1
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
2
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Marrugal Á, Ferrer I, Quintanal-Villalonga Á, Ojeda L, Pastor MD, García-Luján R, Carnero A, Paz-Ares L, Molina-Pinelo S. Inhibition of HSP90 in Driver Oncogene-Defined Lung Adenocarcinoma Cell Lines: Key Proteins Underpinning Therapeutic Efficacy. Int J Mol Sci 2023; 24:13830. [PMID: 37762133 PMCID: PMC10530904 DOI: 10.3390/ijms241813830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The use of 90 kDa heat shock protein (HSP90) inhibition as a therapy in lung adenocarcinoma remains limited due to moderate drug efficacy, the emergence of drug resistance, and early tumor recurrence. The main objective of this research is to maximize treatment efficacy in lung adenocarcinoma by identifying key proteins underlying HSP90 inhibition according to molecular background, and to search for potential biomarkers of response to this therapeutic strategy. Inhibition of the HSP90 chaperone was evaluated in different lung adenocarcinoma cell lines representing the most relevant molecular alterations (EGFR mutations, KRAS mutations, or EML4-ALK translocation) and wild-type genes found in each tumor subtype. The proteomic technique iTRAQ was used to identify proteomic profiles and determine which biological pathways are involved in the response to HSP90 inhibition in lung adenocarcinoma. We corroborated the greater efficacy of HSP90 inhibition in EGFR mutated or EML4-ALK translocated cell lines. We identified proteins specifically and significantly deregulated after HSP90 inhibition for each molecular alteration. Two proteins, ADI1 and RRP1, showed independently deregulated molecular patterns. Functional annotation of the altered proteins suggested that apoptosis was the only pathway affected by HSP90 inhibition across all molecular subgroups. The expression of ADI1 and RRP1 could be used to monitor the correct inhibition of HSP90 in lung adenocarcinoma. In addition, proteins such as ASS1, ITCH, or UBE2L3 involved in pathways related to the inhibition of a particular molecular background could be used as potential response biomarkers, thereby improving the efficacy of this therapeutic approach to combat lung adenocarcinoma.
Collapse
Affiliation(s)
- Ángela Marrugal
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | | | - Laura Ojeda
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
| | - María Dolores Pastor
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| | - Ricardo García-Luján
- Respiratory Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
| | - Amancio Carnero
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Medical Oncology Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
- Medical School, Universidad Complutense, 28040 Madrid, Spain
| | - Sonia Molina-Pinelo
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| |
Collapse
|
4
|
Ong HT, Prêle CM, Dilley RJ. Using RNA-seq to identify suitable housekeeping genes for hypoxia studies in human adipose-derived stem cells. BMC Mol Cell Biol 2023; 24:16. [PMID: 37062833 PMCID: PMC10108514 DOI: 10.1186/s12860-023-00475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Hypoxic culture conditions have been used to study the impact of oxygen deprivation has on gene expression in a number of disease models. However, hypoxia response elements present in the promoter regions of some commonly used housekeeping genes, such as GAPDH and PGK1, can confound the relative gene expression analysis. Thus, there is ongoing debate as to which housekeeping gene is appropriate for studies investigating hypoxia-induced cell responses. Specifically, there is still contradicting information for which housekeeping genes are stable in hypoxia cultures of mesenchymal stem cells. In this study, candidate housekeeping genes curated from the literature were matched to RNAseq data of normoxic and hypoxic human adipose-derived stem cell cultures to determine if gene expression was modulated by hypoxia or not. Expression levels of selected candidates were used to calculate coefficient of variation. Then, accounting for the mean coefficient of variation, and normalised log twofold change, genes were ranked and shortlisted, before validating with qRT-PCR. Housekeeping gene suitability were then determined using GeNorm, NormFinder, BestKeeper, comparative[Formula: see text], RefFinder, and the Livak method. RESULTS Gene expression levels of 78 candidate genes identified in the literature were analysed in the RNAseq dataset generated from hADSC cultured under Nx and Hx conditions. From the dataset, 15 candidates with coefficient of variation ≤ 0.15 were identified, where differential expression analysis results further shortlisted 8 genes with least variation in expression levels. The top 4 housekeeping gene candidates, ALAS1, RRP1, GUSB, and POLR2B, were chosen for qRT-PCR validation. Additionally, 18S, a ribosomal RNA commonly used as housekeeping gene but not detected in the RNAseq method, was added to the list of housekeeping gene candidates to validate. From qRT-PCR results, 18S and RRP1 were determined to be stably expressed in cells cultured under hypoxic conditions. CONCLUSIONS We have demonstrated that 18S and RRP1 are suitable housekeeping genes for use in hypoxia studies with human adipose-derived stem cell and should be used in combination. Additionally, these data shown that the commonly used GAPDH and PGK1 are not suitable housekeeping genes for investigations into the effect of hypoxia in human adipose-derived stem cell.
Collapse
Affiliation(s)
- Huan Ting Ong
- Ear Science Institute Australia, Nedlands, Western Australia, Australia.
- Ear Sciences Centre, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Cecilia M Prêle
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, The University of Western Australia, Nedlands, Western Australia, Australia
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Rodney J Dilley
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Sakthivel D, Brown-Suedel A, Bouchier-Hayes L. The role of the nucleolus in regulating the cell cycle and the DNA damage response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:203-241. [PMID: 37061332 DOI: 10.1016/bs.apcsb.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nucleolus has long been perceived as the site for ribosome biogenesis, but numerous studies suggest that the nucleolus carefully sequesters crucial proteins involved in multiple cellular functions. Among these, the role of nucleolus in cell cycle regulation is the most evident. The nucleolus is the first responder of growth-related signals to mediate normal cell cycle progression. The nucleolus also senses different cellular stress insults by activating diverse pathways that arrest the cell cycle, promote DNA repair, or initiate apoptosis. Here, we review the emerging concepts on how the ribosomal and nonribosomal nucleolar proteins mediate such cellular effects.
Collapse
|
6
|
Nucleolus structural integrity during the first meiotic prophase in rat spermatocytes. Exp Cell Res 2019; 383:111587. [PMID: 31454492 DOI: 10.1016/j.yexcr.2019.111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
A typical nucleolus structure is shaped by three components. A meshwork of fine fibers forming the fibrillar center (FC) is surrounded by densely packed fibers forming the dense fibrillar component (DFC). Meanwhile, wrapping the FC and DFC is the granular component (GC). During the mitotic prophase, the nucleolus undergoes disassembling of its components. On the contrary, throughout the first meiotic prophase that occurs in the cells of the germ line, small nucleoli are assembled into one nucleolus by the end of the prophase. These nucleoli are transcriptionally active, suggesting that they are fully functional. Electron microscopy analysis has suggested that these nucleoli display their three main components but a typical organization has not been observed. Here, by immunolabeling and electron microscopy, we show that the nucleolus has its three main components. The GC is interlaced with the DFC and is not as well defined as previously thought during leptotene and zygotene stage.
Collapse
|
7
|
Wu T, Ren MX, Chen GP, Jin ZM, Wang G. Rrp15 affects cell cycle, proliferation, and apoptosis in NIH3T3 cells. FEBS Open Bio 2016; 6:1085-1092. [PMID: 27833849 PMCID: PMC5095146 DOI: 10.1002/2211-5463.12128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/27/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022] Open
Abstract
Riken 2810430M08 (hereinafter referred to as Rrp15) is a newly identified and reported gene from the mouse genome. In our previous work, we found that the gene had a relationship with the proliferation and activation of T cells. Rrp15 protein is highly homologous with RRP15 (budding yeast), which has an important role in ribosomal RNA processing. We explored the potential function of Rrp15 in apoptosis, cell proliferation, and its involvement with RNA in the nucleus. We constructed a knockdown of the Rrp15 gene in NIH3T3 cells and then performed real-time PCR, western blotting, flow cytometry, and immunofluorescence to determine the function of the Rrp15 gene. Knockdown of the Rrp15 gene suppresses proliferation and induces apoptosis. We also found that the Rrp15 protein was normally distributed in the nucleus and bound to RNA or pre-RNA in the nucleus. Additionally, Rrp15 altered the activity of the 20S proteasome. Rrp15 promotes proliferation and inhibits apoptosis in NIH3T3 cells and may have a relationship with RNA in the nucleus.
Collapse
Affiliation(s)
- Tao Wu
- Department of Cardiology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Mei-Xia Ren
- Department of Cardiology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Guo-Ping Chen
- Department of Endocrinology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Zheng-Ming Jin
- Department of Cardiology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Gang Wang
- Cancer Institute of Integrative Medicine Tongde Hospital of Zhejiang Province Zhejiang Provincial Academy of Traditional Chinese Medicine Hangzhou China
| |
Collapse
|
8
|
Sirri V, Jourdan N, Hernandez-Verdun D, Roussel P. Sharing the mitotic pre-ribosomal particles between daughter cells. J Cell Sci 2016; 129:1592-604. [DOI: 10.1242/jcs.180521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/20/2016] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis is a fundamental multistep process initiated by the synthesis of 90S pre-ribosomal particles in the nucleoli of higher eukaryotes. Even though synthesis of ribosomes stops during mitosis while nucleoli disappear, mitotic pre-ribosomal particles persist as observed in prenucleolar bodies (PNBs) during telophase. To further understand the relationship between the nucleolus and the PNBs, the presence and the fate of the mitotic pre-ribosomal particles during cell division was investigated. We demonstrate that the recently synthesized 45S precursor ribosomal RNAs (pre-rRNAs) but also the 32S and 30S pre-rRNAs are maintained during mitosis and associated with the chromosome periphery together with pre-rRNA processing factors. Maturation of the mitotic pre-ribosomal particles, as assessed by the stability of the mitotic pre-rRNAs, is transiently arrested during mitosis by a cyclin-dependent kinase (CDK)1-cyclin B-dependent mechanism and may be restored by CDK inhibitor treatments. At the M/G1 transition, the resumption of mitotic pre-rRNA processing in PNBs does not induce the disappearance of PNBs that only occurs when functional nucleoli reform. Strikingly, during their maturation process, mitotic pre-rRNAs localize in reforming nucleoli.
Collapse
Affiliation(s)
- Valentina Sirri
- Univ. Paris Diderot, Unit of Functional and Adaptive Biology, UMR 8251 CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75205 Paris, France
| | - Nathalie Jourdan
- UPMC Univ. Paris 06, Institut de Biologie Paris Seine, UMR 8256 CNRS, 9 quai St Bernard, F-75252 Paris, France
| | - Danièle Hernandez-Verdun
- Univ. Paris Diderot, Institut Jacques Monod, UMR 7592 CNRS, 15 rue Hélène Brion, F‑75205 Paris, France
| | - Pascal Roussel
- Univ. Paris Diderot, Unit of Functional and Adaptive Biology, UMR 8251 CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75205 Paris, France
| |
Collapse
|
9
|
Yoshikawa H, Ishikawa H, Izumikawa K, Miura Y, Hayano T, Isobe T, Simpson RJ, Takahashi N. Human nucleolar protein Nop52 (RRP1/NNP-1) is involved in site 2 cleavage in internal transcribed spacer 1 of pre-rRNAs at early stages of ribosome biogenesis. Nucleic Acids Res 2015; 43:5524-36. [PMID: 25969445 PMCID: PMC4477673 DOI: 10.1093/nar/gkv470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/29/2015] [Indexed: 01/02/2023] Open
Abstract
During the early steps of ribosome biogenesis in mammals, the two ribosomal subunits 40S and 60S are produced via splitting of the large 90S pre-ribosomal particle (90S) into pre-40S and pre-60S pre-ribosomal particles (pre-40S and pre-60S). We previously proposed that replacement of fibrillarin by Nop52 (RRP1/NNP-1) for the binding to p32 (C1QBP) is a key event that drives this splitting process. However, how the replacement by RRP1 is coupled with the endo- and/or exo-ribonucleolytic cleavage of pre-rRNA remains unknown. In this study, we demonstrate that RRP1 deficiency suppressed site 2 cleavage on ITS1 of 47S/45S, 41S and 36S pre-rRNAs in human cells. RRP1 was also present in 90S and was localized in the dense fibrillar component of the nucleolus dependently on active RNA polymerase I transcription. In addition, double knockdown of XRN2 and RRP1 revealed that RRP1 accelerated the site 2 cleavage of 47S, 45S and 41S pre-rRNAs. These data suggest that RRP1 is involved not only in competitive binding with fibrillarin to C1QBP on 90S but also in site 2 cleavage in ITS1 of pre-rRNAs at early stages of human ribosome biogenesis; thus, it is likely that RRP1 integrates the cleavage of site 2 with the physical split of 90S into pre-40S and pre-60S.
Collapse
Affiliation(s)
- Harunori Yoshikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Hideaki Ishikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Keiichi Izumikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshiya Hayano
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshiaki Isobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
10
|
Morchoisne-Bolhy S, Geoffroy MC, Bouhlel IB, Alves A, Audugé N, Baudin X, Van Bortle K, Powers MA, Doye V. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell 2015; 26:2343-56. [PMID: 25904327 PMCID: PMC4462950 DOI: 10.1091/mbc.e15-02-0060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
The Nup107-160 nuclear pore subcomplex (Y-complex) and the chromatin-binding nucleoporin Elys dynamically colocalize with Nup98 and the export factor CRM1 in nuclear GLFG bodies present in HeLa sublines. Thus, in addition to its structural role at the NPC and its mitotic functions, the Y-complex may also act inside the nucleus during interphase. Nup98 is a glycine-leucine-phenylalanine-glycine (GLFG) repeat–containing nucleoporin that, in addition to nuclear transport, contributes to multiple aspects of gene regulation. Previous studies revealed its dynamic localization within intranuclear structures known as GLFG bodies. Here we show that the mammalian Nup107-160 complex (Y-complex), a major scaffold module of the nuclear pore, together with its partner Elys, colocalizes with Nup98 in GLFG bodies. The frequency and size of GLFG bodies vary among HeLa sublines, and we find that an increased level of Nup98 is associated with the presence of bodies. Recruitment of the Y-complex and Elys into GLFG bodies requires the C-terminal domain of Nup98. During cell division, Y-Nup–containing GLFG bodies are disassembled in mitotic prophase, significantly ahead of nuclear pore disassembly. FRAP studies revealed that, unlike at nuclear pores, the Y-complex shuttles into and out of GLFG bodies. Finally, we show that within the nucleoplasm, a fraction of Nup107, a key component of the Y-complex, displays reduced mobility, suggesting interaction with other nuclear components. Together our data uncover a previously neglected intranuclear pool of the Y-complex that may underscore a yet-uncharacterized function of these nucleoporins inside the nucleus, even in cells that contain no detectable GLFG bodies.
Collapse
Affiliation(s)
| | - Marie-Claude Geoffroy
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Imène B Bouhlel
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Annabelle Alves
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud, 91405 Orsay, France
| | - Nicolas Audugé
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Xavier Baudin
- ImagoSeine Imaging Facility, Institut Jacques Monod, 75205 Paris, France
| | - Kevin Van Bortle
- Department of Cell Biology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | - Maureen A Powers
- Department of Cell Biology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | - Valérie Doye
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
11
|
Kordyukova MY, Polzikov MA, Shishova KV, Zatsepina OV. Analysis of protein partners of the human nucleolar protein SURF6 in HeLa cells by a GST pull-down assay. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nolin F, Michel J, Wortham L, Tchelidze P, Balossier G, Banchet V, Bobichon H, Lalun N, Terryn C, Ploton D. Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach. Cell Mol Life Sci 2013; 70:2383-94. [PMID: 23385351 PMCID: PMC11113571 DOI: 10.1007/s00018-013-1267-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 01/01/2023]
Abstract
The cell is a crowded volume, with estimated mean mass percentage of macromolecules and of water ranging from 7.5 to 45 and 55 to 92.5 %, respectively. However, the concentrations of macromolecules and water at the nanoscale within the various cell compartments are unknown. We recently developed a new approach, correlative cryo-analytical scanning transmission electron microscopy, for mapping the quantity of water within compartments previously shown to display GFP-tagged protein fluorescence on the same ultrathin cryosection. Using energy-dispersive X-ray spectrometry (EDXS), we then identified various elements (C, N, O, P, S, K, Cl, Mg) in these compartments and quantified them in mmol/l. Here, we used this new approach to quantify water and elements in the cytosol, mitochondria, condensed chromatin, nucleoplasm, and nucleolar components of control and stressed cancerous cells. The water content of the control cells was between 60 and 83 % (in the mitochondria and nucleolar fibrillar centers, respectively). Potassium was present at concentrations of 128-462 mmol/l in nucleolar fibrillar centers and condensed chromatin, respectively. The induction of nucleolar stress by treatment with a low dose of actinomycin-D to inhibit rRNA synthesis resulted in both an increase in water content and a decrease in the elements content in all cell compartments. We generated a nanoscale map of water and elements within the cell compartments, providing insight into their changes induced by nucleolar stress.
Collapse
Affiliation(s)
- Frédérique Nolin
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Jean Michel
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Laurence Wortham
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Pavel Tchelidze
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| | - Gérard Balossier
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Vincent Banchet
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Hélène Bobichon
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| | - Nathalie Lalun
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Plate-forme IBISA, SFR CAP-SANTE, Université de Reims Champagne Ardenne, Reims, France
| | - Dominique Ploton
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
13
|
Carron C, Balor S, Delavoie F, Plisson-Chastang C, Faubladier M, Gleizes PE, O'Donohue MF. Post-mitotic dynamics of pre-nucleolar bodies is driven by pre-rRNA processing. J Cell Sci 2012; 125:4532-42. [PMID: 22767511 DOI: 10.1242/jcs.106419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the relationship between the topological dynamics of nuclear subdomains and their molecular function is a central issue in nucleus biology. Pre-nucleolar bodies (PNBs) are transient nuclear subdomains, which form at telophase and contain nucleolar proteins, snoRNPs and pre-ribosomal RNAs (pre-rRNAs). These structures gradually disappear in early G1 phase and are currently regarded as reservoirs of nucleolar factors that participate to post-mitotic reassembly of the nucleolus. Here, we provide evidence from fluorescence in situ hybridization and loss-of-function experiments in HeLa cells that PNBs are in fact active ribosome factories in which maturation of the pre-rRNAs transiting through mitosis resumes at telophase. We show that the pre-rRNA spacers are sequentially removed in PNBs when cells enter G1 phase, indicating regular pre-rRNA processing as in the nucleolus. Accordingly, blocking pre-rRNA maturation induces accumulation in PNBs of stalled pre-ribosomes characterised by specific pre-rRNAs and pre-ribosomal factors. The presence of pre-ribosomal particles in PNBs is corroborated by observation of these domains by correlative electron tomography. Most importantly, blocking pre-rRNA maturation also prevents the gradual disappearance of PNBs, which persist for several hours in the nucleoplasm. In a revised model, we propose that PNBs are autonomous extra-nucleolar ribosome maturation sites, whose orderly disassembly in G1 phase is driven by the maturation and release of their pre-ribosome content.
Collapse
Affiliation(s)
- Coralie Carron
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Yoshikawa H, Komatsu W, Hayano T, Miura Y, Homma K, Izumikawa K, Ishikawa H, Miyazawa N, Tachikawa H, Yamauchi Y, Isobe T, Takahashi N. Splicing factor 2-associated protein p32 participates in ribosome biogenesis by regulating the binding of Nop52 and fibrillarin to preribosome particles. Mol Cell Proteomics 2011; 10:M110.006148. [PMID: 21536856 DOI: 10.1074/mcp.m110.006148] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome biogenesis starts with transcription of the large ribosomal RNA precursor (47S pre-rRNA), which soon combines with numerous factors to form the 90S pre-ribosome in the nucleolus. Although the subsequent separation of the pre-90S particle into pre-40S and pre-60S particles is critical for the production process of mature small and large ribosomal subunits, its molecular mechanisms remain undetermined. Here, we present evidence that p32, fibrillarin (FBL), and Nop52 play key roles in this separation step. Mass-based analyses combined with immunoblotting showed that p32 associated with 155 proteins including 31 rRNA-processing factors (of which nine were components of small subunit processome, and six were those of RIX1 complex), 13 chromatin remodeling components, and six general transcription factors required for RNA polymerase III-mediated transcription. Of these, a late rRNA-processing factor Nop52 interacted directly with p32. Immunocytochemical analyses demonstrated that p32 colocalized with an early rRNA-processing factor FBL or Nop52 in the nucleolus and Cajal bodies, but was excluded from the nucleolus after actinomycin D treatment. p32 was present in the pre-ribosomal fractions prepared by cell fractionation or separated by ultracentrifugation of the nuclear extract. p32 also associated with pre-rRNAs including 47S/45S and 32S pre-rRNAs. Furthermore, knockdown of p32 with a small interfering RNA slowed the early processing from 47S/45S pre-rRNAs to 18S rRNA and 32S pre-rRNA. Finally, Nop52 was found to compete with FBL for binding to p32 probably in the nucleolus. Given the fact that FBL and Nop52 are associated with pre-ribosome particles distinctly different from each other, we suggest that p32 is a new rRNA maturation factor involved in the remodeling from pre-90S particles to pre-40S and pre-60S particles that requires the exchange of FBL for Nop52.
Collapse
Affiliation(s)
- Harunori Yoshikawa
- Department of Applied Life Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chamousset D, De Wever V, Moorhead GB, Chen Y, Boisvert FM, Lamond AI, Trinkle-Mulcahy L. RRP1B targets PP1 to mammalian cell nucleoli and is associated with Pre-60S ribosomal subunits. Mol Biol Cell 2010; 21:4212-26. [PMID: 20926688 PMCID: PMC2993749 DOI: 10.1091/mbc.e10-04-0287] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/23/2023] Open
Abstract
A pool of protein phosphatase 1 (PP1) accumulates within nucleoli and accounts for a large fraction of the serine/threonine protein phosphatase activity in this subnuclear structure. Using a combination of fluorescence imaging with quantitative proteomics, we mapped the subnuclear localization of the three mammalian PP1 isoforms stably expressed as GFP-fusions in live cells and identified RRP1B as a novel nucleolar targeting subunit that shows a specificity for PP1β and PP1γ. RRP1B, one of two mammalian orthologues of the yeast Rrp1p protein, shows an RNAse-dependent localization to the granular component of the nucleolus and distributes in a similar manner throughout the cell cycle to proteins involved in later steps of rRNA processing. Quantitative proteomic analysis of complexes containing both RRP1B and PP1γ revealed enrichment of an overlapping subset of large (60S) ribosomal subunit proteins and pre-60S nonribosomal proteins involved in mid-late processing. Targeting of PP1 to this complex by RRP1B in mammalian cells is likely to contribute to modulation of ribosome biogenesis by mechanisms involving reversible phosphorylation events, thus playing a role in the rapid transduction of cellular signals that call for regulation of ribosome production in response to cellular stress and/or changes in growth conditions.
Collapse
MESH Headings
- Blotting, Far-Western
- Blotting, Northern
- Cell Line, Tumor
- Cell Nucleolus/metabolism
- Chromosomal Proteins, Non-Histone
- Gene Knockdown Techniques
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Mass Spectrometry
- Nuclear Proteins/metabolism
- Protein Phosphatase 1/metabolism
- Proteomics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Interfering
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Delphine Chamousset
- *Department of Cellular and Molecular Biology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Veerle De Wever
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada; and
| | - Greg B. Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada; and
| | - Yan Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada; and
| | - Francois-Michel Boisvert
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Angus I. Lamond
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Laura Trinkle-Mulcahy
- *Department of Cellular and Molecular Biology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Louvet E, Tramier M, Angelier N, Hernandez-Verdun D. Time-lapse microscopy and fluorescence resonance energy transfer to analyze the dynamics and interactions of nucleolar proteins in living cells. Methods Mol Biol 2010; 463:123-35. [PMID: 18951165 DOI: 10.1007/978-1-59745-406-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The dynamics of proteins play a key role in the organization and control of nuclear functions. Techniques were developed recently to observe the movement and interactions of proteins in living cells; time-lapse microscopy using fluorescent-tagged proteins gives access to observations of nuclear protein trafficking over time, and fluorescence resonance energy transfer (FRET) is used to investigate protein interactions in the time-lapse mode. In this chapter, we describe the application of these two approaches to follow the recruitment of nucleolar processing proteins at the time of nucleolar assembly. We question the role of prenucleolar bodies (PNB) during migration of the processing proteins from the chromosome periphery to sites of ribosomal genes (rDNA) transcription. The order of recruitment of different processing proteins into nucleoli is the consequence of differential sorting from the same PNBs. The dynamics of the interactions between processing proteins in PNBs suggest that PNBs are preassembly platforms for ribosomal RNA (rRNA) processing complexes.
Collapse
Affiliation(s)
- Emilie Louvet
- Nuclei and Cell Cycle Laboratory, Institut Jacques Monod, CNRS, University Paris VI and Paris VII, Paris, France
| | | | | | | |
Collapse
|
17
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
18
|
Paik JC, Wang B, Liu K, Lue JK, Lin WC. Regulation of E2F1-induced apoptosis by the nucleolar protein RRP1B. J Biol Chem 2009; 285:6348-63. [PMID: 20040599 DOI: 10.1074/jbc.m109.072074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulation of the E2F family of transcription factors is important in control of cellular proliferation; dysregulation of the E2Fs is a hallmark of many cancers. One member of the E2F family, E2F1, also has the paradoxical ability to induce apoptosis; however, the mechanisms underlying this selectivity are not fully understood. We now identify a nucleolar protein, RRP1B, as an E2F1-specific transcriptional target. We characterize the RRP1B promoter and demonstrate its selective response to E2F1. Consistent with the activation of E2F1 activity upon DNA damage, RRP1B is induced by several DNA-damaging agents. Importantly, RRP1B is required for the expression of certain E2F1 proapoptotic target genes and the induction of apoptosis by DNA-damaging agents. This activity is mediated in part by complex formation between RRP1B and E2F1 on selective E2F1 target gene promoters. Interaction between RRP1B and E2F1 can be found inside the nucleolus and diffuse nucleoplasmic punctates. Thus, E2F1 makes use of its transcriptional target RRP1B to activate other genes directly involved in apoptosis. Our data also suggest an underappreciated role for nucleolar proteins in transcriptional regulation.
Collapse
Affiliation(s)
- Jason C Paik
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
19
|
Bystin-like protein is upregulated in hepatocellular carcinoma and required for nucleologenesis in cancer cell proliferation. Cell Res 2009; 19:1150-64. [PMID: 19687802 DOI: 10.1038/cr.2009.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The bystin-like (BYSL) gene was previously characterized to encode an accessory protein for cell adhesion that participates in early embryo implantation. It is also involved in 40S ribosomal subunit biogenesis and is found to be expressed in rapidly growing embryo and cancer cell lines. In order to explore the role of BYSL in cancer cell proliferation and growth, we used hepatocellular carcinoma (HCC) as a model. Here, we report that BYSL is crucial for HCC cell growth both in vitro and in vivo. Expression levels of BYSL mRNA and protein in human HCC specimens were markedly increased compared with those seen in adjacent non-cancerous tissue. In vitro, inhibition of BYSL by short hairpin RNA decreased HCC cell proliferation, induced apoptosis and partially arrested the cell cycle in the G2/M phase. In vivo, HCC cells treated with BYSL siRNA failed to form tumors in nude mice after subcutaneous implantation. To determine the cellular basis for BYSL RNAi-induced cell growth arrest, BYSL subcellular localization in mitotic and interphase HepG2 cells was examined. BYSL was present at multiple stages during nucleologenesis, including in nucleolus-derived foci (NDF), perichromosomal regions and the prenucleolar body (PNB) during mitosis. BYSL depletion remarkably suppressed NDF and PNB formation, and disrupted nucleoli assembly after mitosis, resulting in increased apoptosis and reduced tolerance of HCC cells to serum starvation. Taken together, our studies indicate that upregulated BYSL expression plays a role in hepatocarcinogenesis.
Collapse
|
20
|
Thiry M, Cheutin T, Lamaye F, Thelen N, Meier UT, O'Donohue MF, Ploton D. Localization of Nopp140 within mammalian cells during interphase and mitosis. Histochem Cell Biol 2009; 132:129-40. [PMID: 19381672 PMCID: PMC2995257 DOI: 10.1007/s00418-009-0599-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.
Collapse
Affiliation(s)
- Marc Thiry
- Laboratoire de Biologie Cellulaire et Tissulaire, Université de Liège, 20 rue de Pitteurs, 4020, Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
21
|
Stepiński D. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery. PROTOPLASMA 2009; 235:77-89. [PMID: 19241118 DOI: 10.1007/s00709-009-0033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/19/2009] [Indexed: 05/03/2023]
Abstract
The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.
Collapse
Affiliation(s)
- Dariusz Stepiński
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231, Łódź, Poland.
| |
Collapse
|
22
|
Ukil L, De Souza CP, Liu HL, Osmani SA. Nucleolar separation from chromosomes during Aspergillus nidulans mitosis can occur without spindle forces. Mol Biol Cell 2009; 20:2132-45. [PMID: 19211837 DOI: 10.1091/mbc.e08-10-1046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How the nucleolus is segregated during mitosis is poorly understood and occurs by very different mechanisms during closed and open mitosis. Here we report a new mechanism of nucleolar segregation involving removal of the nucleolar-organizing regions (NORs) from nucleoli during Aspergillus nidulans mitosis. This involves a double nuclear envelope (NE) restriction which generates three NE-associated structures, two daughter nuclei (containing the NORs), and the nucleolus. Therefore, a remnant nucleolar structure can exist in the cytoplasm without NORs. In G1, this parental cytoplasmic nucleolus undergoes sequential disassembly releasing nucleolar proteins to the cytoplasm as nucleoli concomitantly reform in daughter nuclei. By depolymerizing microtubules and mutating spindle assembly checkpoint function, we demonstrate that a cycle of nucleolar "segregation" can occur without a spindle in a process termed spindle-independent mitosis (SIM). During SIM physical separation of the NOR from the nucleolus occurs, and NE modifications promote expulsion of the nucleolus to the cytoplasm. Subsequently, the cytoplasmic nucleolus is disassembled and rebuilt at a new site around the nuclear NOR. The data demonstrate the existence of a mitotic machinery for nucleolar segregation that is normally integrated with mitotic spindle formation but that can function without it.
Collapse
Affiliation(s)
- Leena Ukil
- Department of Molecular Genetics, Ohio State University, Columbus, 43210, USA
| | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND INFORMATION The nucleolus is a dynamic structure. It has been demonstrated that nucleolar proteins rapidly associate with and dissociate from nucleolar components in continuous exchanges with the nucleoplasm using GFP (green fluorescent protein)-tagged proteins. However, how the exchanges within one nucleolus and between nucleoli within the nuclear volume occurred is still poorly understood. RESULTS The movement of PAGFP (photoactivatable GFP)-tagged proteins that become visible after photoactivation can be followed. In the present study, we establish the protocol allowing quantification of the traffic of PAGFP-tagged nucleolar proteins in nuclei containing two nucleoli. The traffic in the activated area, at the periphery of the activated area and to the neighbouring nucleolus is measured. Protein B23 is rapidly replaced in the activated area, and at the periphery of the activated area the steady state suggests intranucleolar recycling of B23; this recycling is LMB (leptomycin B)-sensitive. The pool of activated B23 is equally distributed in the volume of the two nucleoli within 2 min. The three-dimensional distribution of the proteins Nop52 and fibrillarin is less rapid than that of B23 but is also LMB-sensitive. In contrast, traffic of fibrillarin from the nucleoli to the CB (Cajal body) was not modified by LMB. CONCLUSIONS We propose that the steady state of nucleolar proteins in nucleoli depends on the affinity of the proteins for their partners and on intranucleolar recycling. This steady state can be impaired by LMB but not the uptake in the neighbouring nucleolus or the CB.
Collapse
|
24
|
Abstract
Several oncogenic proteins and tumour suppressors target the RNA polymerase I and interfere with rRNA synthesis. Here, we show that the glycogen synthase kinase (GSK) 3beta, which phosphorylates the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), is selectively enriched in nucleoli of RAS-transformed cells. Immunoprecipitation and chromatin immunoprecipitation assays performed on epithelial and endothelial cells transformed with oncogenic RAS show that GSK3beta and PTEN are part of the same complex and associate with promoter and coding region of the rDNA. An active GSK3beta mutant abolished nucleolar BrUTP incorporation and associated with the member of the selectivity factor 1 complex TAF(I)110. Finally, GSK3beta inhibition upregulated 45S, 18S and 28S rRNA synthesis in RAS-transformed epithelial cells as revealed by semiquantitative real-time PCR and promoted cellular proliferation. Our results underscore a repressive function for GSK3beta in rRNA biogenesis supporting its role as a tumour supressor.
Collapse
|
25
|
Grigoryev AA, Bulycheva TI, Sheval EV, Kalinina IA, Zatsepina OV. Cytological indicators of overall suppression of protein synthesis revealed by staining with a new monoclonal antibody. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08020144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zharskaya OO, Barsukova AS, Zatsepina OV. Effect of roscovitine, a selective cyclin B-dependent kinase 1 inhibitor, on assembly of the nucleolus in mitosis. BIOCHEMISTRY. BIOKHIMIIA 2008; 73:411-9. [PMID: 18457570 DOI: 10.1134/s0006297908040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is well known that at the beginning of mitosis the nucleolus disassembles but then reassembles at the end of mitosis. However, the mechanisms of these processes are still unclear. In the present work, we show for the first time that selective inhibition of cyclin B-dependent kinase 1 (CDK1) by roscovitine induces premature assembly of the nucleolus in mammalian cells in metaphase. Treatment of metaphase cells with roscovitine induces formation of structures in their cytoplasm that contain major proteins of the mature nucleolus participating in rRNA processing, such as B23/nucleophosmin, C23/nucleolin, fibrillarin, Nop52, as well as partially processed (immature) 46-45S pre-rRNA. This effect is reproducible in cells of various types; this indicates that general mechanisms regulate early stages of the nucleolus reassembly with CDK1 participation in mammalian cells. Based on our and literature data, we suggest that inactivation of the CDK1-cyclin B complex at the end of mitosis results in dephosphorylation of B23/nucleophosmin and C23/nucleolin; this facilitates their interaction with pre-rRNA and leads to formation of insoluble supramolecular complexes--nucleolus-derived foci.
Collapse
Affiliation(s)
- O O Zharskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | |
Collapse
|
27
|
Svarcova O, Strejcek F, Petrovicova I, Avery B, Pedersen H, Lucas-Hahn A, Niemann H, Laurincik J, Maddox-Hyttel P. The role of RNA polymerase I transcription and embryonic genome activation in nucleolar development in bovine preimplantation embryos. Mol Reprod Dev 2008; 75:1095-103. [DOI: 10.1002/mrd.20865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem Cell Biol 2007; 129:13-31. [PMID: 18046571 PMCID: PMC2137947 DOI: 10.1007/s00418-007-0359-6] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2007] [Indexed: 11/30/2022]
Abstract
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed.
Collapse
Affiliation(s)
- Valentina Sirri
- Nuclei and Cell Cycle, CNRS, Université Paris VI, Université Paris VII, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
| | - Silvio Urcuqui-Inchima
- Nuclei and Cell Cycle, CNRS, Université Paris VI, Université Paris VII, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
- Grupo de Inmunovirología, Biogénesis, Universidad de Antioquia, Calle 62 No. 52-59, Medellin, Colombia
| | - Pascal Roussel
- Nuclei and Cell Cycle, CNRS, Université Paris VI, Université Paris VII, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
| | - Danièle Hernandez-Verdun
- Nuclei and Cell Cycle, CNRS, Université Paris VI, Université Paris VII, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
29
|
Amin MA, Matsunaga S, Ma N, Takata H, Yokoyama M, Uchiyama S, Fukui K. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells. Biochem Biophys Res Commun 2007; 360:320-6. [PMID: 17603021 DOI: 10.1016/j.bbrc.2007.06.092] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 06/04/2007] [Indexed: 11/27/2022]
Abstract
Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.
Collapse
Affiliation(s)
- Mohammed Abdullahel Amin
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sakita-Suto S, Kanda A, Suzuki F, Sato S, Takata T, Tatsuka M. Aurora-B regulates RNA methyltransferase NSUN2. Mol Biol Cell 2007; 18:1107-17. [PMID: 17215513 PMCID: PMC1805108 DOI: 10.1091/mbc.e06-11-1021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/15/2006] [Accepted: 12/29/2006] [Indexed: 01/03/2023] Open
Abstract
Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G(1) phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis.
Collapse
Affiliation(s)
- Shiho Sakita-Suto
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Akifumi Kanda
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Fumio Suzuki
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Sunao Sato
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takashi Takata
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masaaki Tatsuka
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| |
Collapse
|
31
|
Lechertier T, Sirri V, Hernandez-Verdun D, Roussel P. A B23-interacting sequence as a tool to visualize protein interactions in a cellular context. J Cell Sci 2006; 120:265-75. [PMID: 17179202 DOI: 10.1242/jcs.03345] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We report the characterization of a nucleolar localization sequence (NoLS) that targets the green fluorescent protein (GFP) into the granular component (GC) of nucleoli. This NoLS interacts in vitro specifically and directly with the major nucleolar protein B23 and more precisely with the region of B23 including the two acidic stretches. The affinity of NoLS for B23 is stronger than that of the HIV-1 Rev protein in vitro. Moreover, B23-NoLS interaction also occurs in vivo. Indeed, (1) NoLS confers on the GFP the behavior of B23 throughout the cell cycle, (2) the GFP-NoLS fusion and B23 remain colocalized after drug treatments, (3) a selective delocalization of B23 from nucleoli to nucleoplasm induces a concomitent delocalization of the GFP-NoLS fusion, and (4) the fusion of NoLS to fibrillarin makes it possible to colocalize fibrillarin and B23. Interestingly, by fusing NoLS to fibrillarin, both fibrillarin and the fibrillarin partner Nop56 are mislocalized in the GC of nucleoli. Similarly, by fusing the NoLS to MafG, part of the nuclear transcription factor NF-E2 composed of both MafG and p45 NF-E2, NF-E2 is redirected from the nucleoplasm to the nucleoli. Thus, we propose that the NoLS may be used as a tool to visualize and prove protein interactions in a cellular context.
Collapse
Affiliation(s)
- Tanguy Lechertier
- Institut Jacques Monod, UMR 7592 CNRS/Universités Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
32
|
Makimoto Y, Yano H, Kaneta T, Sato Y, Sato S. Molecular cloning and gene expression of a fibrillarin homolog of tobacco BY-2 cells. PROTOPLASMA 2006; 229:53-62. [PMID: 17019528 DOI: 10.1007/s00709-006-0183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 11/02/2005] [Indexed: 05/12/2023]
Abstract
Fibrillarin is known to play an important role in precursor ribosomal RNA processing and ribosome assembly. The present study describes a fibrillarin homolog gene isolated from tobacco BY-2 cells and its expression during the cell cycle. The cDNA for a fibrillarin homolog, named NtFib1, was first cloned in Nicotiana tabacum with degenerate primers. It encodes 314 amino acids and the deduced amino acid sequence has some highly conserved functional domains, such as the glycine and arginine-rich (GAR) domain for nucleolar localization and the RNA-binding motif. The C-terminal region is highly conserved and has 7 beta-sheets and 7 alpha-helices which are peculiar to fibrillarin. Thus, it is suggested that the fibrillarin homolog of this plant species functions in the same way as the fibrillarin already known from human and yeast cells. Northern blot analysis of BY-2 cells synchronized with aphidicolin or a combination of aphidicolin and propyzamide showed that the histone H4 gene was specifically expressed in the S phase but NtFib1 mRNA remained at high levels during the cell cycle. Examination of the localization of NtFib1 protein tagged with green-fluorescent protein (GFP) suggested that some persisting in the mitotic apparatus was eventually incorporated into reconstructed nucleoli in late telophase. Newly synthesized GFP-tagged NtFib1 protein in the cytoplasm was added to the recycled protein in early mitosis. Highly concentrated actinomycin D completely inhibited the transcription of genes coding for rRNA (rDNA) but did not significantly suppress the amount of either NtFib1 mRNA or protein, although the NtFib1 protein was reversibly dislocated from nucleoli. Although hypoxic shock completely prohibited rDNA transcription, NtFib1 mRNA remained at the same level as in the control experiment, even after the 4 h treatment. These results indicate that the transcription of NtFib1 mRNA is not related to rDNA transcription and NtFib1 mRNA is resistant to disrupting factors during the cell cycle.
Collapse
MESH Headings
- Amino Acid Sequence
- Aphidicolin/pharmacology
- Benzamides/pharmacology
- Blotting, Northern
- Cell Cycle/genetics
- Cells, Cultured
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dactinomycin/pharmacology
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Nicotiana/cytology
- Nicotiana/drug effects
- Nicotiana/genetics
Collapse
Affiliation(s)
- Y Makimoto
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | | | | | | | | |
Collapse
|
33
|
Hernandez-Verdun D. The nucleolus: a model for the organization of nuclear functions. Histochem Cell Biol 2006; 126:135-48. [PMID: 16835752 DOI: 10.1007/s00418-006-0212-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs (rRNAs) are synthesized, processed and assembled with ribosomal proteins. The size and organization of the nucleolus are directly related to ribosome production. The organization of the nucleolus reveals the functional compartmentation of the nucleolar machineries that depends on nucleolar activity. When this activity is blocked, disrupted or impossible, the nucleolar proteins have the capacity to interact independently of the processing activity. In addition, nucleoli are dynamic structures in which nucleolar proteins rapidly associate and dissociate with nucleolar components in continuous exchanges with the nucleoplasm. At the time of nucleolar assembly, the processing machineries are recruited in a regulated manner in time and space, controlled by different kinases and form intermediate structures, the prenucleolar bodies. The participation of stable pre-rRNAs in nucleolar assembly was demonstrated after mitosis and during development but this is an intriguing observation since the role of these pre-rRNAs is presently unknown. A brief report on the nucleolus and diseases is proposed as well as of nucleolar functions different from ribosome biogenesis.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Nuclei and Cell Cycle, Institut Jacques Monod, CNRS, Université Paris VI, Université Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France.
| |
Collapse
|
34
|
Hu YH, Warnatz HJ, Vanhecke D, Wagner F, Fiebitz A, Thamm S, Kahlem P, Lehrach H, Yaspo ML, Janitz M. Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics 2006; 7:155. [PMID: 16780588 PMCID: PMC1526728 DOI: 10.1186/1471-2164-7-155] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background Trisomy of human chromosome 21 (Chr21) results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb) to MCM3AP (46.6 Mb), with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.
Collapse
Affiliation(s)
- Yu-Hui Hu
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- FU Berlin, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dominique Vanhecke
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Florian Wagner
- RZPD German Resource Center for Genome Research, 14059 Berlin, Germany
| | - Andrea Fiebitz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sabine Thamm
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pascal Kahlem
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Humboldt University, Charite, Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michal Janitz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
35
|
Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 2006; 206:624-35. [PMID: 16206250 DOI: 10.1002/jcp.20494] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nuclear Ki-67 protein (pKi-67) has previously been shown to be exclusively expressed in proliferating cells. As a result, antibodies against this protein are widely used as prognostic tools in cancer diagnostics. Here we show, that despite the strong downregulation of pKi-67 expression in non-proliferating cells, the protein can nevertheless be detected at sites linked to ribosomal RNA (rRNA) synthesis. Although this finding does not argue against the use of pKi-67 as a proliferation marker, it has wide ranging implications for the elucidation of pKi-67 function. Employing the novel antibody TuBB-9, we could further demonstrate that also in proliferating cells, a fraction of pKi-67 is found at sites linked to the rRNA transcription machinery during interphase and mitosis. Moreover, chromatin immunoprecipitation (ChIP) assays provided evidence for a physical association of pKi-67 with chromatin of the promoter and transcribed region of the rRNA gene cluster. These data strongly suggest a role for pKi-67 in the early steps of rRNA synthesis.
Collapse
Affiliation(s)
- Jörn Bullwinkel
- Division of Tumour Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Louvet E, Junéra HR, Berthuy I, Hernandez-Verdun D. Compartmentation of the nucleolar processing proteins in the granular component is a CK2-driven process. Mol Biol Cell 2006; 17:2537-46. [PMID: 16540521 PMCID: PMC1474808 DOI: 10.1091/mbc.e05-10-0923] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To analyze the compartmentation of nucleolar protein complexes, the mechanisms controlling targeting of nucleolar processing proteins onto rRNA transcription sites has been investigated. We studied the reversible disconnection of transcripts and processing proteins using digitonin-permeabilized cells in assays capable of promoting nucleolar reorganization. The assays show that the dynamics of nucleolar reformation is ATP/GTP-dependent, sensitive to temperature, and CK2-driven. We further demonstrate the role of CK2 on the rRNA-processing protein B23. Mutation of the major CK2 site on B23 induces reorganization of nucleolar components that separate from each other. This was confirmed in assays using extracts containing B23 mutated in the CK2-binding sites. We propose that phosphorylation controls the compartmentation of the rRNA-processing proteins and that CK2 is involved in this process.
Collapse
Affiliation(s)
- Emilie Louvet
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
| | - Henriette Roberte Junéra
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
| | - Isabelle Berthuy
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
| | - Danièle Hernandez-Verdun
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
- Address correspondence to: D. Hernandez-Verdun (
)
| |
Collapse
|
37
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
38
|
Gurchenkov VV, Polzikov MA, Magoulas C, Romanova LG, Zatsepina OV. [Properties and functions of a new nucleolar protein, Surf-6, in 3T3 mouse cells]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 31:578-85. [PMID: 16363129 DOI: 10.1007/s11171-005-0071-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The localization of the specific protein Surf-6 from nucleoli of eukaryotic cells in mitosis and its sensitivity to the treatment of cells with RNase A and DNase I in situ were studied. It was shown that, in interphase nucleoli of 3T3 mouse cells, Surf-6 is probably associated with RNA and practically is not associated with DNA. In mitosis, Surf-6 appears in forming nucleoli after the known RNA-binding proteins fibrillarin and B23/nucleofozmin, which are involved in the early and late stages of the assembly of ribosomal particles, respectively. These observations and the regularities of migration of early and late proteins of ribosome assembly to nucleoli in the telophase of mitosis led us to the presumption that Surf-6 is involved in the terminal stages of the assembly of ribosomal particles in murine cells. An immunoblot analysis of the Surf-6 content in synchronized 3T3 cells showed for the first time that Surf-6 is present at all stages of the cell cycle but its content markedly decreases when cells enter the G0 period. Conversely, the activation of cells for proliferation is accompanied by an increase in the Surf-6 content. These observations allow one to regard Surf-6 as a marker of the cell proliferative state and suggest its implication in the regulation of the cell cycle. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.
Collapse
|
39
|
Abstract
The nucleolus, a large nuclear domain, is the ribosome factory of the cells. Ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins in the nucleolus, and the ribosome subunits are then transported to the cytoplasm. In this review, the structural organization of the nucleolus and the dynamics of the nucleolar proteins are discussed in an attempt to link both information. By electron microscopy, three main nucleolar components corresponding to different steps of ribosome biogenesis are identified and the nucleolar organization reflects its activity. Time-lapse videomicroscopy and fluorescent recovery after photobleaching (FRAP) demonstrate that mobility of GFP-tagged nucleolar proteins is slower in the nucleolus than in the nucleoplasm. Fluorescent recovery rates change with inhibition of transcription, decreased temperature and depletion of ATP, indicating that recovery is correlated with cell activity. At the exit of mitosis, the nucleolar processing machinery is first concentrated in prenucleolar bodies (PNBs). The dynamics of the PNBs suggests a steady state favoring residence of processing factors that are then released in a control- and time-dependent manner. Time-lapse analysis of fluorescence resonance energy transfer demonstrates that processing complexes are formed in PNBs. Finally, the nucleolus appears at the center of several trafficking pathways in the nucleus.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Nuclei and Cell Cycle, Institut Jacques Monod, CNRS, Université Paris VI et Paris VII, 2 place Jussieu, 75251, Paris, Cedex 05, France.
| |
Collapse
|
40
|
Huang HS, Pozarowski P, Gao Y, Darzynkiewicz Z, Lee EYC. Protein phosphatase-1 inhibitor-3 is co-localized to the nucleoli and centrosomes with PP1gamma1 and PP1alpha, respectively. Arch Biochem Biophys 2005; 443:33-44. [PMID: 16256067 DOI: 10.1016/j.abb.2005.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/21/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
In this study, we show that protein phosphatase-1 (PP1) inhibitor-3 (Inh3) is localized to the nucleoli and centrosomes in interphase HEK 293 cells. Inh3 exhibited a specific co-localization to the nucleoli with PP1gamma1, and to the centrosomes with PP1alpha. These findings indicate that Inh3 may act as a modulator of PP1 functions in the processes of cytokinesis, as well as of nucleolar events. The specificity of the interaction of Inh3 with the PP1 isoforms was also demonstrated in vitro, where Inh3 co-immunoprecipitated with PP1alpha and PP1gamma1, but not with PP1beta. The nuclear localization signal of Inh3 was identified as a N-terminal basic cluster (33RKRK36), while nucleolar localization was shown to be dependent on a C-terminal basic cluster (94HRKGRRR100). The importance of the individual basic residues was quantitatively assessed by site-directed mutagenesis and a novel use of laser scanning cytometry.
Collapse
Affiliation(s)
- Hua-Shan Huang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
41
|
Angelier N, Tramier M, Louvet E, Coppey-Moisan M, Savino TM, De Mey JR, Hernandez-Verdun D. Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell 2005; 16:2862-71. [PMID: 15814843 PMCID: PMC1142430 DOI: 10.1091/mbc.e05-01-0041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reorganization of the nuclear machinery after mitosis is a fundamental but poorly understood process. Here, we investigate the recruitment of the nucleolar processing proteins in the nucleolus of living cells at the time of nucleus formation. We question the role of the prenucleolar bodies (PNBs), during migration of the processing proteins from the chromosome periphery to sites of rDNA transcription. Surprisingly, early and late processing proteins pass through the same PNBs as demonstrated by rapid two-color four-dimensional imaging and quantification, whereas a different order of processing protein recruitment into nucleoli is supported by differential sorting. Protein interactions along the recruitment pathway were investigated using a promising time-lapse analysis of fluorescence resonance energy transfer. For the first time, it was possible to detect in living cells the interactions between proteins of the same rRNA processing machinery in nucleoli. Interestingly interactions between such proteins also occur in PNBs but not at the chromosome periphery. The dynamics of these interactions suggests that PNBs are preassembly platforms for rRNA processing complexes.
Collapse
Affiliation(s)
- Nicole Angelier
- Nuclei and Cell Cycle Laboratory, Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Louvet E, Junéra HR, Le Panse S, Hernandez-Verdun D. Dynamics and compartmentation of the nucleolar processing machinery. Exp Cell Res 2004; 304:457-70. [PMID: 15748891 DOI: 10.1016/j.yexcr.2004.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/17/2022]
Abstract
In active nucleoli, machineries involved in the biogenesis of ribosomal RNAs (rRNAs) are compartmentalized. The late rRNA processing proteins are localized in the granular component (GC). Here we investigate the behavior of these proteins when production of 28S is impaired and when this blockage is reversed. The 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) provokes dispersion of rDNA clusters and we demonstrate that DRB induces disconnection of the late rRNA processing proteins from the transcription sites. These processing proteins are still associated in independent masses without detectable 28S rRNA, indicating that compartmentation of the late rRNA processing machinery is not necessarily linked to processing activity. Removing DRB reverses this disconnection and promotes rRNA processing. Nucleolar reformation occurs in two successive steps, dynamic recruitment to transcription sites of the processing proteins, followed by rDNA compaction. We demonstrate that both steps are sensitive to temperature, suggesting an energy-dependent process. Traffic of processing proteins analyzed by fluorescence recovery after photobleaching is similar in masses disconnected from transcription sites and in the granular component of the active nucleolus. This suggests that protein dynamics and interactions, and not only their processing activity, determine compartmentation of the nucleolar machineries.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Cell Compartmentation/drug effects
- Cell Compartmentation/physiology
- Cell Nucleolus/drug effects
- Cell Nucleolus/metabolism
- Cell Nucleolus/ultrastructure
- Dichlororibofuranosylbenzimidazole/pharmacology
- HeLa Cells
- Humans
- Microscopy, Electron, Transmission
- Nonlinear Dynamics
- Nuclear Proteins/drug effects
- Nuclear Proteins/metabolism
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Protein Transport/physiology
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal, 28S/drug effects
- RNA, Ribosomal, 28S/metabolism
- Temperature
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Emilie Louvet
- Institut Jacques Monod, CNRS, University Paris VI and Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
43
|
Na GY, Seo SK, Lee SJ, Kim DW, Kim MK, Kim JC. Upregulation of the NNP-1 (novel nuclear protein-1, D21S2056E) gene in keloid tissue determined by cDNA microarray and in situ hybridization. Br J Dermatol 2004; 151:1143-9. [PMID: 15606508 DOI: 10.1111/j.1365-2133.2004.06284.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND A keloid results from excessive collagen deposition, the cause of which remains elusive. A thorough understanding of the pathophysiology of keloid tissue can help determine the most appropriate treatment strategy. OBJECTIVES To assess the differences in gene expression between keloids and adjacent normal skin in order to define the genes involved in keloid formation. METHODS Three Korean patients with keloids underwent excision of the keloid and adjacent normal skin, which was used as the control. We investigated expression patterns of genes in the keloids and the normal skin using cDNA microarray and in situ hybridization techniques. RESULTS Nine genes in the keloid tissue were consistently upregulated over the 2.0 ratio compared with the normal control from the cDNA microarray composed of 3063 clones: collagen type I alpha1 (NM_000088), DNA segment on chromosome 21 (unique) 2056 expressed sequence (D21S2056E, NNP-1, NM_003683), suppressor of Ty 5 homologue (NM_003169), phosphoglycerate dehydrogenase (NM_032692), adenosine triphosphate synthase beta (NM_001686), serine (or cysteine) proteinase inhibitor, clade H (heat shock protein 47, NM_001235), LIV-1 protein, oestrogen regulated (LIV-1, NM_012319), interleukin-11 receptor alpha (IL11RA, NM_004512) and carbonyl reductase 3 (CBR3, NM_001236). From the in situ hybridization study, the staining signals in the keloid tissue hybridized with anti sense probes of NNP-1 mRNA were stronger than signals in normal controls. Further, endothelial epithelium, but not the epidermis, expressed the signal equally in both keloid and normal control tissue. CONCLUSIONS We identified nine upregulated genes in keloid tissue using cDNA microarray. Of the nine, the NNP-1 gene was confirmed by topological information using the in situ hybridization technique. We conclude that these nine genes, especially NNP-1, probably contribute either directly or indirectly to keloid formation.
Collapse
Affiliation(s)
- G-Y Na
- Department of Dermatology, School of Medicine, Kyungpook National University, 50 Samdeok 2-ga, Chung-Gu, Daegu 700-721, Korea.
| | | | | | | | | | | |
Collapse
|
44
|
Horsey EW, Jakovljevic J, Miles TD, Harnpicharnchai P, Woolford JL. Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation. RNA (NEW YORK, N.Y.) 2004; 10:813-27. [PMID: 15100437 PMCID: PMC1370572 DOI: 10.1261/rna.5255804] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 02/02/2004] [Indexed: 05/19/2023]
Abstract
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.
Collapse
Affiliation(s)
- Edward W Horsey
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Autoantibodies targeting nucleolar autoantigens (ANoA) are most frequently found in sera from patients with systemic sclerosis (SSc, also designated scleroderma) or with SSc overlap syndromes. During the last decade an extensive number of nucleolar components have been identified and this allowed a more detailed analysis of the identity of nucleolar autoantigens. This review intends to give an overview of the molecular composition of the major (families of) autoantigenic nucleolar complexes, to provide some insight into their functions and to summarise the data concerning their autoantigenicity.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biochemistry 161, Nijmegen Centre for Molecular Life Sciences, University of Nijmegen, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
46
|
Dimario PJ. Cell and Molecular Biology of Nucleolar Assembly and Disassembly. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:99-178. [PMID: 15464853 DOI: 10.1016/s0074-7696(04)39003-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleoli disassemble in prophase of the metazoan mitotic cycle, and they begin their reassembly (nucleologenesis) in late anaphase?early telophase. Nucleolar disassembly and reassembly were obvious to the early cytologists of the eighteenth and nineteenth centuries, and although this has lead to a plethora of literature describing these events, our understanding of the molecular mechanisms regulating nucleolar assembly and disassembly has expanded immensely just within the last 10-15 years. We briefly survey the findings of nineteenth-century cytologists on nucleolar assembly and disassembly, followed by the work of Heitz and McClintock on nucleolar organizers. A primer review of nucleolar structure and functions precedes detailed descriptions of modern molecular and microscopic studies of nucleolar assembly and disassembly. Nucleologenesis is concurrent with the reinitiation of rDNA transcription in telophase. The perichromosomal sheath, prenucleolar bodies, and nucleolar-derived foci serve as repositories for nucleolar processing components used in the previous interphase. Disassembly of the perichromosomal sheath along with the dynamic movements and compositional changes of the prenucleolar bodies and nucleolus-derived foci coincide with reactivation of rDNA synthesis within the chromosomal nucleolar organizers during telophase. Nucleologenesis is considered in various model organisms to provide breadth to our understanding. Nucleolar disassembly occurs at the onset of mitosis primarily as a result of the mitosis-specific phosphorylation of Pol I transcription factors and processing components. Although we have learned much regarding nucleolar assembly and disassembly, many questions still remain, and these questions are as vibrant for us today as early questions were for nineteenth- and early twentieth-century cytologists.
Collapse
Affiliation(s)
- Patrick J Dimario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1715, USA
| |
Collapse
|
47
|
David-Pfeuty T, Nouvian-Dooghe Y. Human p14(Arf): an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function. Oncogene 2002; 21:6779-90. [PMID: 12360404 DOI: 10.1038/sj.onc.1205871] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Revised: 07/08/2002] [Accepted: 07/15/2002] [Indexed: 12/19/2022]
Abstract
The human Ink4a/Arf tumor suppressor locus encodes two distinct products: p16(Ink4a) which prevents phosphorylation and inactivation of the retinoblastoma protein and, p14(Arf), a nucleolar protein which activates the function of the tumor suppressor p53 protein in the nucleoplasm in response to oncogenic stimulation through an as yet ill-defined mechanism. Here we show that the level of endogenous p14(Arf) and its balance between the nucleolus and the nucleoplasm in HeLa cells are exquisitely sensitive to changes in cell morphology and to short-lived perturbations in cell cycle and in nucleolar function such as those induced by the cyclin-dependent kinase inhibitor, roscovitine, and the casein kinase II and RNA synthesis inhibitor, DRB. Most remarkably, whereas p14(Arf) predominantly concentrates in the nucleolus of interphase cells and transiently disappears between metaphase and early G1 under normal growth conditions, it massively and reversibly accumulates in the nucleoplasm of postmitotic and S-phase cells upon short-term treatment with roscovitine and, at a lesser extent, DRB. In line with the fact that the nuclear level of p53 reaches a peak between mid-G1 and the G1/S border in p53-expressor cells which lack Arf expression, these results provide a clue that, in p53+/Arf+ cells, Arf proteins might serve both to speed and to amplify p53-mediated responses in conditions and cell cycle periods in which the mechanisms involved in p53 stabilization and activation are not fully operational. They further suggest that human endogenous p14(Arf) might activate p53 pathways in physiologic situations by acting inside the nucleoplasm, especially when normal cell cycle progression and nucleolar function are compromised.
Collapse
Affiliation(s)
- Thérèse David-Pfeuty
- UMR 146 du CNRS, Institut Curie-Recherche, Bâtiment 110, Centre Universitaire, 91405 Orsay Cédex, France.
| | | |
Collapse
|
48
|
Behrends U, Jandl T, Golbeck A, Lechner B, Müller-Weihrich S, Schmid I, Till H, Berthold F, Voltz R, Mautner JM. Novel products of the HUD, HUC, NNP-1 and alpha-internexin genes identified by autologous antibody screening of a pediatric neuroblastoma library. Int J Cancer 2002; 100:669-77. [PMID: 12209604 DOI: 10.1002/ijc.10550] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autologous serological screening of a cDNA expression library (SEREX) derived from childhood neuroblastoma led to the identification of 10 different antigens, including 6 novel gene products. The novel antigen 018INX was derived from a small open reading frame in a region of alpha-internexin mRNA that was previously described as 3' untranslated region. 018INX thus represents a novel type of tumor antigen. Five novel gene products were derived from NNP-1 (NNP3) and Hu genes (HuC-L, HuD3, HuDY, HuD1pro(c)). As indicated by sequence analysis, these antigens were generated by alternative splicing and/or alternative promoter usage or allelic polymorphism. mRNA expression analyses revealed different tissue restrictions of novel compared to known HuD and NNP-1 transcripts in normal and malignant tissues. The expressions patterns of distinct transcripts indicated potential clinical meanings as diagnostic and/or prognostic tissue markers. When kinetics of serum antibody titres against SEREX-defined antigens were compared to tumor load over time in our patient with neuroblastoma, we found 100-fold increases of anti-Hu and anti-018INX antibody titres preceding the clinical diagnosis of recurrent tumor growth after 2 years. When sera of pediatric patients with cancer (30) and healthy controls (30) were tested for humoral responses to SEREX-defined neuroblastoma antigens, we detected antibodies against all known antigens and NNP3 with low frequencies and titres in control sera, while anti-018INX and anti-Hu antibodies were found in cancer patients only. Our findings indicate that SEREX-defined tumor antigens might provide novel tools for understanding and treatment of this aggressive childhood malignancy.
Collapse
Affiliation(s)
- Uta Behrends
- Hämatologie-Onkologie, Kinderklinik der Technische Universität München, Kölner Platz 1, 80804 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The nucleolus is a large nuclear domain and the site of ribosome biogenesis. It is also at the parting of the ways of several cellular processes, including cell cycle progression, gene silencing, and ribonucleoprotein complex formation. Consequently, a functional nucleolus is crucial for cell survival. Recent investigations of nucleolar assembly during the cell cycle and during embryogenesis have provided an integrated view of the dynamics of this process. Moreover, they have generated new ideas about cell cycle control of nucleolar assembly, the dynamics of the delivery of the RNA processing machinery, the formation of prenucleolar bodies, the role of precursor ribosomal RNAs in stabilizing the nucleolar machinery and the fact that nucleolar assembly is completed by cooperative interactions between chromosome territories. This has opened a new area of research into the dynamics of nuclear organization and the integration of nuclear functions.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- CNRS, Université Paris VI, Université Paris VII, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France.
| | | | | |
Collapse
|
50
|
Sirri V, Hernandez-Verdun D, Roussel P. Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 2002; 156:969-81. [PMID: 11901165 PMCID: PMC2173470 DOI: 10.1083/jcb.200201024] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In higher eukaryotic cells, the nucleolus is a nuclear compartment assembled at the beginning of interphase, maintained during interphase, and disorganized during mitosis. Even if its structural organization appears to be undissociable from its function in ribosome biogenesis, the mechanisms that govern the formation and maintenance of the nucleolus are not elucidated. To determine if cell cycle regulators are implicated, we investigated the putative role of the cyclin-dependent kinases (CDKs) on ribosome biogenesis and nucleolar organization. Inhibition of CDK1-cyclin B during mitosis leads to resumption of rDNA transcription, but is not sufficient to induce proper processing of the pre-rRNA and total relocalization of the processing machinery into rDNA transcription sites. Similarly, at the exit from mitosis, both translocation of the late processing machinery and pre-rRNA processing are impaired in a reversible manner by CDK inhibitors. Therefore, CDK activity seems indispensable for the building of functional nucleoli. Furthermore, inhibition of CDKs in interphasic cells also hampered proper pre-rRNA processing and induced a dramatic disorganization of the nucleolus. Thus, we propose that the mechanisms governing both formation and maintenance of functional nucleoli involve CDK activities and couple the cell cycle to ribosome biogenesis.
Collapse
MESH Headings
- CDC2 Protein Kinase/antagonists & inhibitors
- CDC2 Protein Kinase/genetics
- CDC2 Protein Kinase/metabolism
- Cell Compartmentation/drug effects
- Cell Compartmentation/genetics
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Nucleolus/enzymology
- Cell Nucleolus/genetics
- Cell Nucleolus/ultrastructure
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cyclin B/antagonists & inhibitors
- Cyclin B/genetics
- Cyclin B/metabolism
- Cyclin-Dependent Kinases/drug effects
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- DNA, Ribosomal/drug effects
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Fluorescent Antibody Technique
- HeLa Cells
- Humans
- Mitosis/drug effects
- Mitosis/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/drug effects
- Ribosomes/enzymology
- Ribosomes/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
|