1
|
Santos AJM, Boucrot E. Probing Endocytosis During the Cell Cycle with Minimal Experimental Perturbation. Methods Mol Biol 2018; 1847:23-35. [PMID: 30129007 DOI: 10.1007/978-1-4939-8719-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endocytosis mediates the cellular uptake of nutrients, modulates signaling by regulating levels of cell surface receptors, and is usurped by pathogens during infection. Endocytosis activity is known to vary during the cell cycle, in particular during mitosis. Importantly, different experimental conditions can lead to opposite results and conclusions, thereby emphasizing the need for a careful design of protocols. For example, experiments using serum-starvation, ice-cold steps or using mitotic arrest produced by chemicals widely used to synchronize cells (nocodazole, RO-3306, or S-trityl-L-cysteine) induce a blockage of clathrin-mediated endocytosis during mitosis not observed in unperturbed, dividing cells. In addition, perturbations produced by mRNA interference or dominant-negative mutant overexpression affect endocytosis long before cells are being assayed. Here, we describe simple experimental procedures to assay endocytosis along the cell cycle with minimal perturbations.
Collapse
Affiliation(s)
- António J M Santos
- Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| |
Collapse
|
2
|
Aguet F, Upadhyayula S, Gaudin R, Chou YY, Cocucci E, He K, Chen BC, Mosaliganti K, Pasham M, Skillern W, Legant WR, Liu TL, Findlay G, Marino E, Danuser G, Megason S, Betzig E, Kirchhausen T. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol Biol Cell 2016; 27:3418-3435. [PMID: 27535432 PMCID: PMC5221578 DOI: 10.1091/mbc.e16-03-0164] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/03/2016] [Indexed: 12/02/2022] Open
Abstract
Lattice light-sheet microscopy is used to examine two problems in membrane dynamics—molecular events in clathrin-coated pit formation and changes in cell shape during cell division. This methodology sets a new standard for imaging membrane dynamics in single cells and multicellular assemblies. Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies.
Collapse
Affiliation(s)
- François Aguet
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Raphaël Gaudin
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Yi-Ying Chou
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Emanuele Cocucci
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Kangmin He
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Bi-Chang Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | | | - Mithun Pasham
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Wesley Skillern
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Greg Findlay
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Eric Marino
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sean Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 .,Departments of Cell Biology and Pediatrics, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
3
|
Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:455-67. [DOI: 10.1016/j.msec.2013.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/11/2013] [Accepted: 09/28/2013] [Indexed: 02/05/2023]
|
4
|
Salt ions and related parameters affect PEI-DNA particle size and transfection efficiency in Chinese hamster ovary cells. Cytotechnology 2013; 67:67-74. [PMID: 24166598 DOI: 10.1007/s10616-013-9658-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022] Open
Abstract
Transfection efficiency is directly associated with the expression level and quantity of recombinant protein after the transient transfection of animal cells. The transfection process can be influenced by many still-unknown factors, so it is valuable to study the precise mechanism and explore these factors in gene delivery. Polyethylenimine (PEI) is considered to have high transfection efficiency and endosome-disrupting capacity. Here we aimed to investigate optimal conditions for transfection efficiency by setting different parameters, including salt ion concentration, DNA/PEI ratio, and incubation time. We examined the PEI-DNA particle size using a Malvern particle size analyzer and assessed the transfection efficiency using flow cytometry in Chinese hamster ovary-S cells. Salt ions, higher amounts of PEI tended to improve the aggregation of PEI-DNA particles and the particle size of PEI-DNA complexes and the transfection efficiency were increased. Besides, the particle size was also found to benefit from longer incubation time. However, the transfection efficiency increased to maximum of 68.92 % at an incubation time of 10 min, but decreased significantly thereafter to 23.71 %, when incubating for 120 min (P < 0.05). Besides, PEI-DNA complexes formed in salt-free condition were unstable. Our results suggest DNA and PEI incubated in 300 mM NaCl at a ratio of 1:4 for 10 min could achieve the optimal transfection efficiency. Our results might provide guidance for the optimization of transfection efficiency and the industrial production of recombinant proteins.
Collapse
|
5
|
Mitotic inhibition of clathrin-mediated endocytosis. Cell Mol Life Sci 2013; 70:3423-33. [PMID: 23307073 DOI: 10.1007/s00018-012-1250-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/22/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Endocytosis and mitosis are fundamental processes in a cell's life. Nearly 50 years of research suggest that these processes are linked and that endocytosis is shut down as cells undergo the early stages of mitosis. Precisely how this occurs at the molecular level is an open question. In this review, we summarize the early work characterizing the inhibition of clathrin-mediated endocytosis and discuss recent challenges to this established concept. We also set out four proposed mechanisms for the inhibition: mitotic phosphorylation of endocytic proteins, altered membrane tension, moonlighting of endocytic proteins, and a mitotic spindle-dependent mechanism. Finally, we speculate on the functional consequences of endocytic shutdown during mitosis and where an understanding of the mechanism of inhibition will lead us in the future.
Collapse
|
6
|
Abstract
A long-standing paradigm in cell biology is the shutdown of endocytosis during mitosis. There is consensus that transferrin uptake is inhibited after entry into prophase and that it resumes in telophase. A recent study proposed that endocytosis is continuous throughout the cell cycle and that the observed inhibition of transferrin uptake is due to a decrease in available transferrin receptor at the cell surface, and not to a shutdown of endocytosis. This challenge to the established view is gradually becoming accepted. Because of this controversy, we revisited the question of endocytic activity during mitosis. Using an antibody uptake assay and controlling for potential changes in surface receptor density, we demonstrate the strong inhibition of endocytosis in mitosis of CD8 chimeras containing any of the three major internalization motifs for clathrin-mediated endocytosis (YXXΦ, [DE]XXXL[LI], or FXNPXY) or a CD8 protein with the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor. The shutdown is not gradual: We describe a binary switch from endocytosis being "on" in interphase to "off" in mitosis as cells traverse the G(2)/M checkpoint. In addition, we show that the inhibition of transferrin uptake in mitosis occurs despite abundant transferrin receptor at the surface of HeLa cells. Our study finds no support for the recent idea that endocytosis continues during mitosis, and we conclude that endocytosis is temporarily shutdown during early mitosis.
Collapse
|
7
|
Balogh G, Maulucci G, Gombos I, Horváth I, Török Z, Péter M, Fodor E, Páli T, Benkő S, Parasassi T, De Spirito M, Harwood JL, Vígh L. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS One 2011; 6:e21182. [PMID: 21698159 PMCID: PMC3116874 DOI: 10.1371/journal.pone.0021182] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/22/2011] [Indexed: 02/05/2023] Open
Abstract
Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Benkő
- First Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Marco De Spirito
- Istituto di Fisica, Universitá Cattolica Sacro Cuore, Rome, Italy
| | - John L. Harwood
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
- * E-mail: (LV); (JLH)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (LV); (JLH)
| |
Collapse
|
8
|
Gauthier NC, Rossier OM, Mathur A, Hone JC, Sheetz MP. Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol Biol Cell 2009; 20:3261-72. [PMID: 19458190 DOI: 10.1091/mbc.e09-01-0071] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of plasma membrane (PM) area as a critical factor during cell motility is poorly understood, mainly due to an inability to precisely follow PM area dynamics. To address this fundamental question, we developed static and dynamic assays to follow exocytosis, endocytosis, and PM area changes during fibroblast spreading. Because the PM area cannot increase by stretch, spreading proceeds by the flattening of membrane folds and/or by the addition of new membrane. Using laser tweezers, we found that PM tension progressively decreases during spreading, suggesting the addition of new membrane. Next, we found that exocytosis increases the PM area by 40-60% during spreading. Reducing PM area reduced spread area, and, in a reciprocal manner, reducing spreadable area reduced PM area, indicating the interconnection between these two parameters. We observed that Golgi, lysosomes, and glycosylphosphatidylinositol-anchored protein vesicles are exocytosed during spreading, but endoplasmic reticulum and transferrin receptor-containing vesicles are not. Microtubule depolymerization blocks lysosome and Golgi exocytosis but not the exocytosis of glycosylphosphatidylinositol-anchored protein vesicles or PM area increase. Therefore, we suggest that fibroblasts are able to regulate about half of their original PM area by the addition of membrane via a glycosylphosphatidylinositol-anchored protein compartment.
Collapse
Affiliation(s)
- Nils C Gauthier
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Using single cell-imaging methods we have found that the volume of adherent cells grown in culture decreases as the cells rounds when it enters mitosis. A minimal volume is reached at metaphase. Rapid volume recovery initiates before abscission as cells make the transition from metaphase to cytokinesis. These volume changes are simultaneous with the rapid surface area decrease and recovery observed in mitotic cells [1].
Collapse
Affiliation(s)
- Emmanuel Boucrot
- Department of Cell Biology and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tomas Kirchhausen
- Department of Cell Biology and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Boucrot E, Kirchhausen T. Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci U S A 2007; 104:7939-44. [PMID: 17483462 PMCID: PMC1876551 DOI: 10.1073/pnas.0702511104] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The shape and total surface of a cell and its daughters change during mitosis. Many cells round up during prophase and metaphase and reacquire their extended and flattened shape during cytokinesis. How does the total area of plasma membrane change to accommodate these morphological changes and by what mechanism is control of total membrane area achieved? Using single-cell imaging methods, we have found that the amount of plasma membrane in attached cells in culture decreases at the beginning of mitosis and recovers rapidly by the end. Clathrin-based endocytosis is normal throughout all phases of cell division, whereas recycling of internalized membranes back to the cell surface slows considerably during the rounding up period and resumes at the time at which recovery of cell membrane begins. Interference with either one of these processes by genetic or chemical means impairs cell division. The total cell-membrane area recovers even in the absence of a functional Golgi apparatus, which would be needed for export of newly synthesized membrane lipids and proteins. We propose a mechanism by which modulation of endosomal recycling controls cell area and surface expression of membrane-bound proteins during cell division.
Collapse
Affiliation(s)
- Emmanuel Boucrot
- Department of Cell Biology and CBR Institute for Biomedical Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Tomas Kirchhausen
- Department of Cell Biology and CBR Institute for Biomedical Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Roy A, Krzykwa E, Lemieux R, Néron S. Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:873-80. [PMID: 11798513 DOI: 10.1089/152581601317210962] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several normal human cells, such as hematopoietic stem cells, dendritic cells, and B cells, can be cultured in vitro in defined optimal conditions. Several ex vivo culture systems require the use of feeder cells to support the growth of target cells. In such systems, proliferation of feeder cells has to be stopped, so that they can be used as nonreplicating viable support cells. Because feeder cells need to provide one or few active signals, it is important to maintain them in an metabolically active state, allowing continued expression of specific ligands or cytokines. Mitomycin C and gamma-irradiation treatments are commonly used to prepare nonproliferating feeder cells and are usually considered to be equivalent. Normal human B lymphocytes can be expanded in vitro in the presence of feeder cells expressing the CD40 ligand CD154. Here we compared the ability of gamma-irradiation- and mitomycin C-treated feeder cells to support the expansion of normal human B lymphocytes. The results indicate that expansion of B cells during a long-term culture was 100 times more potent using gamma-irradiated feeder cells compared to mitomycin C-treated cells. This difference could be related to a significant reduction in both cellular metabolism and level of CD154 expression observed in mitomycin C-treated feeder cells, but not in gamma-irradiated cells nor in control untreated cells. These results indicate that mitomycin C-treated feeder cells are metabolically altered, and consequently less efficient at maintaining cell expansion in the long-term cell culture system used.
Collapse
Affiliation(s)
- A Roy
- Héma-Québec, Recherche et Développement, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
12
|
Rémy-Kristensen A, Clamme JP, Vuilleumier C, Kuhry JG, Mély Y. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:21-32. [PMID: 11513802 DOI: 10.1016/s0005-2736(01)00359-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polyethylenimine (PEI) is one of the most efficient nonviral vectors for gene therapy. The aim of this study was to investigate the role of endocytosis in the transfection of synchronized L929 fibroblasts by PEI/DNA complexes. This was performed by confocal microscopy and flow cytometry, using the endocytosis marker FM4-64 and PEI/DNA complexes labeled either with the DNA intercalator YOYO-1, or with fluorescein covalently linked to PEI. Endocytosis appeared as the major if not the sole mode of entry of the PEI/DNA complexes into the L929 cells. The complexes followed a typical fluid phase endocytosis pathway and were efficiently taken up in less than 10 min in endosomes that did not exceed 200 nm in diameter. Later, the localization of the complexes became perinuclear and fusion between late endosomes was shown to occur. Comparison with the intracellular trafficking of the same complexes in EA.hy 926 cells (W.T. Godbey, K. Wu, A.G. Mikos, Proc. Natl. Acad. Sci. USA 96 (1999)) revealed that endocytosis of PEI/DNA complexes is strongly cell-dependent. In L929 cells, escape of the complexes from the endosomes is a major barrier for transfection. This limited the number of transfected cells to a few percent, even though an internalization of PEI/DNA complexes was observed in most cells. In addition, the entry of the complexes into the nucleus apparently required a mitosis and did not involve the lipids of the endosome membrane. This entry seems to be a short-lived event that involves only a few complexes.
Collapse
Affiliation(s)
- A Rémy-Kristensen
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, BP 24, 67401 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|