaise Pascal de Clermont-Ferrand, Aubiere, France.
| | | | | |
Collapse
|
24
|
Abstract
Centrioles are the organizing centers around which centrosomes assemble. Despite a century of study, the molecular details of centriole function and assembly remain largely unknown. Recent work has exploited the unique advantages of unicellular algae to reveal proteins that play central roles in centriole biology.
Collapse
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
25
|
Dole V, Jakubzik CR, Brünjes B, Kreimer G. A cDNA from the green alga Spermatozopsis similis encodes a protein with homology to the newly discovered Roadblock/LC7 family of dynein-associated proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:125-30. [PMID: 10786626 DOI: 10.1016/s0167-4781(99)00220-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A clone, designated as B15, was isolated from a cDNA library of the unicellular green alga Spermatozopsis similis and characterised. The deduced amino acid sequence of its open reading frame exhibits high homology to members of the recently discovered roadblock/LC7 protein family (robl/LC7) of dynein-associated proteins. Homologies were highest to a robl/LC7-member from human testis (86%, identity 56%) and to the roadblock protein of Drosophila (88%, identity 52%). Data bank analyses revealed no homologies to known higher plant proteins. B15 is a single copy gene in the genome of Sperm-latozopsis and its transcript was detectable throughout the cell cycle.
Collapse
Affiliation(s)
- V Dole
- Botanisches Institut, Universität zu Köln, Cologne, Germany
| | | | | | | |
Collapse
|
26
|
Lechtreck KF, Grunow A. Evidence for a direct role of nascent basal bodies during spindle pole initiation in the green alga Spermatozopsis similis. Protist 1999; 150:163-81. [PMID: 10505416 DOI: 10.1016/s1434-4610(99)70019-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal body replication in the naked biflagellate green alga Spermatozopsis similis was analyzed using standard electron microscopy and immunogold localization of centrin, an ubiquitous centrosomal protein, and p210, a recently characterized basal apparatus component of S. similis. Fibrous disks representing probasal bodies appear at the proximal end of parental basal bodies at the end of interphase and development proceeds via a ring of nine singlet microtubules. Nascent basal bodies dock early to the plasma membrane but p210, usually present in basal body-membrane-linkers of S. similis, was already present on the cytosolic basal body precursors. In addition to the distal connecting fiber and the nuclear basal body connectors (NBBC) of the parental basal bodies, centrin was present on the fibrous probasal bodies, in a linker between probasal bodies and the basal apparatus, in the connecting fiber between nascent basal bodies and their corresponding parent, and, finally, a fiber linking the nascent basal bodies to the nucleus. This NBBC probably is present only in mitotic cells. During elongation a cartwheel of up to seven layers is formed, protruding from the proximal end of nascent basal bodies. Microtubules develop on the cartwheel indicating that it temporarily functions as a microtubule organizing center (MTOC). These microtubules and probably the cartwheels, touch the nuclear envelope at both sides of a nuclear projection. We propose that spindle assembly is initiated at these attachment sites. During metaphase, the spindle poles were close to thylakoid-free lobes of the chloroplast, and the basal bodies were not in the spindle axis. The role of nascent basal bodies during the initial steps of spindle assembly is discussed.
Collapse
Affiliation(s)
- K F Lechtreck
- Botanisches Institut, Universität zu Köln, Cologne, Germany.
| | | |
Collapse
|