1
|
Higashi Y, Ikuno K, Saito T, Saido TC, Miyasaka T, Kakuda N, Funamoto S. High Affinity Staining for Histological Immunoreactivity revealed phosphorylated tau within amyloid-cored plaques in the brain of AD model mice. Biochem Biophys Res Commun 2025; 771:152025. [PMID: 40393159 DOI: 10.1016/j.bbrc.2025.152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The historical pathology of the brain in Alzheimer's disease (AD) is characterized by the amyloid cascade hypothesis, in which amyloid β protein accumulates in the extracellular parenchyma as senile plaque and triggers phosphorylation of microtubule-associated protein tau for forming neurofibrillary tangle in the human neurons. Whether these protein existences differed in the brain parenchyma, the relationship of these proteins of accumulation mechanisms is unknown. In the case of brain pathological analysis, the level of phosphorylation for tau has been decreased in the paraffin-embedded sections compared with biochemical analysis. Here, we have established and developed a method to highlight phosphorylated proteins including tau with frozen sections, as the HIGh Affinity Staining Histological Immunoreactivity (HIGASHI) method. Using this HIGASHI method, hyper-phosphorylated tau could be detected in the mossy fiber on the frozen brain sections of wild-type mice under hypothermia conditions. Here, we attempted the HIGASHI method to detect senile plaque and phosphorylated tau in the AD model mouse brains. Phosphorylated tau was found in the center of senile plaques in the mice brain parenchyma. Additionally, these senile plaques colocalized with microglia cells in the center of senile plaques. Interestingly, senile plaques have been made in the tau knock-out mice brains expressing human amyloid precursor protein. Thus, senile plaques have been composed of Aβ and phosphorylated tau in the brain, but tau isn't necessary for bearing senile plaques.
Collapse
Affiliation(s)
- Yuto Higashi
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kanta Ikuno
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8602, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomohiro Miyasaka
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Laboratory of Physiology and Anatomy, Nihon University, School of Pharmacy, Funabashi, Chiba, 274-8555, Japan.
| | - Nobuto Kakuda
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Satoru Funamoto
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
2
|
Iwata-Endo K, Sahashi K, Kawai K, Fujioka Y, Okada Y, Watanabe E, Iwade N, Ishibashi M, Mohammad M, Aldoghachi AF, Tuerde D, Fujiwara T, Hirai S, Okado H, Katsuno M, Watanabe H, Kanamitsu K, Neya M, Ishigaki S, Sobue G. Correcting tau isoform ratios with a long-acting antisense oligonucleotide alleviates 4R-tauopathy phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102503. [PMID: 40206658 PMCID: PMC11979468 DOI: 10.1016/j.omtn.2025.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Tau, a microtubule-binding protein linked to tauopathies like Alzheimer's disease and frontotemporal lobar degeneration (FTLD), has 3-repeat (3R) and 4-repeat (4R) isoforms. Accumulation of the 4R-tau is associated with FTLD, progressive supranuclear palsy (PSP), and cortico-basal degeneration (CBD). We previously showed that a loss of fused in sarcoma (FUS) or splicing factor, proline- and glutamine-rich (SFPQ) promoted 4R-tau accumulation, which induced FTLD-like behaviors and neurodegeneration in mice. Here, we developed antisense oligonucleotides (ASOs) modified with 2'-O, 4'-C-ethylene-bridged nucleic acids (ENAs), reducing the 4R-tau/3R-tau ratio while maintaining total tau expression from the MAPT gene. In vitro screening identified EN-06 as the most effective ENA. Intracerebroventricular (ICV) administration of EN-06 corrected the 4R/3R-tau ratio in FUS-silenced humanized tau mice and human iPSC-derived neurons. This treatment ameliorated disease phenotypes, including aberrant behaviors, spine dysmorphology, and neurodegeneration. The half-life of EN-06 after a single ICV administration was approximately 6 months in the brain, with splicing correction effects that persisted for 2 years. The efficacy of EN-06 was higher than that of 2'-O-methoxyethyl (MOE)-modified ASO (MO-06). These findings highlight the potential of ENA-modified ASOs to reduce 4R-tau while preserving total MAPT expression, thus offering a safe and long-acting treatment for 4R-tau-associated tauopathies.
Collapse
Affiliation(s)
- Kuniyuki Iwata-Endo
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kaori Kawai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yusuke Fujioka
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yohei Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Eri Watanabe
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuyuki Iwade
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Minaka Ishibashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Moniruzzaman Mohammad
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Asraa Faris Aldoghachi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Dilina Tuerde
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | | | - Shinobu Hirai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Haruo Okado
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kayoko Kanamitsu
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro Neya
- KNC Laboratories Co., Ltd., Kobe, Hyogo 651-2271, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Gen Sobue
- Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
3
|
Sadleir KR, Gomez KP, Edwards AE, Patel AJ, Ley ML, Khatri AW, Guo J, Mahesh S, Watkins EA, Popovic J, Karunakaran DKP, Prokopenko D, Tanzi RE, Bustos B, Lubbe SJ, Demonbruen AR, McNally EM, Vassar R. Annexin A6 membrane repair protein protects against amyloid-induced dystrophic neurites and tau phosphorylation in Alzheimer's disease model mice. Acta Neuropathol 2025; 149:51. [PMID: 40411591 PMCID: PMC12103342 DOI: 10.1007/s00401-025-02888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
In Alzheimer's disease, accumulation of amyloid-β (Aβ) peptide is thought to cause formation of neurofibrillary tangles composed of hyperphosphorylated tau protein, which correlates with neuronal loss and cognitive impairment, but the mechanism linking Aβ and tau pathologies is unknown. Dystrophic neurites, which surround Aβ plaques and accumulate phosphorylated tau and other proteins, may play a role in seeding and spreading of pathologic tau. Here, we investigate the novel hypothesis that improved membrane repair capacity decreases dystrophic neurite formation by protecting axons from Aβ-induced membrane damage. Using a ratiometric calcium sensor and a FRET-based calpain cleavage sensor, we demonstrate that dystrophic neurites in 5XFAD mice have elevated resting calcium levels and calpain activity because of putative membrane damage. Annexin A6, a plasma membrane repair in muscle and neurons, is present at plasma membrane of neurons and dystrophic neurites in murine and human brains. Overexpression of annexin A6 in brains of 5XFAD mice decreased size and quantity of dystrophic neurites and accumulation of phospho-tau181, an early biomarker of amyloid pathology. Phospho-tau231, another early amyloid biomarker, and phosphorylated of tau kinases, c-jun N-terminal kinase (JNK) and Calmodulin Kinase II (CaMKII) accumulate in dystrophic neurites in the brains of amyloid pathology mice and humans with AD, suggesting that dystrophic neurites are sites of active tau phosphorylation. Overexpression of dominant-negative annexin A6 in 5XFAD mice increased dystrophic neurites and phospho-tau181. Intracerebral injection of recombinant annexin A6 in 5XFAD and APP-NLGF knock-in mice resulted in localization of recombinant A6 to membranes of dystrophic neurites, suggesting therapeutic potential of recombinant annexin A6 for AD. In conclusion, dystrophic neurites have Aβ-induced membrane damage characterized by calcium elevation, calpain activation, and accumulation of tau kinases and phosphorylated tau. Overexpression of annexin A6 reduces dystrophic neurites and phospho-tau accumulation, suggesting that annexin A6-mediated membrane repair may represent a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Karen P Gomez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Abigail E Edwards
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Armana J Patel
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Makenna L Ley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ammaarah W Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joanna Guo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shreya Mahesh
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elyse A Watkins
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jelena Popovic
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | - Dmitry Prokopenko
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bernabe Bustos
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steven J Lubbe
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis R Demonbruen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Van Alstyne M, Pratt J, Parker R. Diverse influences on tau aggregation and implications for disease progression. Genes Dev 2025; 39:555-581. [PMID: 40113250 PMCID: PMC12047666 DOI: 10.1101/gad.352551.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Tau is an intrinsically disordered protein that accumulates in fibrillar aggregates in neurodegenerative diseases. The misfolding of tau can be understood as an equilibrium between different states and their propensity to form higher-order fibers, which is affected by several factors. First, modulation of the biochemical state of tau due to ionic conditions, post-translational modifications, cofactors, and interacting molecules or assemblies can affect the formation and structure of tau fibrils. Second, cellular processes impact tau aggregation through modulating stability, clearance, disaggregation, and transport. Third, through interactions with glial cells, the neuronal microenvironment can affect intraneuronal conditions with impacts on tau fibrilization and toxicity. Importantly, tau fibrils propagate through the brain via a "prion-like" manner, contributing to disease progression. This review highlights the biochemical and cellular pathways that modulate tau aggregation and discusses implications for pathobiology and tau-directed therapeutic approaches.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - James Pratt
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA;
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| |
Collapse
|
5
|
Buchholz S, Kabbani MAA, Bell‐Simons M, Kluge L, Cagmak C, Klimek J, Haag N, Iohan LC, Coulon A, Costa MR, Kilinc D, Zempel H. The tau isoform 1N4R confers vulnerability of MAPT knockout human iPSC-derived neurons to amyloid beta and phosphorylated tau-induced neuronal dysfunction. Alzheimers Dement 2025; 21:e14403. [PMID: 40019008 PMCID: PMC12089071 DOI: 10.1002/alz.14403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Human tau protein, composed of six brain-specific isoforms, is a major driver of Alzheimer's disease (AD). The role of its isoforms however remains unclear and human AD models are scarce. METHODS We generated human MAPT- (tau-) knockout (KO) induced pluripotent stem cells (iPSC) using CRISPR/Cas9, differentiated these into glutamatergic neurons, and assessed isoform-specific functions of tau in these neurons. We used omic- approaches, live-cell imaging, subcompartmental analysis, and lentivirus-based reintroduction of specific tau isoforms to investigate isoform-mediated neuronal dysfunction in an AD model. RESULTS Tau KO human iPSC-derived neurons showed decreased neurite outgrowth and axon initial segment length and, notably, resisted amyloid beta oligomer (AβO)-induced neuronal activity reduction. Introducing the 1N4R-tau isoform, but not other isoforms, confers AβO vulnerability and increases KxGS phosphorylation of tau, without altering neuronal activity or microtubule modifications. DISCUSSION While tau KO impacts neuronal development and activity, tau-KO also confers resistance against AβO insult. 1N4R-tau likely mediates AβO-induced and phosphorylated tau toxicity, representing a novel prime therapeutic target for AD. HIGHLIGHTS Tau knockout alters neurite growth and axon initial segment formation in human neurons. Tau isoforms show differential axonal localization in human neurons. Tau depletion protects against amyloid beta oligomer (AβO)-mediated neurotoxicity. 1N4R tau mediates AβO-induced toxicity in human neurons.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Michael Bell‐Simons
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Lena Kluge
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Cagla Cagmak
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Jennifer Klimek
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Lukas C. Iohan
- Université de LilleInserm, CHU Lille, Institut Pasteur de Lille, U1167‐RID‐AGE‐ Risk factors and molecular determinants of aging‐related diseasesLilleFrance
- Bioinformatics Multidisciplinary Environment (BIoME)Federal University of Rio Grande do Norte, Campus Universitário, Lagoa NovaNatalBrazil
| | - Audrey Coulon
- Université de LilleInserm, CHU Lille, Institut Pasteur de Lille, U1167‐RID‐AGE‐ Risk factors and molecular determinants of aging‐related diseasesLilleFrance
| | - Marcos R. Costa
- Université de LilleInserm, CHU Lille, Institut Pasteur de Lille, U1167‐RID‐AGE‐ Risk factors and molecular determinants of aging‐related diseasesLilleFrance
- Brain InstituteFederal University of Rio Grande do Norte, Campus Universitário, Lagoa NovaNatalBrazil
| | - Devrim Kilinc
- Université de LilleInserm, CHU Lille, Institut Pasteur de Lille, U1167‐RID‐AGE‐ Risk factors and molecular determinants of aging‐related diseasesLilleFrance
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
6
|
Thomas R, Zhang D, Cronkite CA, Thomas R, Singh SK, Bronk LF, Morales RF, Duman JG, Grosshans DR. Subcellular functions of tau mediate repair response and synaptic homeostasis in injury. Mol Psychiatry 2025:10.1038/s41380-025-03029-6. [PMID: 40269186 DOI: 10.1038/s41380-025-03029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Injury responses in terminally differentiated cells such as neurons are tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces an increase in phosphorylated tau in the nucleus where it directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX phosphorylation after irradiation, indicating that tau may play an important role in the neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels, a positive regulator of protein translation after irradiation. This initial response cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Downstream, the novel object recognition test showed a decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity contained increased delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau's previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within neurons. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.
Collapse
Affiliation(s)
- Riya Thomas
- MD Anderson-UT Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Die Zhang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A Cronkite
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rintu Thomas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence F Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo F Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA). Universidad Bernardo O'Higgins, Santiago, Chile
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Tangavelou K, Jiang S, Dadras S, Hulse JP, Sanchez K, Bondu V, Villaseñor Z, Mandell M, Peabody J, Chackerian B, Bhaskar K. Pathological tau activates inflammatory nuclear factor-kappa B (NF-κB) and pT181-Qβ vaccine attenuates NF-κB in PS19 tauopathy mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642500. [PMID: 40161741 PMCID: PMC11952447 DOI: 10.1101/2025.03.10.642500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tau regulates neuronal integrity. In tauopathy, phosphorylated tau detaches from microtubules and aggregates, and is released into the extracellular space. Microglia are the first responders to the extracellular tau, a danger/damage-associated molecular pattern (DAMP), which can be cleared by proteostasis and activate innate immune response gene expression by nuclear factor-kappa B (NF-κB). However, longitudinal NF-κB activation in tauopathies and whether pathological tau (pTau) contributes to NF-κB activity is unknown. Here, we tau oligomers from human Alzheimer's disease brain (AD-TO) activate NF-κB in mouse microglia and macrophages reducing the IκBα via promoting its secretion in the extracellular space. NF-κB activity peaks at 9- and 11-months age in PS19Luc + and hTauLuc + mice, respectively. Reducing pTau via pharmacological (DOX), genetic ( Mapt -/- ) or antibody-mediated neutralization (immunization with pT181-Qβ vaccine) reduces NF-κB activity, and together suggest pTau is a driver of NF-κB and chronic neuroinflammation tauopathies. Summary Neuronal tau activates microglial NF-κB constitutively by secreting its inhibitor IκBα. NF-κB activation in PS19Luc + and hTauLuc + mice peaks at 9- and 11-months of age, respectively. Neutralizing pTau with pT181-Qβ vaccine (targeting phosphorylated threonine 181 tau) alleviates NF-κB activity in tauopathy mice.
Collapse
|
8
|
Eastman G, Bloom GS, Sotelo-Silveira JR. The use of Benzonase to produce ribosome footprints simplifies translational levels quantification by Ribo-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642103. [PMID: 40161718 PMCID: PMC11952333 DOI: 10.1101/2025.03.07.642103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gene expression quantification through genomics methods is crucial for understanding diverse biological contexts. Among these methods, ribosome profiling (Ribo-seq) stands out as a valuable tool for uncovering post-transcriptional gene expression regulation by providing a comprehensive view of the translatome. While current protocols are time-intensive with limited variations, we introduced the use of the Benzonase enzyme to generate ribosome footprints from a polysome-enriched fraction that exhibit expected characteristics in size, transcriptome mapping, and periodicity. Comparing translatome from Benzonase- and RNAse I-derived footprints reveals minimal differences underscoring Benzonase's potential to streamline the protocol, reducing time, cost and bias. We further demonstrate Ribo-seq application in primary neuronal cultures, using Benzonase to digest the post-mitochondrial supernatant, thereby bypassing the labor-intensive ribosome/polysome purification step. The introduction of such protocol variations for Ribo-seq, especially for challenging low-input samples, offers a significant advancement of this resource for the community.
Collapse
Affiliation(s)
- Guillermo Eastman
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - José R. Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, 11600, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| |
Collapse
|
9
|
Landis MK, Kunze A. Intra-axonal Nanomagnetic Forces Differentially Impact hTau40 Transport Dynamics in Primary Cortical and Hippocampal Neurons. ACS NANO 2025; 19:7884-7897. [PMID: 39963892 DOI: 10.1021/acsnano.4c14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
A crucial aspect of neural engineering is the ability to manipulate proteins that are substantially involved in axonal outgrowth and maintenance. Previous work in this field has shown that applying low-magnitude (piconewton) forces to early stage neurons can result in altered distributions of critical structural proteins, such as the microtubule-associated protein Tau. Uncovering the mechanisms of Tau redistribution could provide a tool for manipulating dysregulated forms of the protein. This study examined how the transport of Tau responded to intra-axonal nanomagnetic forces (NMFs) in primary cortical and hippocampal neurons. High magnification, live cell fluorescent imaging was employed to visualize the transport of both full-length human Tau (hTau40) and amine-terminated, starch-coated fluorescent magnetic nanoparticles (afMNPs) to observe how these cell-internal forces could impact the transport of hTau40 within the axon. Here, we found that afMNPs acted by pulling on hTau40 puncta under NMF application, especially within cortical cells, where afMNPs were more likely to be found within the axon. Forces greater than 1 pN enabled differentiated transport speeds and displacement of hTau40 based on relative force direction. This data indicates that NMF can be utilized to engineer hTau40 transport, even in cells at later stages of maturation.
Collapse
Affiliation(s)
- Mackenna K Landis
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
- Montana Nanotechnology Facility, Montana State University, Bozeman, Montana 59717, United States
- Optical Technology Center, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
10
|
Beauchamp LC, Ellett LJ, Juan SMA, Liu XM, Hunt CPJ, Parish CL, Jacobson LH, Shepherd CE, Halliday GM, Bush AI, Vella LJ, Finkelstein DI, Barnham KJ. Evidence of COMT dysfunction in the olfactory bulb in Parkinson's disease. Acta Neuropathol 2025; 149:21. [PMID: 40024917 PMCID: PMC11872990 DOI: 10.1007/s00401-025-02861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hyposmia is one of the most prevalent non-motor symptoms of Parkinson's disease and antecedes motor dysfunction by up to a decade. However, the underlying pathophysiology remains poorly understood. In this study, we investigated the mechanisms of dopamine metabolism in post-mortem olfactory bulbs from ten Parkinson's disease and ten neurologic control subjects. In contrast to the loss of dopaminergic neurons in the midbrain, we observed an increase in tyrosine hydroxylase-positive neurons in the Parkinson's disease olfactory bulb, suggesting a potential role for dopamine in the hyposmia associated with the condition. Using immunohistochemistry, high-performance liquid chromatography, western blot, and enzyme-linked immunosorbent assays, we demonstrate a reduction in catechol-O-methyltransferase catabolism of dopamine to homovanillic acid, potentially due to a depletion of the methyl donor substrate S-adenosyl methionine. We hypothesized that reduction in catechol-O-methyltransferase activity would result in increased dopamine occupation of the D2 receptor, and consequent inhibition of olfactory processing. Next, we conducted pharmacological interventions to modify dopamine dynamics in hyposmic tau knockout mice, which exhibit altered dopamine metabolism. Our hypothesis was supported by the observation that the D2 receptor antagonist haloperidol temporarily alleviated olfactory deficits in these tau knockout mice. This study implicates a potential role of catechol-O-methyltransferase-mediated dopamine metabolism in the early olfactory impairments associated with Parkinson's disease.
Collapse
Affiliation(s)
- Leah C Beauchamp
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura J Ellett
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiang M Liu
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Glenda M Halliday
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney Brain and Mind Centre, Camperdown, NSW, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Surgery, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kevin J Barnham
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
11
|
Ashwini P, Subhash B, Amol M, Kumar D, Atmaram P, Ravindra K. Comprehensive investigation of multiple targets in the development of newer drugs for the Alzheimer's disease. Acta Pharm Sin B 2025; 15:1281-1310. [PMID: 40370532 PMCID: PMC12069117 DOI: 10.1016/j.apsb.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 05/16/2025] Open
Abstract
Alzheimer's disease, a significant contributor to dementia, is rapidly becoming a serious healthcare concern in the 21st century. The alarming number of patients with Alzheimer's disease is steadily increasing, which is contributed by the dearth of treatment options. The current treatment for Alzheimer's disease is heavily dependent on symptomatic treatment that has failed to cure the disease despite huge investments in the development of drugs. The clinical treatment of Alzheimer's disease with limited drugs is generally targeted towards the inhibition of N-methyl-d-aspartate receptor and acetylcholine esterase, which only elevate cognition levels for a limited period. Beyond the aforementioned molecular targets, β-amyloid was much explored with little success and thus created a feel and palpable growing emphasis on discovering new putative and novel targets for AD. This has inspired medicinal chemists to explore new targets, including microglia, triggering receptors expressed on myeloid cells 2 (Trem-2), and notum carboxylesterase, to discover new lead compounds. This review explores the functions, pathophysiological roles, and importance of all AD-related targets that address therapeutic and preventive approaches for the treatment and protection of Alzheimer's disease.
Collapse
Affiliation(s)
- Patil Ashwini
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Bodhankar Subhash
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Muthal Amol
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
- University of California, Davis, CA 95616, USA
| | - Pawar Atmaram
- Department of Pharmaceutics, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Kulkarni Ravindra
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| |
Collapse
|
12
|
Fu W, Chen M, Wang K, Chen Y, Cui Y, Xie Y, Lei ZN, Hu W, Sun G, Huang G, He C, Fretz J, Hettinghouse A, Liu R, Cai X, Zhang M, Chen Y, Jiang N, He M, Wiznia DH, Xu H, Chen ZS, Chen L, Tang K, Zhou H, Liu CJ. Tau is a receptor with low affinity for glucocorticoids and is required for glucocorticoid-induced bone loss. Cell Res 2025; 35:23-44. [PMID: 39743632 PMCID: PMC11701132 DOI: 10.1038/s41422-024-01016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/06/2024] [Indexed: 01/04/2025] Open
Abstract
Glucocorticoids (GCs) are the most prescribed anti-inflammatory and immunosuppressive drugs. However, their use is often limited by substantial side effects, such as GC-induced osteoporosis (GIO) with the underlying mechanisms still not fully understood. In this study, we identify Tau as a low-affinity binding receptor for GCs that plays a crucial role in GIO. Tau deficiency largely abolished bone loss induced by high-dose dexamethasone, a synthetic GC, in both inflammatory arthritis and GIO models. Furthermore, TRx0237, a Tau inhibitor identified from an FDA-approved drug library, effectively prevented GIO. Notably, combinatorial administration of TRx0237 and dexamethasone completely overcame the osteoporosis adverse effect of dexamethasone in treating inflammatory arthritis. These findings present Tau as a previously unrecognized GC receptor with low affinity, and provide potential strategies to mitigate a spectrum of GC-related adverse effects, particularly osteoporosis.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Meng Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Kaidi Wang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yujianan Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
- Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yazhou Cui
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yangli Xie
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Zi-Ning Lei
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guodong Sun
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Guiwu Huang
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Chaopeng He
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Xianyi Cai
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Mingshuang Zhang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuehong Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Nan Jiang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Minchun He
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel H Wiznia
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
14
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
15
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Ng B, Vowles J, Bertherat F, Abey A, Kilfeather P, Beccano-Kelly D, Stefana MI, O'Brien DP, Bengoa-Vergniory N, Carling PJ, Todd JA, Caffrey TM, Connor-Robson N, Cowley SA, Wade-Martins R. Tau depletion in human neurons mitigates Aβ-driven toxicity. Mol Psychiatry 2024; 29:2009-2020. [PMID: 38361127 PMCID: PMC11408257 DOI: 10.1038/s41380-024-02463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-β (Aβ) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aβ-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aβ were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aβ-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aβ-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.
Collapse
Affiliation(s)
- Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | - Féodora Bertherat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ajantha Abey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centres for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Tara M Caffrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK.
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
17
|
Mohl GA, Dixon G, Marzette E, McKetney J, Samelson AJ, Serras CP, Jin J, Li A, Boggess SC, Swaney DL, Kampmann M. The disease-causing tau V337M mutation induces tau hypophosphorylation and perturbs axon morphology pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597496. [PMID: 38895329 PMCID: PMC11185762 DOI: 10.1101/2024.06.04.597496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT, and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers.
Collapse
Affiliation(s)
- Gregory A Mohl
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gary Dixon
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Emily Marzette
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Justin McKetney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Carlota Pereda Serras
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Li
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Steven C Boggess
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
19
|
Pedicone C, Weitzman SA, Renton AE, Goate AM. Unraveling the complex role of MAPT-containing H1 and H2 haplotypes in neurodegenerative diseases. Mol Neurodegener 2024; 19:43. [PMID: 38812061 PMCID: PMC11138017 DOI: 10.1186/s13024-024-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
A ~ 1 Mb inversion polymorphism exists within the 17q21.31 locus of the human genome as direct (H1) and inverted (H2) haplotype clades. This inversion region demonstrates high linkage disequilibrium, but the frequency of each haplotype differs across ancestries. While the H1 haplotype exists in all populations and shows a normal pattern of genetic variability and recombination, the H2 haplotype is enriched in European ancestry populations, is less frequent in African ancestry populations, and nearly absent in East Asian ancestry populations. H1 is a known risk factor for several neurodegenerative diseases, and has been associated with many other traits, suggesting its importance in cellular phenotypes of the brain and entire body. Conversely, H2 is protective for these diseases, but is associated with predisposition to recurrent microdeletion syndromes and neurodevelopmental disorders such as autism. Many single nucleotide variants and copy number variants define H1/H2 haplotypes and sub-haplotypes, but identifying the causal variant(s) for specific diseases and phenotypes is complex due to the extended linkage equilibrium. In this review, we assess the current knowledge of this inversion region regarding genomic structure, gene expression, cellular phenotypes, and disease association. We discuss recent discoveries and challenges, evaluate gaps in knowledge, and highlight the importance of understanding the effect of the 17q21.31 haplotypes to promote advances in precision medicine and drug discovery for several diseases.
Collapse
Affiliation(s)
- Chiara Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O'Brien DP, Dhayal S, Zeissler ML, Knudsen JG, Kessler BM, Morgan NG, Todd JA, Richardson SJ, Stefana MI. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 2024; 147:87. [PMID: 38761203 PMCID: PMC11102361 DOI: 10.1007/s00401-024-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.
Collapse
Affiliation(s)
- Michael J Ellis
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Christiana Lekka
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Katie L Holden
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hanna Tulmin
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Faheem Seedat
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, University of Oxford, John Radcliffe Hospital, Level 3, Oxford, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shalinee Dhayal
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Marie-Louise Zeissler
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Radcliffe, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Noel G Morgan
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sarah J Richardson
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
21
|
Voskobiynyk Y, Li Z, Cochran JN, Davis MN, Carullo NVN, Creed RB, Buckingham SC, Hall AM, Wilson SM, Roberson ED. Excitoprotective effects of conditional tau reduction in excitatory neurons and in adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594246. [PMID: 38798487 PMCID: PMC11118377 DOI: 10.1101/2024.05.14.594246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tau reduction is a promising therapeutic strategy for Alzheimer's disease. In numerous models, tau reduction via genetic knockout is beneficial, at least in part due to protection against hyperexcitability and seizures, but the underlying mechanisms are unclear. Here we describe the generation and initial study of a new conditional Tau flox model to address these mechanisms. Given the protective effects of tau reduction against hyperexcitability, we compared the effects of selective tau reduction in excitatory or inhibitory neurons. Tau reduction in excitatory neurons mimicked the protective effects of global tau reduction, while tau reduction in inhibitory neurons had the opposite effect and increased seizure susceptibility. Since most prior studies used knockout mice lacking tau throughout development, we crossed Tau flox mice with inducible Cre mice and found beneficial effects of tau reduction in adulthood. Our findings support the effectiveness of tau reduction in adulthood and indicate that excitatory neurons may be a key site for its excitoprotective effects. SUMMARY A new conditional tau knockout model was generated to study the protective effects of tau reduction against hyperexcitability. Conditional tau reduction in excitatory, but not inhibitory, neurons was excitoprotective, and induced tau reduction in adulthood was excitoprotective without adverse effects.
Collapse
|
22
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
23
|
Yakout DW, Shroff A, Wei W, Thaker V, Allen ZD, Sajish M, Nazarko TY, Mabb AM. Tau regulates Arc stability in neuronal dendrites via a proteasome-sensitive but ubiquitin-independent pathway. J Biol Chem 2024; 300:107237. [PMID: 38552740 PMCID: PMC11061231 DOI: 10.1016/j.jbc.2024.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates of the microtubule-associated protein tau, a main component of neurofibrillary tangles. Alzheimer's disease (AD) is the most common type of tauopathy and dementia, with amyloid-beta pathology as an additional hallmark feature of the disease. Besides its role in stabilizing microtubules, tau is localized at postsynaptic sites and can regulate synaptic plasticity. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that plays a key role in synaptic plasticity, learning, and memory. Arc has been implicated in AD pathogenesis and regulates the release of amyloid-beta. We found that decreased Arc levels correlate with AD status and disease severity. Importantly, Arc protein was upregulated in the hippocampus of Tau KO mice and dendrites of Tau KO primary hippocampal neurons. Overexpression of tau decreased Arc stability in an activity-dependent manner, exclusively in neuronal dendrites, which was coupled to an increase in the expression of dendritic and somatic surface GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. The tau-dependent decrease in Arc was found to be proteasome-sensitive, yet independent of Arc ubiquitination and required the endophilin-binding domain of Arc. Importantly, these effects on Arc stability and GluA1 localization were not observed in the commonly studied tau mutant, P301L. These observations provide a potential molecular basis for synaptic dysfunction mediated through the accumulation of tau in dendrites. Our findings confirm that Arc is misregulated in AD and further show a physiological role for tau in regulating Arc stability and AMPA receptor targeting.
Collapse
Affiliation(s)
- Dina W Yakout
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Ankit Shroff
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Vishrut Thaker
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Zachary D Allen
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Taras Y Nazarko
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
24
|
Keane SP, Chadman KK, Gomez AR, Hu W. Pros and cons of narrow- versus wide-compartment rotarod apparatus: An experimental study in mice. Behav Brain Res 2024; 463:114901. [PMID: 38341101 DOI: 10.1016/j.bbr.2024.114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The rotarod test, a sensorimotor assessment that allows for quantitative evaluation of motor coordination in rodents, has extensive application in many research fields. The test results exhibit extreme between-study variability, sometimes making it challenging to conclude the validity of certain disease models and related therapeutic effects. Although the variation in test paradigms may account for this disparity, some features of rotarod apparatus including rod diameter make differences. However, it is unknown whether the width of animal compartment has a role in rotarod performance. Here we comprehensively evaluated the active rotarod performance and adverse incidents in multiple strains of mice on an 11-cm- or a 5-cm-wide compartment apparatus. We found that mouse behaviors on these apparatuses were surprisingly different. It took a markedly longer time to train mice on the narrow- than wide-compartment rotarod. Further, non-transgenic B6129S and tau knockout mice aged 11 months and beyond showed different levels of improvement based on the compartment width. These mice had no overt improvements on accelerating rotarod over 4-5 training sessions on the narrow compartment, contrary to marked progress on the wide counterpart. The incidents of mice passively somersaulting round and fragmented running occurred significantly more on the wide than narrow compartment during accelerating rotarod sessions. Mice fell off rod more frequently on narrow than wide compartments upon attempt to turn around and when moving backward on rod. The pros and cons of narrow versus wide compartments are informative as to how to choose a rotarod apparatus that best fits the animal models used.
Collapse
Affiliation(s)
- Sachiko P Keane
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Andres R Gomez
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wen Hu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| |
Collapse
|
25
|
Lachén-Montes M, Cartas-Cejudo P, Cortés A, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Involvement of Glucosamine 6 Phosphate Isomerase 2 (GNPDA2) Overproduction in β-Amyloid- and Tau P301L-Driven Pathomechanisms. Biomolecules 2024; 14:394. [PMID: 38672412 PMCID: PMC11048700 DOI: 10.3390/biom14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (P.C.-C.); (A.C.); (E.A.-C.); (E.P.); (K.A.); (R.D.-P.); (J.F.-I.)
| |
Collapse
|
26
|
Sun X, Eastman G, Shi Y, Saibaba S, Oliveira AK, Lukens JR, Norambuena A, Thompson JA, Purdy MD, Dryden K, Pardo E, Mandell JW, Bloom GS. Structural and functional damage to neuronal nuclei caused by extracellular tau oligomers. Alzheimers Dement 2024; 20:1656-1670. [PMID: 38069673 PMCID: PMC10947977 DOI: 10.1002/alz.13535] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Neuronal nuclei are normally smoothly surfaced. In Alzheimer's disease (AD) and other tauopathies, though, they often develop invaginations. We investigated mechanisms and functional consequences of neuronal nuclear invagination in tauopathies. METHODS Nuclear invagination was assayed by immunofluorescence in the brain, and in cultured neurons before and after extracellular tau oligomer (xcTauO) exposure. Nucleocytoplasmic transport was assayed in cultured neurons. Gene expression was investigated using nanoString nCounter technology and quantitative reverse transcription polymerase chain reaction. RESULTS Invaginated nuclei were twice as abundant in human AD as in cognitively normal adults, and were increased in mouse neurodegeneration models. In cultured neurons, nuclear invagination was induced by xcTauOs by an intracellular tau-dependent mechanism. xcTauOs impaired nucleocytoplasmic transport, increased histone H3 trimethylation at lysine 9, and altered gene expression, especially by increasing tau mRNA. DISCUSSION xcTauOs may be a primary cause of nuclear invagination in vivo, and by extension, impair nucleocytoplasmic transport and induce pathogenic gene expression changes. HIGHLIGHTS Extracellular tau oligomers (xcTauOs) cause neuronal nuclei to invaginate. xcTauOs alter nucleocytoplasmic transport, chromatin structure, and gene expression. The most upregulated gene is MAPT, which encodes tau. xcTauOs may thus drive a positive feedback loop for production of toxic tau.
Collapse
Affiliation(s)
- Xuehan Sun
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Guillermo Eastman
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente EstableMinisterio de Educación y CulturaMontevideoUruguay
| | - Yu Shi
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Subhi Saibaba
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ana K. Oliveira
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - John R. Lukens
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Andrés Norambuena
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Joseph A. Thompson
- Department of Materials Science & EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Michael D. Purdy
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Evelyn Pardo
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - James W. Mandell
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - George S. Bloom
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
27
|
Grosshans D, Thomas R, Zhang D, Cronkite C, Thomas R, Singh S, Bronk L, Morales R, Duman J. Subcellular functions of tau mediates repair response and synaptic homeostasis in injury. RESEARCH SQUARE 2024:rs.3.rs-3897741. [PMID: 38464175 PMCID: PMC10925419 DOI: 10.21203/rs.3.rs-3897741/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Injury responses in terminally differentiated cells such as neurons is tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces increase in phosphorylated tau in the nucleus and directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX after irradiation, indicating that tau may play an important role in neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels after irradiation, the latter being a positive regulator of protein translation. This cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Consequently, novel object recognition test showed decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity showed increase in delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau's previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within a neuron. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.
Collapse
|
28
|
Bukhari H, Nithianandam V, Battaglia RA, Cicalo A, Sarkar S, Comjean A, Hu Y, Leventhal MJ, Dong X, Feany MB. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578624. [PMID: 38352559 PMCID: PMC10862891 DOI: 10.1101/2024.02.02.578624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Rachel A. Battaglia
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Anthony Cicalo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Matthew J. Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA 02139
| | - Xianjun Dong
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
29
|
Sahara N, Higuchi M. Diagnostic and therapeutic targeting of pathological tau proteins in neurodegenerative disorders. FEBS Open Bio 2024; 14:165-180. [PMID: 37746832 PMCID: PMC10839408 DOI: 10.1002/2211-5463.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
30
|
Leitner D, Pires G, Kavanagh T, Kanshin E, Askenazi M, Ueberheide B, Devinsky O, Wisniewski T, Drummond E. Similar brain proteomic signatures in Alzheimer's disease and epilepsy. Acta Neuropathol 2024; 147:27. [PMID: 38289539 PMCID: PMC10827928 DOI: 10.1007/s00401-024-02683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
The prevalence of epilepsy is increased among Alzheimer's Disease (AD) patients and cognitive impairment is common among people with epilepsy. Epilepsy and AD are linked but the shared pathophysiological changes remain poorly defined. We aim to identify protein differences associated with epilepsy and AD using published proteomics datasets. We observed a highly significant overlap in protein differences in epilepsy and AD: 89% (689/777) of proteins altered in the hippocampus of epilepsy patients were significantly altered in advanced AD. Of the proteins altered in both epilepsy and AD, 340 were altered in the same direction, while 216 proteins were altered in the opposite direction. Synapse and mitochondrial proteins were markedly decreased in epilepsy and AD, suggesting common disease mechanisms. In contrast, ribosome proteins were increased in epilepsy but decreased in AD. Notably, many of the proteins altered in epilepsy interact with tau or are regulated by tau expression. This suggests that tau likely mediates common protein changes in epilepsy and AD. Immunohistochemistry for Aβ and multiple phosphorylated tau species (pTau396/404, pTau217, pTau231) showed a trend for increased intraneuronal pTau217 and pTau231 but no phosphorylated tau aggregates or amyloid plaques in epilepsy hippocampal sections. Our results provide insights into common mechanisms in epilepsy and AD and highlights the potential role of tau in mediating common pathological protein changes in epilepsy and AD.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, 10016, USA
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, 10016, USA
| | | | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| | - Eleanor Drummond
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
31
|
Ali MU, Anwar L, Ali MH, Iqubal MK, Iqubal A, Baboota S, Ali J. Signalling Pathways Involved in Microglial Activation in Alzheimer's Disease and Potential Neuroprotective Role of Phytoconstituents. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:819-840. [PMID: 36567300 DOI: 10.2174/1871527322666221223091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a commonly reported neurodegenerative disorder associated with dementia and cognitive impairment. The pathophysiology of AD comprises Aβ, hyperphosphorylated tau protein formation, abrupt cholinergic cascade, oxidative stress, neuronal apoptosis, and neuroinflammation. Recent findings have established the profound role of immunological dysfunction and microglial activation in the pathogenesis of AD. Microglial activation is a multifactorial cascade encompassing various signalling molecules and pathways such as Nrf2/NLRP3/NF-kB/p38 MAPKs/ GSK-3β. Additionally, deposited Aβ or tau protein triggers microglial activation and accelerates its pathogenesis. Currently, the FDA-approved therapeutic regimens are based on the modulation of the cholinergic system, and recently, one more drug, aducanumab, has been approved by the FDA. On the one hand, these drugs only offer symptomatic relief and not a cure for AD. Additionally, no targetedbased microglial medicines are available for treating and managing AD. On the other hand, various natural products have been explored for the possible anti-Alzheimer effect via targeting microglial activation or different targets of microglial activation. Therefore, the present review focuses on exploring the mechanism and associated signalling related to microglial activation and a detailed description of various natural products that have previously been reported with anti-Alzheimer's effect via mitigation of microglial activation. Additionally, we have discussed the various patents and clinical trials related to managing and treating AD.
Collapse
Affiliation(s)
- Mohd Uzair Ali
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Laiba Anwar
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Humair Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Sentiss Research Centre, Department of Product Development, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Ashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
32
|
Longfield SF, Mollazade M, Wallis TP, Gormal RS, Joensuu M, Wark JR, van Waardenberg AJ, Small C, Graham ME, Meunier FA, Martínez-Mármol R. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nat Commun 2023; 14:7277. [PMID: 37949856 PMCID: PMC10638352 DOI: 10.1038/s41467-023-43130-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | | | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
33
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Frost B. Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci 2023; 46:797-813. [PMID: 37591720 PMCID: PMC10528597 DOI: 10.1016/j.tins.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Postmitotic neurons require persistently active controls to maintain terminal differentiation. Unlike dividing cells, aberrant cell cycle activation in mature neurons causes apoptosis rather than transformation. In Alzheimer's disease (AD) and related tauopathies, evidence suggests that pathogenic forms of tau drive neurodegeneration via neuronal cell cycle re-entry. Multiple interconnected mechanisms linking tau to cell cycle activation have been identified, including, but not limited to, tau-induced overstabilization of the actin cytoskeleton, consequent changes to nuclear architecture, and disruption of heterochromatin-mediated gene silencing. Cancer- and development-associated pathways are upregulated in human and cellular models of tauopathy, and many tau-induced cellular phenotypes are also present in various cancers and progenitor/stem cells. In this review, I delve into mechanistic parallels between tauopathies, cancer, and development, and highlight the role of tau in cancer and in the developing brain. Based on these studies, I put forth a model by which pathogenic forms of tau disrupt the program that maintains terminal neuronal differentiation, driving cell cycle re-entry and consequent neuronal death. This framework presents tauopathies as conditions involving the profound toxic disruption of neuronal identity.
Collapse
Affiliation(s)
- Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
35
|
Zhao X, Zeng W, Xu H, Sun Z, Hu Y, Peng B, McBride JD, Duan J, Deng J, Zhang B, Kim SJ, Zoll B, Saito T, Sasaguri H, Saido TC, Ballatore C, Yao H, Wang Z, Trojanowski JQ, Brunden KR, Lee VMY, He Z. A microtubule stabilizer ameliorates protein pathogenesis and neurodegeneration in mouse models of repetitive traumatic brain injury. Sci Transl Med 2023; 15:eabo6889. [PMID: 37703352 PMCID: PMC10787216 DOI: 10.1126/scitranslmed.abo6889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Tau pathogenesis is a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Although the events leading to initial tau misfolding and subsequent tau spreading in patient brains are largely unknown, traumatic brain injury (TBI) may be a risk factor for tau-mediated neurodegeneration. Using a repetitive TBI (rTBI) paradigm, we report that rTBI induced somatic accumulation of phosphorylated and misfolded tau, as well as neurodegeneration across multiple brain areas in 7-month-old tau transgenic PS19 mice but not wild-type (WT) mice. rTBI accelerated somatic tau pathology in younger PS19 mice and WT mice only after inoculation with tau preformed fibrils and AD brain-derived pathological tau (AD-tau), respectively, suggesting that tau seeds are needed for rTBI-induced somatic tau pathology. rTBI further disrupted axonal microtubules and induced punctate tau and TAR DNA binding protein 43 (TDP-43) pathology in the optic tracts of WT mice. These changes in the optic tract were associated with a decline of visual function. Treatment with a brain-penetrant microtubule-stabilizing molecule reduced rTBI-induced tau, TDP-43 pathogenesis, and neurodegeneration in the optic tract as well as visual dysfunction. Treatment with the microtubule stabilizer also alleviated rTBI-induced tau pathology in the cortices of AD-tau-inoculated WT mice. These results indicate that rTBI facilitates abnormal microtubule organization, pathological tau formation, and neurodegeneration and suggest microtubule stabilization as a potential therapeutic avenue for TBI-induced neurodegeneration.
Collapse
Affiliation(s)
- Xinyi Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zihan Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Peng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jennifer D McBride
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jiangtao Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Juan Deng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Soo-Jung Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bryan Zoll
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Takashi Saito
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Sasaguri
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haishan Yao
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
36
|
Paterno G, Torrellas J, Bell BM, Gorion KMM, Quintin SS, Hery GP, Prokop S, Giasson BI. Novel Conformation-Dependent Tau Antibodies Are Modulated by Adjacent Phosphorylation Sites. Int J Mol Sci 2023; 24:13676. [PMID: 37761979 PMCID: PMC10530490 DOI: 10.3390/ijms241813676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Tau proteins within the adult central nervous system (CNS) are found to be abnormally aggregated into heterogeneous filaments in neurodegenerative diseases, termed tauopathies. These tau inclusions are pathological hallmarks of Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP). The neuropathological hallmarks of these diseases burden several cell types within the CNS, and have also been shown to be abundantly phosphorylated. The mechanism(s) by which tau aggregates in the CNS is not fully known, but it is hypothesized that hyperphosphorylated tau may precede and further promote filament formation, leading to the production of these pathological inclusions. In the studies herein, we generated and thoroughly characterized two novel conformation-dependent tau monoclonal antibodies that bind to residues Pro218-Glu222, but are sensitive to denaturing conditions and highly modulated by adjacent downstream phosphorylation sites. These epitopes are present in the neuropathological hallmarks of several tauopathies, including AD, PiD, CBD, and PSP. These novel antibodies will further enable investigation of tau-dependent pathological inclusion formation and enhance our understanding of the phosphorylation signatures within tauopathies with the possibility of new biomarker developments.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Jose Torrellas
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Stephan S. Quintin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Gabriela P. Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
Wang R, Lu KP, Zhou XZ. Function and regulation of cis P-tau in the pathogenesis and treatment of conventional and nonconventional tauopathies. J Neurochem 2023; 166:904-914. [PMID: 37638382 DOI: 10.1111/jnc.15909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 08/29/2023]
Abstract
Conventional tauopathies are a group of disease characterized by tau inclusions in the brains, including Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and certain types of frontotemporal dementia (FTD), among which AD is the most prevalent. Extensive post-translational modifications, especially hyperphosphorylation, and abnormal aggregation of tau protein underlie tauopathy. Cis-trans isomerization of protein plays an important role in protein folding, function, and degradation, which is regulated by peptidyl-proline isomerases (PPIases). Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), the only PPIase found to isomerize Pro following phosphorylated Ser or Thr residues, alters phosphorylated tau protein conformation at pT231-P motif. The cis P-tau but not trans P-tau serves as an early driver of multiple neurodegenerative disease, encompassing AD, traumatic brain injury (TBI), chronic traumatic encephalopathy (CTE), and vascular contributions to cognitive impairment and dementia (VCID). Cis but not trans P-tau is resistant to protein dephosphorylation and degradation, and also prone to protein aggregation. Cis P-tau loses its ability to stabilize microtubule, causing and spreading tauopathy mainly in axons, a pathological process called cistauosis. The conformation-specific monoclonal antibody that targets only the cis P-tau serves as a very early diagnosis method and a potential treatment of not only conventional tauopathies but also nonconventional tauopathies such as VCID, with clinical trials ongoing. Notably, cis P-tau antibody is the only clinical-stage Alzheimer's therapeutic that has shown the efficacy in animal models of not only AD but also TBI and stroke, which are very early stages of dementia. Here we review the identification and pathological consequences of cis pt231-tau, the role of its regulator Pin1, as well as the clinical implication of cis pt231-tau conformation-specific antibody in conventional and nonconventional tauopathies.
Collapse
Affiliation(s)
- Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, and Oncology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
38
|
Mangiafico SP, Tuo QZ, Li XL, Liu Y, Haralambous C, Ding XL, Ayton S, Wang Q, Laybutt DR, Chan JY, Zhang X, Kos C, Thomas HE, Loudovaris T, Yang CH, Joannides CN, Lamont BJ, Dai L, He HH, Dong B, Andrikopoulos S, Bush AI, Lei P. Tau suppresses microtubule-regulated pancreatic insulin secretion. Mol Psychiatry 2023; 28:3982-3993. [PMID: 37735502 DOI: 10.1038/s41380-023-02267-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet β-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in β-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.
Collapse
Affiliation(s)
- Salvatore P Mangiafico
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiao-Lan Li
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yu Liu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Christian Haralambous
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Xu-Long Ding
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Qing Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Jeng Yie Chan
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Cameron Kos
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
- Institute for Cellular Transplantation, Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, 85724-5066, USA
| | - Chieh-Hsin Yang
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Christos N Joannides
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Benjamin J Lamont
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hai-Huai He
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Biao Dong
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Sofianos Andrikopoulos
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
39
|
McMillan PJ, Benbow SJ, Uhrich R, Saxton A, Baum M, Strovas T, Wheeler JM, Baker J, Liachko NF, Keene CD, Latimer CS, Kraemer BC. Tau-RNA complexes inhibit microtubule polymerization and drive disease-relevant conformation change. Brain 2023; 146:3206-3220. [PMID: 36732296 PMCID: PMC10393409 DOI: 10.1093/brain/awad032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.
Collapse
Affiliation(s)
- Pamela J McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah J Benbow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Rikki Uhrich
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Misa Baum
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Timothy Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jeanna M Wheeler
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jeremy Baker
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C Kraemer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Aisa MC, Cappuccini B, Favilli A, Datti A, Nardicchi V, Coata G, Gerli S. Biochemical and Anthropometric Parameters for the Early Recognition of the Intrauterine Growth Restriction and Preterm Neonates at Risk of Impaired Neurodevelopment. Int J Mol Sci 2023; 24:11549. [PMID: 37511307 PMCID: PMC10380875 DOI: 10.3390/ijms241411549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND S100B and Tau are implicated with both brain growth and injury. Their urinary levels in 30-to-40-day-old full-term, preterm, IUGR, and preterm-IUGR subjects were measured to investigate their possible relationship with future delayed neurodevelopment. METHODS Values were related to the neuro-behavioral outcome at two years of age, as well as to brain volumes and urinary NGF assessed at the same postnatal time point. RESULTS Using the Griffiths III test, cognitive and motor performances were determined to establish subgroups characterized by either normal or impaired neuro-behavior. The latter included preterm, IUGR, and preterm-IUGR individuals who exhibited significantly higher and lower S100B and Tau levels, respectively, along with markedly reduced cerebral volumes and urinary NGF, as previously demonstrated. Contrary to NGF, however, Tau and S100B displayed a weak correlation with brain volumes. CONCLUSIONS Delayed cognitive and motor performances observed in two-year-old preterm and IUGR-born individuals were also found to be associated with anomalous urinary levels of S100B and Tau, assessed at 30-40 days of the postnatal period, and their changes did not correlate with brain growth. Thus, our data suggests that, in addition to cerebral volumes and NGF, urinary S100B and Tau can also be considered as valuable parameters for the early detection of future neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Maria Cristina Aisa
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- GeBiSa, Research Foundation, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | | | - Alessandro Favilli
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- GeBiSa, Research Foundation, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Alessandro Datti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | | | - Giuliana Coata
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- GeBiSa, Research Foundation, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
41
|
Rajbanshi B, Guruacharya A, Mandell JW, Bloom GS. Localization, induction, and cellular effects of tau phosphorylated at threonine 217. Alzheimers Dement 2023; 19:2874-2887. [PMID: 36633254 PMCID: PMC10336182 DOI: 10.1002/alz.12892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Tau phosphorylation at T217 is a promising Alzheimer's disease (AD) biomarker, but its functional consequences were unknown. METHODS Human brain and cultured mouse neurons were analyzed by immunoblotting and immunofluorescence for total tau, taupT217 , taupT181 , taupT231 , and taupS396/pS404 . Direct stochastic optical reconstruction microscopy (dSTORM) super resolution microscopy was used to localize taupT217 in cultured neurons. Enhanced green fluorescent protein (EGFP)-tau was expressed in fibroblasts as wild type and T217E pseudo-phosphorylated tau, and fluorescence recovery after photobleaching (FRAP) reported tau turnover rates on microtubules. RESULTS In the brain, taupT217 appears in neurons at Braak stages I and II, becomes more prevalent later, and co-localizes partially with other phospho-tau epitopes. In cultured neurons, taupT217 is increased by extracellular tau oligomers (xcTauOs) and is associated with developing post-synaptic sites. FRAP recovery was fastest for EGFP-tauT217E . CONCLUSION TaupT217 increases in the brain as AD progresses and is induced by xcTauOs. Post-synaptic taupT217 suggests a role for T217 phosphorylation in synapse impairment. T217 phosphorylation reduces tau's affinity for microtubules. HIGHLIGHTS Validation of anti-tau phosphorylated at threonine-217 (taupT217 ) specificity is essential due to epitope redundancy. taupT217 increases as Alzheimer's disease progresses and is found throughout diseased neurons. taupT217 is associated with developing post-synaptic sites in cultured neurons. Extracellular oligomers of tau, but not amyloid beta, increase intracellular taupT217 . T217E pseudo-phosphorylation reduces tau's affinity for microtubules.
Collapse
Affiliation(s)
- Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - James W. Mandell
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
42
|
Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EGB, De Deyn PP, Ducharme S, Jonsson M, Schneider A, Rinne JO, Ludolph AC, Bodenschatz R, Kordasiewicz H, Swayze EE, Fitzsimmons B, Mignon L, Moore KM, Yun C, Baumann T, Li D, Norris DA, Crean R, Graham DL, Huang E, Ratti E, Bennett CF, Junge C, Lane RM. Tau-targeting antisense oligonucleotide MAPT Rx in mild Alzheimer's disease: a phase 1b, randomized, placebo-controlled trial. Nat Med 2023; 29:1437-1447. [PMID: 37095250 PMCID: PMC10287562 DOI: 10.1038/s41591-023-02326-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/29/2023] [Indexed: 04/26/2023]
Abstract
Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .
Collapse
Affiliation(s)
- Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK.
| | | | - Daniel J Blackburn
- Sheffield Teaching Hospital NHS Foundation Trust, NIHR Sheffield Clinical Research Facility and NIHR Sheffield Biomedical Research Centre, Royal Hallamshire Hospital, Sheffield, UK
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Peter Paul De Deyn
- University Medical Center Groningen / RUG, Alzheimer Center Groningen, Groningen, the Netherlands
| | - Simon Ducharme
- Douglas Mental Health University Institute and McConnell Brain Imaging Centre of the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael Jonsson
- Memory Clinic, Psychiatry - Cognition and Geriatric Psychiatry, Sahlgrenska University Hospital, Gothenburg/Molndal, Sweden
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE, and Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Juha O Rinne
- CRST Oy; Turku PET Centre University of Turku and Turku University Hospital, Turku, Finland
| | - Albert C Ludolph
- Department of Neurology University of Ulm and DZNE, Ulm, Germany
| | - Ralf Bodenschatz
- Pharmakologisches Studienzentrum Chemnitz GmbH Mittweida, Mittweida, Germany
| | | | | | | | | | | | - Chris Yun
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Dan Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ramirez DM, Whitesell JD, Bhagwat N, Thomas TL, Ajay AD, Nawaby A, Delatour B, Bay S, LaFaye P, Knox JE, Harris JA, Meeks JP, Diamond MI. Endogenous pathology in tauopathy mice progresses via brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541792. [PMID: 37293074 PMCID: PMC10245958 DOI: 10.1101/2023.05.23.541792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.
Collapse
Affiliation(s)
- Denise M.O. Ramirez
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Jennifer D. Whitesell
- Allen Institute for Brain Science; Seattle, WA, USA
- Cajal Neuroscience; Seattle, WA, USA
| | - Nikhil Bhagwat
- Allen Institute for Brain Science; Seattle, WA, USA
- McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), McGill University; Montreal, Quebec, Canada
| | - Talitha L. Thomas
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Apoorva D. Ajay
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Ariana Nawaby
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Benoît Delatour
- Paris Brain Institute (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière; Paris, France
| | - Sylvie Bay
- Unité de Chimie des Biomolécules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523; Paris, France
| | - Pierre LaFaye
- Antibody Engineering Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528; Paris, France
| | | | | | - Julian P. Meeks
- Department of Neuroscience, University of Rochester Medical School; Rochester, NY, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center; Dallas, TX, USA
| |
Collapse
|
44
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated tau Inflicts Intracellular Stress Responses That Are Mitigated by Apomorphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540661. [PMID: 37292976 PMCID: PMC10245566 DOI: 10.1101/2023.05.13.540661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
|
45
|
Best MN, Lim Y, Ferenc NN, Kim N, Min L, Wang DB, Sharifi K, Wasserman AE, McTavish SA, Siller KH, Jones MK, Jenkins PM, Mandell JW, Bloom GS. Extracellular Tau Oligomers Damage the Axon Initial Segment. J Alzheimers Dis 2023:JAD221284. [PMID: 37182881 DOI: 10.3233/jad-221284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD) brain, neuronal polarity and synaptic connectivity are compromised. A key structure for regulating polarity and functions of neurons is the axon initial segment (AIS), which segregates somatodendritic from axonal proteins and initiates action potentials. Toxic tau species, including extracellular oligomers (xcTauOs), spread tau pathology from neuron to neuron by a prion-like process, but few other cell biological effects of xcTauOs have been described. OBJECTIVE Test the hypothesis that AIS structure is sensitive to xcTauOs. METHODS Cultured wild type (WT) and tau knockout (KO) mouse cortical neurons were exposed to xcTauOs, and quantitative western blotting and immunofluorescence microscopy with anti-TRIM46 monitored effects on the AIS. The same methods were used to compare TRIM46 and two other resident AIS proteins in human hippocampal tissue obtained from AD and age-matched non-AD donors. RESULTS Without affecting total TRIM46 levels, xcTauOs reduce the concentration of TRIM46 within the AIS and cause AIS shortening in cultured WT, but not TKO neurons. Lentiviral-driven tau expression in tau KO neurons rescues AIS length sensitivity to xcTauOs. In human AD hippocampus, the overall protein levels of multiple resident AIS proteins are unchanged compared to non-AD brain, but TRIM46 concentration within the AIS and AIS length are reduced in neurons containing neurofibrillary tangles. CONCLUSION xcTauOs cause partial AIS damage in cultured neurons by a mechanism dependent on intracellular tau, thereby raising the possibility that the observed AIS reduction in AD neurons in vivo is caused by xcTauOs working in concert with endogenous neuronal tau.
Collapse
Affiliation(s)
- Merci N Best
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Yunu Lim
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Nina N Ferenc
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Nayoung Kim
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dora Bigler Wang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Kamyar Sharifi
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Anna E Wasserman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Sloane A McTavish
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Karsten H Siller
- Research Computing, University of Virginia, Charlottesville, VA, USA
| | - Marieke K Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, VA, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James W Mandell
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
46
|
Sun X, Eastman G, Shi Y, Saibaba S, Oliveira AK, Lukens JR, Norambuena A, Mandell JW, Bloom GS. Structural and functional damage to neuronal nuclei caused by extracellular tau oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539873. [PMID: 37214909 PMCID: PMC10197541 DOI: 10.1101/2023.05.08.539873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Neuronal nuclei are normally smoothly surfaced. In Alzheimer's disease (AD) and other tauopathies, though, they often develop invaginations. We investigated mechanisms and functional consequences of neuronal nuclear invagination in tauopathies. METHODS Nuclear invagination was assayed by immunofluorescence in brain, and in cultured neurons before and after extracellular tau oligomers (xcTauO) exposure. Nucleocytoplasmic transport was assayed in cultured neurons. Gene expression was investigated using nanoString nCounter technology and qRT-PCR. RESULTS Invaginated nuclei were twice as abundant in human AD as in cognitively normal adults, and were increased in mouse neurodegeneration models. In cultured neurons, nuclear invagination was induced by xcTauOs by an intracellular tau-dependent mechanism. xcTauOs impaired nucleocytoplasmic transport, increased histone H3 trimethylation at lysine 9 and altered gene expression, especially by increasing tau mRNA. DISCUSSION xcTauOs may be a primary cause of nuclear invagination in vivo, and by extension, impair nucleocytoplasmic transport and induce pathogenic gene expression changes.
Collapse
Affiliation(s)
- Xuehan Sun
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Guillermo Eastman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Yu Shi
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Subhi Saibaba
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ana K. Oliveira
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Andrés Norambuena
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - James W. Mandell
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
47
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
48
|
Reinhardt L, Musacchio F, Bichmann M, Behrendt A, Ercan-Herbst E, Stein J, Becher I, Haberkant P, Mader J, Schöndorf DC, Schmitt M, Korffmann J, Reinhardt P, Pohl C, Savitski M, Klein C, Gasparini L, Fuhrmann M, Ehrnhoefer DE. Dual truncation of tau by caspase-2 accelerates its CHIP-mediated degradation. Neurobiol Dis 2023; 182:106126. [PMID: 37086756 DOI: 10.1016/j.nbd.2023.106126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.
Collapse
Affiliation(s)
- Lydia Reinhardt
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Fabrizio Musacchio
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Maria Bichmann
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Annika Behrendt
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Ebru Ercan-Herbst
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Juliane Stein
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Isabelle Becher
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Per Haberkant
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Julia Mader
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - David C Schöndorf
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Melanie Schmitt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Jürgen Korffmann
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Christian Pohl
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Mikhail Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Laura Gasparini
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Dagmar E Ehrnhoefer
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
49
|
Torii T, Miyamoto Y, Nakata R, Higashi Y, Shinmyo Y, Kawasaki H, Miyasaka T, Misonou H. Identification of Tau protein as a novel marker for maturation and pathological changes of oligodendrocytes. Glia 2023; 71:1002-1017. [PMID: 36565228 DOI: 10.1002/glia.24322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Microtubule-associated protein Tau is primarily expressed in axons of neurons, but also in Olig2-positive oligodendrocytes in adult rodent and monkey brains. In this study, we sought to determine at what cell stage Tau becomes expressed in the oligodendrocyte lineage. We performed immunostaining of adult mouse brain sections using well-known markers of oligodendrocyte lineage and found that Tau is expressed in mature oligodendrocytes, but not in oligodendrocyte progenitors and immature pre-oligodendrocytes. We also investigated Tau expression in developing mouse brain. Surprisingly, Tau expression occurred after the peak of myelination and even exceeded GSTπ expression, which has been considered as a marker of myelinating oligodendrocytes. These results suggest Tau as a novel marker of oligodendrocyte maturation. We then investigated whether Tau is important for oligodendrocyte development and/or myelination and how Tau changes in demyelination. First, we found no changes in myelination and oligodendrocyte markers in Tau knockout mice, suggesting that Tau is dispensable. Next, we analyzed the proteolipid protein 1 transgenic model of Pelizaeus-Merzbacher disease, which is a rare leukodystrophy. In hemizygous transgenic mice, the number of Tau-positive cells were significantly increased as compared with wild type mice. These cells were also positive for Olig2, CC1, and GSTπ, but not PDGFRα and GPR17. In stark contrast, the expression level of Tau, as well as GSTπ, was dramatically decreased in the cuprizone-induced model of multiple sclerosis. Taken together, we propose Tau as a new marker of oligodendrocyte lineage and for investigating demyelination lesions.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagayaku, Tokyo, Japan
| | - Rinaho Nakata
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuto Higashi
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa-shi, Ishikawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa-shi, Ishikawa, Japan
| | - Tomohiro Miyasaka
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto, Japan.,Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Hiroaki Misonou
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| |
Collapse
|
50
|
Andrés-Benito P, Flores Á, Busquet-Areny S, Carmona M, Ausín K, Cartas-Cejudo P, Lachén-Montes M, Del Rio JA, Fernández-Irigoyen J, Santamaría E, Ferrer I. Deregulated Transcription and Proteostasis in Adult mapt Knockout Mouse. Int J Mol Sci 2023; 24:ijms24076559. [PMID: 37047532 PMCID: PMC10095510 DOI: 10.3390/ijms24076559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, β-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - África Flores
- Neuropharmacology & Pain Group, Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Busquet-Areny
- Neuropathology Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropathology Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular and Cellular Neurobiotechnology Group, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), 08028 Barcelona, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropathology Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Emeritus Researcher, Bellvitge Biomedical Research Institute (IDIBELL), Emeritus Professor, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|