1
|
Fritze JS, Stiehler FF, Wolfrum U. Nuclear-Cytoplasmic Shuttling of the Usher Syndrome 1G Protein SANS Differs from Its Paralog ANKS4B. Cells 2024; 13:1855. [PMID: 39594604 PMCID: PMC11592671 DOI: 10.3390/cells13221855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The USH1G protein SANS is a small multifunctional scaffold protein. It is involved in several different cellular processes, such as intracellular transport, in the cytoplasm, or splicing of pre-mRNA, in the cell nucleus. Here, we aimed to gain insight into the regulation of the subcellular localization and the nuclear-cytoplasmic shuttling of SANS and its paralog ANKS4B, not yet reported in the nucleus. We identified karyopherins mediating the nuclear import and export by screening the nuclear interactome of SANS. Sequence analyses predicted in silico evolutionarily conserved nuclear localization sequences (NLSs) and nuclear export sequences (NESs) in SANS, but only NESs in ANKS4B, which are suitable for karyopherin binding. Quantifying the nuclear-cytoplasmic localization of wild-type SANS and NLS/NES mutants, we experimentally confirmed in silico predicted NLS and NES functioning in the nuclear-cytoplasmic shuttling in situ in cells. The comparison of SANS and its paralog ANKS4B revealed substantial differences in the interaction with the nuclear splicing protein PRPF31 and in their nuclear localization. Finally, our results on pathogenic USH1G/SANS mutants suggest that the loss of NLSs and NESs and thereby the ability to control nuclear-cytoplasmic shuttling is disease-relevant.
Collapse
Affiliation(s)
| | | | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (J.S.F.); (F.F.S.)
| |
Collapse
|
2
|
Wang T, Zhao D, Zhang Y, Yu D, Liu G, Zhang K. Annexin A2: A Double-Edged Sword in Pathogen Infection. Pathogens 2024; 13:564. [PMID: 39057791 PMCID: PMC11279864 DOI: 10.3390/pathogens13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional calcium- and phospholipid-binding protein that plays an important role in various cells. During pathogen infections, ANXA2 modulates the nuclear factor kappa-B (NF-κB) and cell apoptosis signaling pathways and guides the chemotaxis of inflammatory cells toward inflammation sites, thereby protecting the host organism through the modulation of the inflammatory response. In addition, ANXA2 can regulate immune responses, and in certain pathogen infections, it can interact with pathogen proteins to facilitate their invasion and proliferation. This review provides an overview of the research progress on how ANXA2 regulates pathogen infections.
Collapse
Affiliation(s)
- Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
3
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
4
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
5
|
Király N, Thalwieser Z, Fonódi M, Csortos C, Boratkó A. Dephosphorylation of annexin A2 by protein phosphatase 1 regulates endothelial cell barrier. IUBMB Life 2021; 73:1257-1268. [PMID: 34331392 DOI: 10.1002/iub.2538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022]
Abstract
Annexin A2 (ANXA2) is a multifunctional protein expressed in nearly all human tissues and cell types, playing a role in various signaling pathways. It is subjected to phosphorylation, but no specific protein phosphatase has been identified in its posttranslational regulation yet. Using pull-down assay followed by liquid chromatography-mass spectrometry analysis we found that ANXA2 interacts with TIMAP (TGF-beta-inhibited membrane-associated protein) in pulmonary artery endothelial cells. TIMAP is highly expressed in endothelial cells, where it acts as a regulatory and targeting subunit of protein phosphatase 1 (PP1). TIMAP plays an important role in the regulation of the endothelial barrier maintenance through the dephosphorylation of its several substrate proteins. In the present work, phosphorylation of Ser25 side chain in ANXA2 by protein kinase C (PKC) was shown both in vivo and in vitro. Phosphorylation level of ANXA2 at Ser25 increased greatly by inhibition of PP1 and by depletion of its regulatory subunit, TIMAP, implying a role of this PP1 holoenzyme in the dephosphorylation of ANXA2. Immunofluorescence staining and subcellular fractionations revealed a diffuse subcellular localization for the endogenous ANXA2, but phospho-Ser25 ANXA2 was mainly detected in the membrane. ANXA2 depletion lowered the basal endothelial barrier and inhibited cell migration, but had no significant effect on cell proliferation or viability. ANXA2 depleted cells failed to respond to PMA treatment, indicating an intimately involvement of phospho-ANXA2 in PKC signaling. Moreover, phosphorylation of ANXA2 disrupted its interaction with S100A10 suggesting a phosphorylation dependent multiple regulatory role of ANXA2 in endothelial cells. Our results demonstrate the pivotal role of PKC-ANXA2-PP1 pathway in endothelial cell signaling, especially in barrier function and cell migration.
Collapse
Affiliation(s)
- Nikolett Király
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Thalwieser
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Fonódi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla Csortos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene 2021; 40:3610-3623. [PMID: 33941853 PMCID: PMC8134040 DOI: 10.1038/s41388-021-01786-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) is a key member of the receptor tyrosine kinase (RTK) family, while YES Proto-Oncogene 1 (YES1) is a non-receptor tyrosine kinase (nRTK) and annexin A2 (ANXA2) belongs to the calcium-dependent phospholipid-binding protein family annexins. Here, we show that EphA2, YES1, and ANXA2 form a signal axis, in which YES1 activated by EphA2 phosphorylates ANXA2 at Tyr24 site, leading to ANXA2 activation and increased ANXA2 nuclear distribution in gastric cancer (GC) cells. Overexpression (OE) of YES1 increases, while knockdown (KD) of YES1 or ANXA2 decreases GC cell invasion and migration in vitro and tumor growth in mouse models. Reexpression of wildtype (WT) rather than mutant ANXA2 (Tyr24F) in ANXA2 knockdown (ANXA2-KD) GC cells restores YES1-induced cell invasion and migration, while neither WT nor mutant ANXA2 (Tyr24F) can restore cell invasion and migration in YES1-KD GC cells. In addition, the activation of EphA2-YES1-ANXA2 pathway is correlated with poor prognosis. Thus, our results establish EphA2-YES1-ANXA2 axis as a novel pathway that drives GC invasion and metastasis, targeting this pathway would be an efficient way for the treatment of GC.
Collapse
|
7
|
Aliyu IA, Ling KH, Md Hashim N, Chee HY. Annexin A2 extracellular translocation and virus interaction: A potential target for antivirus-drug discovery. Rev Med Virol 2019; 29:e2038. [PMID: 30746844 DOI: 10.1002/rmv.2038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Abstract
Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, University Putra Malaysia, Seri Kembangan, Malaysia.,Department of Medical Laboratory Science, Faculty of Allied Health Science, College of Health Science, Bayero University, Kano, Nigeria
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Nurfariesha Md Hashim
- Department of Biomedical Sciences, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Hui-Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, University Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
8
|
Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane. J Virol 2018; 92:JVI.00181-18. [PMID: 29491166 DOI: 10.1128/jvi.00181-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/25/2018] [Indexed: 01/02/2023] Open
Abstract
Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca2+-dependent manner. Annexin A2 (AnxA2), a member of this family, has been implicated in a variety of cellular functions, including the organization of membrane domains, vesicular trafficking, and cell-cell adhesion. AnxA2 generally forms a heterotetrameric complex with a small Ca2+-binding protein, S100A10. Measles virus (MV), a member of the family Paramyxoviridae, is an enveloped virus with a nonsegmented negative-strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells without affecting its entry and viral RNA production. In MV-infected, AnxA2 knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10 and was colocalized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6 to 10), thereby aiding in MV assembly.IMPORTANCE MV is an important human pathogen, still claiming ∼100,000 lives per year despite the presence of effective vaccines, and it causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of MV within the cell. Further studies demonstrated that annexin A2 interacts with the MV M protein and mediates the localization of the M protein at the plasma membrane where MV particles are formed. The M protein lines the inner surface of the MV envelope membrane and plays a role in MV particle formation. Our results provide useful information for the understanding of the MV replication process and potential development of antiviral agents.
Collapse
|
9
|
Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. J Biomed Sci 2018; 25:30. [PMID: 29598816 PMCID: PMC5877395 DOI: 10.1186/s12929-018-0430-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with poor clinical outcomes and insufficient treatments in Southeast Asian populations. Although concurrent chemoradiotherapy has improved recovery rates of patients, poor overall survival and low efficacy are still critical problems. To improve the therapeutic efficacy, we focused on a tumor-associated protein called Annexin A2 (ANXA2). This review summarizes the mechanisms by which ANXA2 promotes cancer progression (e.g., proliferation, migration, the epithelial-mesenchymal transition, invasion, and cancer stem cell formation) and therapeutic resistance (e.g., radiotherapy, chemotherapy, and immunotherapy). These mechanisms gave us a deeper understanding of the molecular aspects of cancer progression, and further provided us with a great opportunity to overcome therapeutic resistance of NPC and other cancers with high ANXA2 expression by developing this prospective ANXA2-targeted therapy.
Collapse
|
10
|
Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj 2017; 1861:2515-2529. [PMID: 28867585 DOI: 10.1016/j.bbagen.2017.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair. SCOPE OF REVIEW The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2. MAJOR CONCLUSIONS AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications. GENERAL SIGNIFICANCE AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.
Collapse
|
11
|
Weiss R, Bitton A, Ben Shimon M, Elhaik Goldman S, Nahary L, Cooper I, Benhar I, Pick CG, Chapman J. Annexin A2, autoimmunity, anxiety and depression. J Autoimmun 2016; 73:92-9. [PMID: 27372915 DOI: 10.1016/j.jaut.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Antiphospholipid syndrome (APS) is associated with neurological manifestations and one of the novel autoantigens associated with this disease is Annexin A2 (ANXA2). In this work we have examined the effect of high levels of autoantibodies to ANXA2 on the brain in a mouse model. METHODS Recombinant ANXA2 emulsified in adjuvant was used to immunize mice while mice immunized with adjuvant only served as controls. At peak antibody levels the animal underwent behavioral and cognitive tests and their brains were examined for ANXA2 immunoglobulin G (IgG) and expression of ANXA2 and the closely linked protein p11. RESULTS Very high levels of anti-ANXA2 antibodies (Abs) were associated with reduced anxiety in the open field 13.14% ± 0.89% of the time in the center compared to 8.64% ± 0.91% observed in the control mice (p < 0.001 by t-test). A forced swim test found significantly less depression manifested by immobility in the ANXA2 group. The changes in behavior were accompanied by a significant reduction in serum corticosteroid levels of ANXA2 group compared to controls. Moreover, higher levels of total IgG and p11 expression were found in ANXA2 group brains. Lower levels of circulating anti-ANXA2 Abs were not associated with behavioral changes. CONCLUSIONS We have established an animal model with high levels of anti-ANXA2 Abs which induced IgG accumulation in the brain and specific anxiolytic and anti-depressive effects. This model promises to further our understanding of autoimmune disease such as APS and to provide better understanding of the role of the ANXA2-p11 complex in the brain.
Collapse
Affiliation(s)
- R Weiss
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Bitton
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - M Ben Shimon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Elhaik Goldman
- BBB-Group, The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel
| | - L Nahary
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - I Cooper
- BBB-Group, The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel; The Interdisciplinary Center, Herzliya, Israel
| | - I Benhar
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - C G Pick
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Chapman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Hashomer, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Saxena S, Purushothaman S, Meghah V, Bhatti B, Poruri A, Meena Lakshmi MG, Sarath Babu N, Narasimha Murthy CL, Mandal KK, Kumar A, Idris MM. Role of annexin gene and its regulation during zebrafish caudal fin regeneration. Wound Repair Regen 2016; 24:551-9. [DOI: 10.1111/wrr.12429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeep Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | | | | | - Bhawna Bhatti
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Akhila Poruri
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | | | | | | | - Komal K. Mandal
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Mohammed M. Idris
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| |
Collapse
|
13
|
Mirsaeidi M, Gidfar S, Vu A, Schraufnagel D. Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J Transl Med 2016; 14:89. [PMID: 27071553 PMCID: PMC4830063 DOI: 10.1186/s12967-016-0843-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Annexins are Ca2+-regulated phospholipid-binding proteins that play an important role in the cell life cycle, exocytosis, and apoptosis. Annexin A11 is one of the oldest vertebrate annexins that has a crucial role in sarcoidosis pathogenesis. The mechanism of effect in sarcoidosis granuloma cells may be due to alterations in apoptosis. Immune cells with a specific mutation at protein location 230 are resistant to apoptosis and consequently have continued effects on inflammation and progression of sarcoidosis. The mechanism of action of annexin A11 may be based upon alterations in delivering calcium to two different apoptosis pathways (caspase and P53).
Collapse
Affiliation(s)
- Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Miller School of Medicine, 1600 NW 10th Ave # 7060A, Miami, FL, 33136, USA.
| | - Sanaz Gidfar
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ann Vu
- Department of Medicine, University of Miami, Miami, FL, USA
| | - Dean Schraufnagel
- Division of Pulmonary and Critical Care, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Grindheim AK, Hollås H, Raddum AM, Saraste J, Vedeler A. Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2. J Cell Sci 2015; 129:314-28. [PMID: 26644180 PMCID: PMC4732284 DOI: 10.1242/jcs.173195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023] Open
Abstract
Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites. Summary: Reactive oxygen species cause two opposite and transient Tyr23-based modifications of annexin A2; its dephosphorylation in the nucleus and phosphorylation at the cell cortex, resulting in release of the protein in exosomes.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Aase M Raddum
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Jaakko Saraste
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|
15
|
Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep 2015; 33:2121-8. [PMID: 25760910 DOI: 10.3892/or.2015.3837] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023] Open
Abstract
Annexin A2 (ANXA2) is a well-known calcium-dependent phospholipid binding protein widely distributed in the nucleus, cytoplasm and extracellular surface of various eukaryotic cells. It has been recognized as a pleiotropic protein affecting a wide range of molecular and cellular processes. Dysregulation and abnormal expression of ANXA2 are linked to a large number of prevalent diseases, including autoimmune and neurodegenerative disease, antiphospholipid syndrome, inflammation, diabetes mellitus and a series of cancers. Accumulating data suggest that ANXA2 is aberrantly expressed in a wide spectrum of cancers, and exerts profound effects on tumor cell adhesion, proliferation, apoptosis, invasion and metastasis as well as tumor neovascularization via different modes of action. However, despite significant research, our knowledge of the mechanism by which ANXA2 participates in cancer development remains fragmented. The present review systematically summarizes the effects of ANXA2 on tumor progression, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li-Hua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hui Feng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan-Qiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
16
|
Liu Y, Myrvang HK, Dekker LV. Annexin A2 complexes with S100 proteins: structure, function and pharmacological manipulation. Br J Pharmacol 2014; 172:1664-76. [PMID: 25303710 PMCID: PMC4376447 DOI: 10.1111/bph.12978] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022] Open
Abstract
Annexin A2 (AnxA2) was originally identified as a substrate of the pp60v-src oncoprotein in transformed chicken embryonic fibroblasts. It is an abundant protein that associates with biological membranes as well as the actin cytoskeleton, and has been implicated in intracellular vesicle fusion, the organization of membrane domains, lipid rafts and membrane-cytoskeleton contacts. In addition to an intracellular role, AnxA2 has been reported to participate in processes localized to the cell surface including extracellular protease regulation and cell-cell interactions. There are many reports showing that AnxA2 is differentially expressed between normal and malignant tissue and potentially involved in tumour progression. An important aspect of AnxA2 function relates to its interaction with small Ca2+-dependent adaptor proteins called S100 proteins, which is the topic of this review. The interaction between AnxA2 and S100A10 has been very well characterized historically; more recently, other S100 proteins have been shown to interact with AnxA2 as well. The biochemical evidence for the occurrence of these protein interactions will be discussed, as well as their function. Recent studies aiming to generate inhibitors of S100 protein interactions will be described and the potential of these inhibitors to further our understanding of AnxA2 S100 protein interactions will be discussed.
Collapse
Affiliation(s)
- Yidong Liu
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
17
|
Kazami T, Nie H, Satoh M, Kuga T, Matsushita K, Kawasaki N, Tomonaga T, Nomura F. Nuclear accumulation of annexin A2 contributes to chromosomal instability by coilin-mediated centromere damage. Oncogene 2014; 34:4177-89. [PMID: 25347736 DOI: 10.1038/onc.2014.345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022]
Abstract
Most human cancers show chromosomal instability (CIN), but the precise mechanisms remain uncertain. Annexin A2 is frequently overexpressed in human cancers, and its relationship to tumorigenesis is poorly understood. We found that annexin A2 is overexpressed in the nuclei of CIN cells compared with cells with microsatellite instability (MIN). Ectopic annexin A2 expression in MIN cells results in a high level of aneuploidy and induces lagging chromosomes; suppression of annexin A2 in CIN cells reduces such CIN signatures with apoptosis of highly aneuploid cells. Ectopic expression of annexin A2 in MIN cells reduces the expression of centromere proteins. Conversely, annexin A2-knockdown in CIN cells increases the expression of centromere proteins. Moreover, the endogenous expression levels of centromere proteins in CIN cells were greatly reduced compared with MIN cell lines. The reduced expression of centromere proteins likely occurred due to aberrant centromere localization of coilin, a major component of the Cajal bodies. These results suggest that nuclear accumulation of annexin A2 has a crucial role in CIN by disrupting centromere function.
Collapse
Affiliation(s)
- T Kazami
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - H Nie
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - M Satoh
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - T Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki City, Osaka, Japan
| | - K Matsushita
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - N Kawasaki
- 1] Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan [2] Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki City, Osaka, Japan
| | - T Tomonaga
- 1] Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan [2] Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki City, Osaka, Japan
| | - F Nomura
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
18
|
Griner NB, Young D, Chaudhary P, Mohamed AA, Huang W, Chen Y, Sreenath T, Dobi A, Petrovics G, Vishwanatha JK, Sesterhenn IA, Srivastava S, Tan SH. ERG oncoprotein inhibits ANXA2 expression and function in prostate cancer. Mol Cancer Res 2014; 13:368-79. [PMID: 25344575 DOI: 10.1158/1541-7786.mcr-14-0275-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Overexpression of ERG in the prostate epithelium, due to chromosomal translocations, contributes to prostate tumorigenesis. Here, genomic analysis of ERG siRNA-treated prostate cells harboring the endogenous TMPRSS2-ERG fusion revealed an inverse relationship between ERG and Annexin A2 (ANXA2) expression at both the RNA and protein level. ANXA2, a Ca(2+)-dependent and phospholipid-binding protein, is involved in various cellular functions, including maintenance of epithelial cell polarity. Mechanistic studies defined the prostate-specific transcription start site of ANXA2 and showed that the recruitment of ERG to the ANXA2 promoter is required for transcriptional repression by ERG. Knockdown of ERG enhanced the apical localization of ANXA2, the bundling of actin filaments at cell-cell junctions and formation of a polarized epithelial phenotype. ERG overexpression disrupted ANXA2-mediated cell polarity and promoted epithelial-mesenchymal transition (EMT) by inhibiting CDC42 and RHOA, and by activating cofilin. Immunohistochemistry demonstrated a reciprocal relationship of ANXA2 and ERG expression in a large fraction of primary prostate cancer clinical specimens. ANXA2 was absent or markedly reduced in ERG(+) tumors, which were mostly well differentiated. ERG(-) tumors, meanwhile, expressed moderate to high levels of ANXA2, and were either poorly differentiated or displayed subsets of poorly differentiated cells. Taken together, the transcriptional repression of ANXA2 by ERG in prostate epithelial cells plays a critical role in abrogating differentiation, promoting EMT, and in the reciprocal correlation of ERG and ANXA2 expression observed in human prostate cancer. IMPLICATIONS ANXA2 is a new component of the ERG network with potential to enhance biologic stratification and therapeutic targeting of ERG-stratified prostate cancers.
Collapse
Affiliation(s)
- Nicholas B Griner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Pankaj Chaudhary
- Department of Molecular and Medical Genetics, Texas Center for Health Disparities and the Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, Texas
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Wei Huang
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Taduru Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics, Texas Center for Health Disparities and the Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland.
| |
Collapse
|
19
|
Liu Y, Gao P. Modulation of hepatitis B surface antigen secretion by annexin II expressed in hepatitis B virus‑producing hepatoma cells. Mol Med Rep 2014; 10:3113-7. [PMID: 25270731 DOI: 10.3892/mmr.2014.2602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The role of annexin II in hepatitis B virus (HBV)‑associated hepatocellular carcinoma (HCC) remains to be elucidated. Intracellular hepatitis B surface antigen (HBsAg)‑retention contributes to the induction of hepatocarcinogenesis. The present study aimed to investigate the regulation of HBsAg secretion by annexin II expressed in HBV‑producing hepatoma cells. The expression of annexin II was analyzed using western blot analysis in SMMC‑7721, HepG2, HepG2.2.15, 293T and Chinese hamster ovary (CHO) cells. CHO cells transfected with an annexin II plasmid were used as a positive control. The localization of annexin II and HBsAg was observed in the HepG2 and HepG2.2.15 cells using indirect immunofluorescence. HepG2.2.15 cells were transfected with a human immunodeficiency virus‑type 1 viral infectivity factor‑hemagglutinin (Vif‑HA) plasmid or a control vector and, 24 h post‑transfection, MG132 was added to the Vif‑complemented HepG2.2.15 cells. Western blot analysis was performed to detect the expression of annexin II and Vif‑HA. HepG2 cells were cotransfected with HBV and annexin II expression vectors. Western blot analysis was performed to examine the expression of annexin II and an Abbott chemiluminescence immunoassay was used to assess the levels of HBsAg. The expression of annexin II was lower in the HepG2.2.15 cells compared with the SMMC‑7721 and HepG2 cells and the fluorescence signal of annexin II in the HepG2 cells was brighter than in the HepG2.2.15 cells. Annexin II colocalized with HBsAg in the cytosol of the HepG2.2.15 cells. MG132 was not able to increase the stability of annexin II expression in HepG2.2.15 cells. Annexin II reduced the secretion of HBsAg when compared with the control‑transfected HepG2 cells. In conclusion, HBV downregulated the expression of annexin II and annexin II decreased the secretion of HBsAg in HBV‑producing hepatoma cells in favor of intracellular HBsAg storage.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
21
|
Grindheim AK, Hollås H, Ramirez J, Saraste J, Travé G, Vedeler A. Effect of serine phosphorylation and Ser25 phospho-mimicking mutations on nuclear localisation and ligand interactions of annexin A2. J Mol Biol 2014; 426:2486-99. [PMID: 24780253 DOI: 10.1016/j.jmb.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022]
Abstract
Annexin A2 (AnxA2) interacts with numerous ligands, including calcium, lipids, mRNAs and intracellular and extracellular proteins. Different post-translational modifications participate in the discrimination of the functions of AnxA2 by modulating its ligand interactions. Here, phospho-mimicking mutants (AnxA2-S25E and AnxA2-S25D) were employed to investigate the effects of Ser25 phosphorylation on the structure and function of AnxA2 by using AnxA2-S25A as a control. The overall α-helical structure of AnxA2 is not affected by the mutations, since the thermal stabilities and aggregation tendencies of the mutants differ only slightly from the wild-type (wt) protein. Unlike wt AnxA2, all mutants bind the anxA2 3' untranslated region and β-γ-G-actin with high affinity in a Ca(2+)-independent manner. AnxA2-S25E is not targeted to the nucleus in transfected PC12 cells. In vitro phosphorylation of AnxA2 by protein kinase C increases its affinity to mRNA and inhibits its nuclear localisation, in accordance with the data obtained with the phospho-mimicking mutants. Ca(2+)-dependent binding of wt AnxA2 to phosphatidylinositol, phosphatidylinositol-3-phosphate, phosphatidylinositol-4-phosphate and phosphatidylinositol-5-phosphate, as well as weaker but still Ca(2+)-dependent binding to phosphatidylserine and phosphatidylinositol-3,5-bisphosphate, was demonstrated by a protein-lipid overlay assay, whereas binding of AnxA2 to these lipids, as well as its binding to liposomes, is inhibited by the Ser25 mutations. Thus, introduction of a modification (mutation or phosphorylation) at Ser25 appears to induce a conformational change leading to increased accessibility of the mRNA- and G-actin-binding sites in domain IV independent of Ca(2+) levels, while the Ca(2+)-dependent binding of AnxA2 to phospholipids is attenuated.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; Molecular Imaging Center (MIC), University of Bergen, N-5009 Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Juan Ramirez
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Jaakko Saraste
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; Molecular Imaging Center (MIC), University of Bergen, N-5009 Bergen, Norway
| | - Gilles Travé
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| |
Collapse
|
22
|
Liu YM, Zhang WY, Wang ZF, Yan CY, Gao PJ. High expression of beta2-glycoprotein I is associated significantly with the earliest stages of hepatitis B virus infection. J Med Virol 2014; 86:1296-306. [PMID: 24760738 DOI: 10.1002/jmv.23961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
Abstract
Human beta2-glycoprotein I (beta2-GPI) binds to recombinant hepatitis B surface antigen (rHBsAg) and can bind specifically to annexin II, which is located on the cell membrane of human hepatoma SMMC-7721 cells. Viral envelope proteins are essential for mediating cellular entry. The aim of this study was to investigate the role of beta2-GPI in the early stages of hepatitis B virus (HBV) infection. Western blot and qRT-PCR analyses revealed that beta2-GPI expression was upregulated in HepG2.2.15 cells at both the mRNA and protein level and was almost non-existent in 293T and CHO cells. Furthermore, annexin II was expressed at lower levels in HepG2.2.15 cells compared to L02, HepG2, and SMMC-7721 cells. Additionally, ELISA analyses demonstrated that beta2-GPI enhanced the ability of HBsAg to bind to cell surfaces, and there was differential adhesion to L02, HepG2, HepG2.2.15, and 293T cells. Western blot and ELISA were then performed to assess the effects of HBV and the HBsAg domain on beta2-GPI expression in co-transfected 293T cells. This study revealed that HBV and the large HBV envelope protein increased beta2-GPI expression. Further investigation indicated that beta2-GPI colocalized with HBsAg in the cytosol of HepG2.2.15 cells, with sodium taurocholate co-transporting polypeptide (NTCP) on the cell membrane in NTCP-complemented HepG2 cells, and with annexin II in the cytosol of HepG2 and HepG2.2.15 cells. These data suggest that high expression of beta2-GPI enhances HBsAg binding to cell surfaces, thus contributing to virus particle transfer to the NTCP receptor and interaction with annexin II for viral membrane fusion.
Collapse
Affiliation(s)
- Ya-Ming Liu
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | |
Collapse
|
23
|
Quiskamp N, Poeter M, Raabe CA, Hohenester UM, König S, Gerke V, Rescher U. The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles. Cell Mol Life Sci 2014; 71:311-29. [PMID: 23715859 PMCID: PMC11113197 DOI: 10.1007/s00018-013-1375-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 04/17/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
Annexin A10 is the latest identified member of the annexin family of Ca(2+)- and phospholipid-binding proteins. In previous studies, downregulation of annexin A10 was correlated with dedifferentiation, invasion, and tumor progression, pointing to a possible tumor suppressor role. However, the biochemical characteristics and functions of annexin A10 remain unknown. We show that annexin A10 displays biochemical characteristics atypical for an annexin, indicating a Ca(2+)- and membrane-binding-independent function. Annexin A10 co-localizes with the mRNA-binding proteins SFPQ and PSPC1 at paraspeckles, an only recently discovered nuclear body, and decreases paraspeckle numbers when overexpressed in HeLa cells. In addition, annexin A10 relocates to dark perinucleolar caps upon transcriptional inhibition of RNA polymerase II. We mapped the cap-binding function of annexin A10 to the proximal part of the core domain, which is missing in the short isoform of annexin A10, and show its independence from the remaining functional type II Ca(2+)-binding site. In contrast to this, paraspeckle recruitment required additional core regions and was negatively affected by the mutation of the last type II Ca(2+)-binding site. Additionally, we show that overexpression of annexin A10 in HeLa cells increases their sensitivity to apoptosis and reduces colony formation. The identification of unique nuclear and biochemical characteristics of annexin A10 points towards its membrane-independent role in paraspeckle-associated mRNA regulation or processing.
Collapse
Affiliation(s)
- Nina Quiskamp
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Michaela Poeter
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Carsten Alexander Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Ulli Martin Hohenester
- Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Simone König
- Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
24
|
Yang T, Peng H, Wang J, Yang J, Nice EC, Xie K, Huang C. Prognostic and diagnostic significance of annexin A2 in colorectal cancer. Colorectal Dis 2013; 15:e373-81. [PMID: 23489866 DOI: 10.1111/codi.12207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/13/2013] [Indexed: 02/05/2023]
Abstract
AIM Annexin A2 (ANXA2) is known to be a tumourigenic molecule and is highly expressed in colorectal cancer (CRC). Its diagnostic and prognostic value is not fully understood. This study was designed to investigate the relationship between ANXA2 expression, clinicopathological characteristics, tumour recurrence and survival. METHOD Immunohistochemical staining was used to evaluate ANXA2 expression in 150 matched samples from patients with CRC. Overall survival and recurrence were determined by Kaplan-Meier analysis. The Cox proportional hazards model was used to determine independent factors contributing to survival and recurrence. Receiver operating characteristic (ROC) curve and liner correlation analysis were used to estimate the sensitivity and specificity of ANXA2 expression for clinical diagnosis. RESULTS ANXA2 was found to be strongly expressed in poorly differentiated tumours (P < 0.001), late stage (P = 0.020) and lymph node positivity (P = 0.002). ANXA2 expression was significantly related to recurrence (P < 0.001) and survival (P = 0.002). The Cox proportional hazards model indicated that ANXA2 expression [P < 0.001, hazard ratio (HR) = 1.366, 95% CI 1.232-1.515] and tumour location (P = 0.039, HR = 1.891, 95% CI 1.034-3.456) were independent factors in predicting overall survival while ANXA2 expression (P < 0.001, HR = 1.445, 95% CI 1.222-1.709) were independent factors predicting recurrence. Receiver operating characteristic (ROC) (AUC = 0.768, 95% CI = 0.642-0.894) and liner correlation analysis suggested that ANXA2 was suitable for the clinical diagnosis of CRC. CONCLUSION These results indicate that ANXA2 is a biomarker with diagnostic and prognostic potential for patients with CRC.
Collapse
Affiliation(s)
- T Yang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
26
|
Madureira PA, Waisman DM. Annexin A2: the importance of being redox sensitive. Int J Mol Sci 2013; 14:3568-94. [PMID: 23434659 PMCID: PMC3588059 DOI: 10.3390/ijms14023568] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.
Collapse
Affiliation(s)
- Patrícia A. Madureira
- Centre for Molecular and Structural Biomedicine, University of Algarve, Campus of Gambelas, Faro, 8005-139, Portugal; E-Mail:
| | - David M. Waisman
- Departments of Biochemistry & Molecular Biology and Pathology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-902-494-1803; Fax: +1-902-494-1355
| |
Collapse
|
27
|
Madureira PA, Hill R, Lee PWK, Waisman DM. Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage. PLoS One 2012; 7:e50591. [PMID: 23226323 PMCID: PMC3511559 DOI: 10.1371/journal.pone.0050591] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/23/2012] [Indexed: 01/08/2023] Open
Abstract
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2′-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.
Collapse
Affiliation(s)
- Patricia A. Madureira
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Molecular and Structural Biomedicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Richard Hill
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick W. K. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M. Waisman
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: .
| |
Collapse
|
28
|
Waters KM, Stenoien DL, Sowa MB, von Neubeck C, Chrisler WB, Tan R, Sontag RL, Weber TJ. Annexin A2 modulates radiation-sensitive transcriptional programming and cell fate. Radiat Res 2012; 179:53-61. [PMID: 23148505 DOI: 10.1667/rr3056.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We previously established annexin A2 as a radioresponsive protein associated with anchorage independent growth in murine epidermal cells. In this study, we demonstrate annexin A2 nuclear translocation in human skin organotypic culture and murine epidermal cells after exposure to X radiation (10-200 cGy), supporting a conserved nuclear function for annexin A2. Whole genome expression profiling in the presence and absence of annexin A2 [shRNA] identified fundamentally altered transcriptional programming that changes the radioresponsive transcriptome. Bioinformatics predicted that silencing AnxA2 may enhance cell death responses to stress in association with reduced activation of pro-survival signals such as nuclear factor kappa B. This prediction was validated by demonstrating a significant increase in sensitivity toward tumor necrosis factor alpha-induced cell death in annexin A2 silenced cells, relative to vector controls, associated with reduced nuclear translocation of RelA (p65) following tumor necrosis factor alpha treatment. These observations implicate an annexin A2 niche in cell fate regulation such that AnxA2 protects cells from radiation-induced apoptosis to maintain cellular homeostasis at low-dose radiation.
Collapse
Affiliation(s)
- Katrina M Waters
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Interaction of transient receptor potential vanilloid 4 with annexin A2 and tubulin beta 5. Neurosci Lett 2012; 512:22-7. [DOI: 10.1016/j.neulet.2012.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/07/2012] [Accepted: 01/20/2012] [Indexed: 01/31/2023]
|
30
|
A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition. Mol Cell Biol 2011; 31:4036-51. [PMID: 21746881 DOI: 10.1128/mcb.01342-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin.
Collapse
|
31
|
Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 2009; 8:935-48. [PMID: 19949400 DOI: 10.1038/nrd2945] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics has revealed that many proteins are present in unexpected cellular locations. Moreover, it is increasingly recognized that proteins can translocate between intracellular and extracellular compartments in non-conventional ways. This increases gene pleiotrophy as the diverse functions of the protein that the gene encodes are dependent on the cellular location. Given that trafficking drug targets may exist in various forms--often with completely different functions--in multiple cellular compartments, careful interpretation of proteomics data is needed for an accurate understanding of gene function. This Perspective is intended to inspire the investigation of unusual protein localizations, rather than assuming that they are due to mislocalization or artefacts. Given a fair chance, proteomics could reveal novel and unforeseen biology with important ramifications for target validation in drug discovery.
Collapse
Affiliation(s)
- Georgina S Butler
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, VT6 1Z3, Canada.
| | | |
Collapse
|
32
|
Luo W, Yan G, Li L, Wang Z, Liu H, Zhou S, Liu S, Tang M, Yi W, Dong Z, Cao Y. Epstein–Barr virus latent membrane protein 1 mediates serine 25 phosphorylation and nuclear entry of annexin A2 via PI‐PLC–PKCα/PKCβ pathway. Mol Carcinog 2008; 47:934-46. [DOI: 10.1002/mc.20445] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Luo
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Guangrong Yan
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Lili Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Zhenlian Wang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Haidan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Shanghui Zhou
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Sufang Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Min Tang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Wei Yi
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, 55912
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| |
Collapse
|
33
|
Gou D, Mishra A, Weng T, Su L, Chintagari NR, Wang Z, Zhang H, Gao L, Wang P, Stricker HM, Liu L. Annexin A2 interactions with Rab14 in alveolar type II cells. J Biol Chem 2008; 283:13156-64. [PMID: 18332131 DOI: 10.1074/jbc.m801532200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin A2, a calcium-dependent phospholipid-binding protein, is abundantly expressed in alveolar type II cells where it plays a role in lung surfactant secretion. Nevertheless, little is known about the details of its cellular pathways. To identify annexin A2-regulated or associated proteins, we silenced endogenous annexin A2 expression in rat alveolar type II cells by RNA interference and assessed the change of the cellular transcriptome by DNA microarray analysis. The loss of annexin A2 resulted in the change of 61 genes. Thirteen of the selected genes (11 down-regulated and 2 up-regulated genes) were validated by real time quantitative PCR. When the loss of rat annexin A2 was rescued by overexpressing EGFP-tagged human annexin A2, six of seven selected targets returned to their normal expression level, indicating that these genes are indeed annexin A2-associated targets. One of the targets, Rab14, co-immunoprecipitated with annexin A2. Rab14 also co-localized in part with annexin A2 and lamellar bodies in alveolar type II cells. The silencing of Rab14 resulted in a decrease in surfactant secretion, suggesting that Rab14 may play a role in surfactant secretion.
Collapse
Affiliation(s)
- Deming Gou
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Borthwick LA, Neal A, Hobson L, Gerke V, Robson L, Muimo R. The annexin 2-S100A10 complex and its association with TRPV6 is regulated by cAMP/PKA/CnA in airway and gut epithelia. Cell Calcium 2008; 44:147-57. [PMID: 18187190 DOI: 10.1016/j.ceca.2007.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 01/22/2023]
Abstract
The formation of a heterotetrameric complex between annexin 2 (anx 2) and S100A10 plays an important role in regulating the cellular distribution and biochemical properties of anx 2. A major distinction between the anx 2-S100A10 complex and other annexin-S100 complexes is that S100A10 binding to anx 2 occurs independently of calcium. Here we describe a cyclic 3',5'-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA, EC 2.7.1.37)-dependent mechanism regulating anx 2-S100A10 complex formation and its interaction with the transient receptor potential vanilloid type 6 channel (TRPV6) in airway and gut epithelia. In both 16HBE14o- and Caco-2 cells, forskolin (FSK) stimulated increased anx 2-S100A10 complex formation, which was attenuated by either PKA inhibitors or calcineurin A (CnA) inhibitors. The anx 2-S100A10 complex association with TRPV6 was dependent on FSK-induced CnA-dependent dephosphorylation of anx 2. Analysis of the significance of the cAMP/PKA/CnA pathway on calcium influx showed that both PKA and CnA inhibitors attenuated Ca(45) uptake in Caco-2, but not 16HBE14o-, cells. Thus, the cAMP/PKA/CnA-induced anx 2-S100A10/TRPV6 complex may require additional factors for calcium influx or play a role independent of calcium influx in airway epithelia. In conclusion, our data demonstrates that cAMP/PKA/CnA signalling is important for anx 2-S100A10 complex formation and interaction with target molecules in both absorptive and secretory epithelia.
Collapse
Affiliation(s)
- Lee A Borthwick
- Academic Unit of Child Health, University of Sheffield, Stephenson Wing, Sheffield Children's Hospital, Sheffield, South Yorkshire S10 2TH, UK
| | | | | | | | | | | |
Collapse
|
35
|
Skrahina T, Piljić A, Schultz C. Heterogeneity and timing of translocation and membrane-mediated assembly of different annexins. Exp Cell Res 2007; 314:1039-47. [PMID: 18164291 DOI: 10.1016/j.yexcr.2007.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/07/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022]
Abstract
Many cell types, including neurons and epithelial cells, express a variety of annexins. Although the overall function has only been partially unravelled, a dominant feature is the formation of two-dimensional assemblies under the plasma membrane in a calcium-dependent manner. Here we show that fluorescently tagged annexins A1, A2, A4, A5, and A6 translocate and assemble at the plasma membrane and the nuclear envelope, except annexin A2, which only attaches to the plasma membrane. All annexins have different response times to elevated calcium levels as was shown by the translocation of co-expressed proteins. Fluorescence recovery after photobleaching revealed the static nature of all annexin assemblies. Analysis of the assemblies by Foerster resonance energy transfer (FRET) using acceptor bleaching demonstrated mostly annexin-specific self-assembly. Heterogeneous assembly formation was shown between annexins A5 and A1, and A5 and A2. The formation of homo- and heterogeneous annexin assemblies may play an important role when high increases in calcium occur, such as after disruption of the plasma membrane.
Collapse
Affiliation(s)
- Tatsiana Skrahina
- Gene Expression Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Ayala-Sanmartin J, Zibouche M, Illien F, Vincent M, Gallay J. Insight into the location and dynamics of the annexin A2 N-terminal domain during Ca(2+)-induced membrane bridging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:472-82. [PMID: 18068113 DOI: 10.1016/j.bbamem.2007.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/14/2007] [Accepted: 11/02/2007] [Indexed: 11/30/2022]
Abstract
Annexin A2 (AnxA2) is a Ca(2+)- and phospholipid-binding protein involved in many cellular regulatory processes. Like other annexins, it is constituted by two domains: a conserved core, containing the Ca(2+) binding sites, and a variable N-terminal segment, containing sites for interactions with other protein partners like S100A10 (p11). A wealth of data exists on the structure and dynamics of the core, but little is known about the N-terminal domain especially in the Ca(2+)-induced membrane-bridging process. To investigate this protein region in the monomeric AnxA2 and in the heterotetramer (AnxA2-p11)(2), the reactive Cys8 residue was specifically labelled with the fluorescent probe acrylodan and the interactions with membranes were studied by steady-state and time-resolved fluorescence. In membrane junctions formed by the (AnxA2-p11)(2) heterotetramer, the flexibility of the N-terminal domain increased as compared to the protein in solution. In "homotypic" membrane junctions formed by monomeric AnxA2, acrylodan moved to a more hydrophobic environment than in the protein in solution and the flexibility of the N-terminal domain also increased. In these junctions, this domain is probably not in close contact with the membrane surface, as suggested by the weak quenching of acrylodan observed with doxyl-PCs, but pairs of N-termini likely interact, as revealed by the excimer-forming probe pyrene-maleimide bound to Cys8. We present a model of monomeric AnxA2 N-terminal domain organization in "homotypic" bridged membranes in the presence of Ca(2+).
Collapse
|
37
|
Huang Y, Jin Y, Yan CH, Yu Y, Bai J, Chen F, Zhao YZ, Fu SB. Involvement of Annexin A2 in p53 induced apoptosis in lung cancer. Mol Cell Biochem 2007; 309:117-23. [PMID: 18008140 DOI: 10.1007/s11010-007-9649-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/31/2007] [Indexed: 12/24/2022]
Abstract
Tumor suppressor p53 plays important roles in cell cycle regulation, apoptosis and DNA repair in different cell types including lung cancer. There are different p53 apoptotic pathways in high and low metastatic ability lung cancer cells. However, the exactly mechanism in the pathway is still unclear. Here we found that Annexin A2, a Ca2+ -dependent phospholipid-binding protein, is involved in p53-mediated apoptosis. First, by using mRNA differential display technique, down-regulated Annexin A2 expression was found in all cell lines transfected of Ad-p53 (adenoviral expression construct encoding wild type p53 gene) especially in highly metastatic Anip973 lung cancer cells. Then, decreased expression of Annexin A2 was further confirmed by Northern blot and Western blot analysis. At last, knock down of Annexin A2 by siRNA inhibited cellular proliferation in BE1 cell line with highly metastatic ability. Taken together, our results suggested that Annexin A2 may play roles in p53 induced apoptosis and it is also involved in regulation of cell proliferation.
Collapse
Affiliation(s)
- Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, No. 194, Xuefu road, Nangang district, Harbin, Heilongjing Province 150081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu J, Vishwanatha JK. Regulation of nucleo-cytoplasmic shuttling of human annexin A2: a proposed mechanism. Mol Cell Biochem 2007; 303:211-20. [PMID: 17457518 DOI: 10.1007/s11010-007-9477-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Studies have long been focused on the functions of annexin A2 in the cytoplasm. However, the involvement of annexin A2 in DNA replication as a part of primer recognition protein complex and the presence of nuclear export signal (NES) suggest that annexin A2 is also functional in the nucleus, and its localization in the nucleus is under regulation by interaction with other nuclear factors through its N-terminus. During the study of the mechanism of annexin A2 sequestering in the nucleus and the regulation of its export from the nucleus, in this study, we show that endogenous annexin A2 is present in both the cytoplasm and the nucleus in HeLa, PC-3 and DU-145 cells. While exogenously expressed annexin A2 is excluded from nuclei of annexin A2-null LNCaP cells in a CRM1 (Chromosome Maintenance Region 1) mediated nuclear export, endogenous annexin A2 in HeLa, PC-3 and DU-145 cell lines does not undergo the CRM1 mediated nuclear export. While investigating the mechanism of the nuclear retention of annexin A2, we found that an anti-annexin A2 antibody that recognizes the C-terminus of annexin A2 (D1/274.5) cannot recognize nuclear annexin A2, suggesting that the domain recognized by this antibody may be masked in the nuclei. In order to find out the role of annexin A2 C-terminus in the nuclear retention of annexin A2, we transiently transfected green fluorescence protein (GFP)-fused N-terminal 29 amino acids of annexin A2 to LNCaP, PC-3 and DU-145 cells, and determined that the C-terminus is not required for the nuclear retention of annexin A2. Based on the finding described above, we propose a model for nuclear retention of annexin A2 where the regulation sites reside in the N-terminus and are adjacent to the NES, and upon modification, the NES is exposed and annexin A2 is exported from the nucleus.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Cancer Research and Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | |
Collapse
|
39
|
Yoo JC, Hayman MJ. Annexin II binds to SHP2 and this interaction is regulated by HSP70 levels. Biochem Biophys Res Commun 2007; 356:906-11. [PMID: 17395158 PMCID: PMC2034505 DOI: 10.1016/j.bbrc.2007.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/10/2007] [Indexed: 11/17/2022]
Abstract
The protein tyrosine phosphatase SHP2 is a positive effector of EGFR signaling. To improve our understanding of SHP2's function, we searched for additional binding proteins of SHP2. We found that Annexin II is an SHP2-binding protein. Physical interactions of SHP2 with Annexin II were confirmed in vivo. Furthermore, binding of SHP2 with Annexin II was regulated somewhat by EGF treatment and the extracellular Ca2+ chelator, EGTA. Previously, we reported that HSP70 levels can influence the binding of SHP2 with EGFR. Interestingly, increased HSP70 levels also inhibited the binding of SHP2 with Annexin II after EGF treatment in vivo. In addition, immunostaining experiments indicated that a fraction of SHP2 and Annexin II co-localized in the cell membrane region after EGF treatment. Our findings indicate that Annexin II is binding partner of SHP2 and the binding of SHP2 with Annexin II is affected by EGF stimulation, extracellular calcium levels, and the levels of HSP70.
Collapse
Affiliation(s)
- Jae Cheal Yoo
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
40
|
Meng Z, Camalier CE, Lucas DA, Veenstra TD, Beck GR, Conrads TP. Probing early growth response 1 interacting proteins at the active promoter in osteoblast cells using oligoprecipitation and mass spectrometry. J Proteome Res 2007; 5:1931-9. [PMID: 16889415 DOI: 10.1021/pr060009l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current advances in proteomics have allowed for a rapidly expanding integration of associated methodologies with more traditional molecular and biochemical approaches to the study of cell function. Recent studies on the role of inorganic phosphate have suggested this ion is a novel signaling molecule capable of altering the function of numerous cell types. Elevated inorganic phosphate generated in the extracellular microenvironment by differentiating osteoblasts has recently been determined to act through a largely uncharacterized mechanism as an important signaling molecule responsible for altering the transcription of various genes during osteoblast differentiation. The transcription factor, early growth response protein 1 (EGR1), has previously been shown to be involved in the early response of osteoblasts to inorganic phosphate. To elucidate the role of EGR1 as a potential early regulator of transcription in the inorganic phosphate response, an oligoprecipitation procedure was optimized to capture the DNA bound, transcriptionally active form of EGR1. The interacting proteins thusly captured were identified using mass spectrometry (MS). Proteins involved in transcription, RNA processing, and chromatin modification were identified by this approach. The combined oligoprecipitation-MS approach presented here is highly effective for isolating and characterizing entire transcriptional complexes in the DNA bound state and is broadly extendable to the identification of both known and unknown transcription factor protein complexes.
Collapse
Affiliation(s)
- Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
41
|
Demasi MAA, Montor WR, Ferreira GB, Pimenta DC, Labriola L, Sogayar MC. Differential proteomic analysis of the anti-proliferative effect of glucocorticoid hormones in ST1 rat glioma cells. J Steroid Biochem Mol Biol 2007; 103:137-48. [PMID: 17127050 DOI: 10.1016/j.jsbmb.2006.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 08/17/2006] [Indexed: 02/02/2023]
Abstract
Glucocorticoid hormones (GCs) exert a potent anti-proliferative activity on several cell types. The classic molecular mechanism of GCs involves modulation of the activity of the glucocorticoids receptor, a transcriptional regulator. However, the anti-proliferative effect of GCs may also involve modulation of processes such as translation, subcellular localization and post-translational modifications, which are not reflected at the mRNA level. To investigate these potential effects of GCs, we employed the proteomic approach (two-dimensional electrophoresis and mass spectrometry) and the ST1 cells, obtained from the C6 rat glioma cell line, as a model. GC treatment leads ST1 cells to a complete transformed-to-normal phenotypic reversion and loss of their tumorigenic potential. By comparing sets of 2D nuclear protein profiles of ST1 cells treated (or not) with hydrocortisone (Hy), 13 polypeptides displaying >or=two-fold difference in abundance upon Hy treatment were found. Five of these polypeptides were identified by peptide mass fingerprinting, including Annexin 2 (ANX2), hnRNP A3 and Ubiquitin. Evidence obtained by Western blot analysis indicates that ANX2 is present in the nucleus and has its subcellular localization modulated by GC-treatment of ST1 cells. Our findings indicate complementary mechanisms contributing to the regulation of gene expression associated with ST1 cells' response to GCs.
Collapse
Affiliation(s)
- Marcos A A Demasi
- Instituto de Química, Universidade de São Paulo, 05508-900 SP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Yan G, Luo W, Lu Z, Luo X, Li L, Liu S, Liu Y, Tang M, Dong Z, Cao Y. Epstein–Barr virus latent membrane protein 1 mediates phosphorylation and nuclear translocation of annexin A2 by activating PKC pathway. Cell Signal 2007; 19:341-8. [PMID: 16989986 DOI: 10.1016/j.cellsig.2006.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/28/2006] [Accepted: 07/19/2006] [Indexed: 01/14/2023]
Abstract
We have previously combined phosphorylation enrichment with proteomics technology to elucidate the novel phosphoproteins in the signaling pathways triggered by Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) and shown that LMP1 can increase the phosphorylation level of annexin A2. Here, we further showed that LMP1 increased the serine, but not tyrosine, phosphorylation of annexin A2 by activating a novel signaling pathway, the protein kinase C (PKC) signaling pathway. However, LMP1 did not affect the level of annexin A2 expression. In addition, we found that LMP1 induced the nuclear entry of annexin A2 in an energy- and temperature-dependent manner, suggesting that the nuclear entry of annexin A2 is an active process. Treatment of LMP1-expressing cells with the PKC inhibitor myr-psiPKC resulted in annexin A2 being present almost exclusively at cell surface, instead of within the nucleus, suggesting that the nuclear entry of annexin A2 was associated with serine phosphorylation mediated by PKC.
Collapse
Affiliation(s)
- Guangrong Yan
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
44
|
Singh P. Role of Annexin-II in GI cancers: interaction with gastrins/progastrins. Cancer Lett 2006; 252:19-35. [PMID: 17188424 PMCID: PMC1941619 DOI: 10.1016/j.canlet.2006.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/06/2006] [Indexed: 12/27/2022]
Abstract
The role of the gastrin peptide hormones (G17, G34) and their precursors (progastrins, PG; gly-extended gastrin, G-gly), in gastrointestinal (GI) cancers has been extensively reviewed in recent years [W. Rengifo-Cam, P. Singh, Role of progastrins and gastrins and their receptors in GI and pancreatic cancers: targets for treatment, Curr. Pharm. Des. 10 (19) (2004) 2345-2358; M. Dufresne, C. Seva, D. Fourmy, Cholecystokinin and gastrin receptors, Physiol. Rev. 86 (3) (2006) 805-847; A. Ferrand, T.C. Wang, Gastrin and cancer: a review, Cancer Lett. 238 (1) (2006) 15-29]. A possible important role of progastrin peptides in colon carcinogenesis has become evident from experiments with transgenic mouse models [W. Rengifo-Cam, P. Singh, (2004); A. Ferrand, T.C. Wang, (2006)]. It is now known that growth stimulatory and co-carcinogenic effects of gastrin/PG peptides are mediated by both proliferative and anti-apoptotic effects of the peptides on target cells [H. Wu, G.N. Rao, B. Dai, P. Singh, Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3, J. Biol. Chem. 275 (42) (2000) 32491-32498; H. Wu, A. Owlia, P. Singh, Precursor peptide progastrin(1-80) reduces apoptosis of intestinal epithelial cells and upregulates cytochrome c oxidase Vb levels and synthesis of ATP, Am. J. Physiol. Gastrointest. Liver Physiol. 285 (6) (2003) G1097-G1110]. Several receptor subtypes have been described that mediate growth effects of gastrin peptides [W. Rengifo-Cam, P. Singh (2004); M. Dufresne, C. Seva, D. Fourmy, (2006)]. Recently, we identified Annexin II as a high affinity binding protein for gastrin/PG peptides [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798]. Importantly, the expression of Annexin II was required for mediating growth stimulatory effects of gastrin and PG peptides on intestinal epithelial and colon cancer cells [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798], suggesting that Annexin-II may represent the elusive novel receptor for gastrin/PG peptides. The importance of this finding in relation to the structure and function of Annexin-II, especially in GI cancers, is described below. Since this surprising finding represents a new front in our understanding of the mechanisms involved in mediating growth effects of gastrin/PG peptides in GI cancers, our current understanding of the role of Annexin-II in proliferation and metastasis of cancer cells is additionally reviewed.
Collapse
Affiliation(s)
- Pomila Singh
- Department of Neuroscience and Cell Biology, 10.104 Medical Research Building, Route 1043, University of Texas Medical Branch, 301University Blvd., Mail Route 1043, Galveston, TX 77555-1043, USA.
| |
Collapse
|
45
|
Lorusso A, Covino C, Priori G, Bachi A, Meldolesi J, Chieregatti E. Annexin2 coating the surface of enlargeosomes is needed for their regulated exocytosis. EMBO J 2006; 25:5443-56. [PMID: 17082761 PMCID: PMC1679766 DOI: 10.1038/sj.emboj.7601419] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 10/10/2006] [Indexed: 01/07/2023] Open
Abstract
Enlargeosomes are small cytoplasmic vesicles that undergo rapid, Ca2+-dependent exo/endocytosis. The role of the cytoskeleton in these processes was unknown. In PC12-27 cells, microtubule disassembly had little effect on enlargeosomes, whereas microfilament disassembly increased markedly both their resting and stimulated exocytosis, and inhibited their endocytosis. Even at rest enlargeosomes are coated at their cytosolic surface by an actin-associated protein, annexin2, bound by a dual, Ca2+-dependent and Ca2+-independent mechanism. In contrast, the other enlargeosome marker, desmoyokin/Ahnak, is transported across the organelle membrane, apparently by an ABC transporter, and binds to its lumenal face. Annexin2-GFP expression revealed that, upon stimulation, the slow and random enlargeosome movement increases markedly and becomes oriented toward the plasma membrane. After annexin2 downregulation enlargeosome exocytosis induced by both [Ca2+]i rise and cytoskeleton disruption is inhibited, and the NGF-induced differentiation is blocked. Binding of annexin2 to the enlargeosome membrane, the most extensive ever reported (>50% annexin2 bound to approximately 3% of total membrane area), seems therefore to participate in the regulation of their exocytosis.
Collapse
Affiliation(s)
- Anna Lorusso
- Scientific Institute San Raffaele, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Milan, Italy
| | - Cesare Covino
- Scientific Institute San Raffaele, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Milan, Italy
| | - Giuseppina Priori
- Department of Neuroscience, Vita-Salute San Raffaele University, Center of Excellence in Cell Development, Milan, Italy
| | - Angela Bachi
- Scientific Institute San Raffaele, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Milan, Italy
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Milan, Italy
- Department of Neuroscience, Vita-Salute San Raffaele University, Center of Excellence in Cell Development, Milan, Italy
- IIT Research Unit of Molecular Neuroscience, Milan, Italy
| | - Evelina Chieregatti
- Department of Neuroscience, Vita-Salute San Raffaele University, Center of Excellence in Cell Development, Milan, Italy
- IIT Research Unit of Molecular Neuroscience, Milan, Italy
- Vita-Salute San Raffaele University, DIBIT, via Olgettina 58, 20132 Milan, Italy. Tel.: +39 022 643 4604; Fax: +39 022 643 4813; E-mail
| |
Collapse
|
46
|
De Seranno S, Benaud C, Assard N, Khediri S, Gerke V, Baudier J, Delphin C. Identification of an AHNAK binding motif specific for the Annexin2/S100A10 tetramer. J Biol Chem 2006; 281:35030-8. [PMID: 16984913 DOI: 10.1074/jbc.m606545200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Annexin2 tetramer (A2t), which consists of two Annexin2 molecules bound to a S100A10 dimer, is implicated in membrane-trafficking events. Here, we showed using a yeast triple-hybrid experiment and in vitro binding assay that Annexin2 is required for strong binding of S100A10 to the C-terminal domain of the protein Ahnak. We also revealed that this effect involves only the Annexin2 N-terminal tail, which is implicated in S100A10/Annexin2 tetramerization. The minimal A2t binding motif (A2tBP1) in Ahnak was mapped to a 20-amino acid peptide, and this peptide is highly specific for A2t. We also identified a second A2t binding motif (A2tBP2) present in the N-terminal domain of Ahnak, which binds to A2t, albeit with less affinity. When overexpressed as an EGFP fusion protein in MDCK cells, A2tBPs cofractionate in a calcium-dependent manner and co-immunoprecipitate with S100A10 and Annexin2. In living cells, A2tBPs target EGFP to the cytoplasm as does Annexin2. In response to oxidative and mechanical stress, EGFP-A2tBPs relocalize within minutes to the plasma membrane; a behavior shared with Annexin2-GFP. These results suggest that the A2t complex exists within the cytoplasm of resting living cells and that its localization at the plasma membrane relies on cellular signaling. Together, our data demonstrate that A2tBP1 is a specific A2t complex binding domain and may be a powerful tool to help elucidate A2t structure and cellular functions.
Collapse
|
47
|
Hollås H, Aukrust I, Grimmer S, Strand E, Flatmark T, Vedeler A. Annexin A2 recognises a specific region in the 3'-UTR of its cognate messenger RNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1325-34. [PMID: 17045350 DOI: 10.1016/j.bbamcr.2006.08.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/17/2006] [Accepted: 08/26/2006] [Indexed: 12/28/2022]
Abstract
Annexin A2 is a multifunctional Ca(2+)- and lipid-binding protein. We previously showed that a distinct pool of cellular Annexin A2 associates with mRNP complexes or polysomes associated with the cytoskeleton. Here we report in vitro and in vivo experiments showing that Annexin A2 present in this subset of mRNP complexes interacts with its cognate mRNA and c-myc mRNA, but not with beta(2)-microglobulin mRNA translated on membrane-bound polysomes. The protein recognises sequence elements within the untranslated regions, but not within the coding region, of its cognate mRNA. Alignment of the Annexin A2-binding 3'-untranslated regions of annexin A2 mRNA from several species reveals a five nucleotide consensus sequence 5'-AA(C/G)(A/U)G. The Annexin A2-interacting region of the 3'-untranslated region can be mapped to a sequence of about 100 nucleotides containing two repeats of the consensus sequence. The binding elements appear to involve both single and double stranded regions, indicating that a specific higher order mRNA structure is required for binding to Annexin A2. We suggest that this type of interaction is representative for a group of mRNAs translated on cytoskeleton-bound polysomes.
Collapse
Affiliation(s)
- Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
48
|
Piljić A, Schultz C. Annexin A4 self-association modulates general membrane protein mobility in living cells. Mol Biol Cell 2006; 17:3318-28. [PMID: 16687573 PMCID: PMC1483058 DOI: 10.1091/mbc.e06-01-0041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Annexins are Ca2+-regulated phospholipid-binding proteins whose function is only partially understood. Annexin A4 is a member of this family that is believed to be involved in exocytosis and regulation of epithelial Cl- secretion. In this work, fluorescent protein fusions of annexin A4 were used to investigate Ca2+-induced annexin A4 translocation and self-association on membrane surfaces in living cells. We designed a novel, genetically encoded, FRET sensor (CYNEX4) that allowed for easy quantification of translocation and self-association. Mobility of annexin A4 on membrane surfaces was investigated by FRAP. The experiments revealed the immobile nature of annexin A4 aggregates on membrane surfaces, which in turn strongly reduced the mobility of transmembrane and plasma membrane associated proteins. Our work provides mechanistic insight into how annexin A4 may regulate plasma membrane protein function.
Collapse
Affiliation(s)
- Alen Piljić
- Gene Expression Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Gene Expression Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
49
|
Esposito I, Penzel R, Chaib-Harrireche M, Barcena U, Bergmann F, Riedl S, Kayed H, Giese N, Kleeff J, Friess H, Schirmacher P. Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J Pathol 2006; 208:673-85. [PMID: 16450333 DOI: 10.1002/path.1935] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tenascin C (TNC) is a component of the provisional extracellular matrix (ECM) that characterizes solid tumours. Cell surface annexin II is a high-affinity receptor for large TNC splice variants. The aim of this study was to analyse whether TNC and annexin II play a role in the development of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by a rich ECM populated by pancreatic stellate cells, which play a crucial role in pancreatic desmoplasia. The mRNA and protein levels of TNC and of annexin II were analysed in pancreatic tissues by DNA array, quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) and immunohistochemistry. TNC large splice variants were detected by RT-PCR. Enzyme linked immunosorbent assay (ELISA) was used to measure TNC levels in serum and culture supernatants. TNC and annexin II mRNA levels were significantly higher in pancreatic cancer tissues than in the normal pancreas. TNC expression was detected with increased frequency in the progression from PanIN-1 lesions to PDAC, and a parallel switch from cytoplasmic to cell surface expression of annexin II was observed. Large TNC transcripts were found in pancreatic cancer and in chronic pancreatitis, but not in the normal pancreas. TNC expression was demonstrated in pancreatic stellate cells, where it could be induced by tumour necrosis factor alpha (TNFalpha), transforming growth factor beta1 (TGF-beta1) and by cancer cell supernatants supplemented with TGF-beta1. In conclusion, the expression of TNC and cell surface annexin II increases in the progression from low-grade PanIN lesions to pancreatic cancer. Pancreatic stellate cells are identified as a source of TNC in pancreatic tissues, possibly under the influence of soluble factors released by the tumour cells.
Collapse
Affiliation(s)
- I Esposito
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kotsyfakis M, Vontas J, Siden-Kiamos I, Louis C. The annexin gene family in the malaria mosquito Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2005; 14:555-62. [PMID: 16164611 DOI: 10.1111/j.1365-2583.2005.00586.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Annexins belong to a class of proteins that are known to bind to, and hold together structures such as membranes. Interestingly, Anopheles gambiae (and Drosophila melanogaster) annexins bind Plasmodium ookinetes in vitro. In the malaria mosquito three genes in two cytogenetic loci on chromosome arm 2R encode annexin homologues; their expression, monitored by quantitative real-time PCR during mosquito development, as well as in various tissues, revealed little fluctuation in patterns of expression during all life stages. A different mode of transcription was observed for the three genes in the midgut in relation to the uptake of a blood meal. Immunohistochemical staining of midguts and ovaries with polyclonal anti-annexin sera reveals that the Anopheles polypeptides are present in the epithelial cells of both tissues and associated with the plasma membrane.
Collapse
Affiliation(s)
- M Kotsyfakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|