1
|
Lee DK, Kim M, Jeong J, Lee YS, Yoon JW, An MJ, Jung HY, Kim CH, Ahn Y, Choi KH, Jo C, Lee CK. Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. Curr Res Food Sci 2023; 7:100551. [PMID: 37575132 PMCID: PMC10412782 DOI: 10.1016/j.crfs.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cellular agriculture is an emerging research field of agribiotechnology that aims to produce agricultural products using stem cells, without sacrificing animals or cultivating crops. Cultivated meat, as a representative cellular product of cellular agriculture, is being actively researched due to global food insecurity, environmental, and ethical concerns. This review focuses on the application of stem cells, which are the seeds of cellular agriculture, for the production of cultivated meat, with emphasis on deriving and culturing muscle and adipose stem cells for imitating fresh meat. Establishing standards and safety regulations for culturing stem cells is crucial for the market entry of cultured muscle tissue-based biomaterials. Understanding stem cells is a prerequisite for creating reliable cultivated meat and other cellular agricultural biomaterials. The techniques and regulations from the cultivated meat industry could pave the way for new cellular agriculture industries in the future.
Collapse
Affiliation(s)
- Dong-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Seok Lee
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Ji Won Yoon
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Min-Jeong An
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yelim Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
3
|
Salemi S, Prange JA, Baumgartner V, Mohr-Haralampieva D, Eberli D. Adult stem cell sources for skeletal and smooth muscle tissue engineering. Stem Cell Res Ther 2022; 13:156. [PMID: 35410452 PMCID: PMC8996587 DOI: 10.1186/s13287-022-02835-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2023] Open
Abstract
INTRODUCTION Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process. CONCLUSION The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.
Collapse
Affiliation(s)
- Souzan Salemi
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Jenny A. Prange
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Valentin Baumgartner
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Deana Mohr-Haralampieva
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Daniel Eberli
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| |
Collapse
|
4
|
Fabre P, Molina T, Orfi Z, Dumont NA. Assessment of Muscle Function Following hiPSC-Derived Myoblast Transplantation in Dystrophic Mice. Curr Protoc 2022; 2:e356. [PMID: 35085428 DOI: 10.1002/cpz1.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscular dystrophies are caused by genetic variants in genes encoding for proteins important for muscle structure or function, leading to a loss of muscle integrity and muscle wasting. To this day, no cure has been found for these diseases. Different therapeutic approaches are under intensive investigation. Cellular therapy has been extensively studied for diseases such as Duchenne Muscular Dystrophy, a debilitating disease caused by a mutation in the DMD gene, encoding for the dystrophin protein. Healthy myogenic cells transplanted into dystrophic muscles have the potential to engraft at long-term and fuse to donate their nuclei to the dystrophin-deficient myofibers, thereby restoring normal gene expression. Despite promising preclinical studies, the clinical trials had limited success so far due to many technical limitations. The recent technological advances in induced-pluripotent stem cells and genome editing opened new opportunities in this field. One of the keys to efficiently translate these new technologies into clinical benefits is to use relevant endpoints for preclinical studies. Considering that dystrophic muscles are susceptible to contraction-induced injury, the assessment of their resistance to repeated eccentric contractions is an optimal outcome to evaluate their functional recovery following cell transplantation. This protocol describes the procedure to generate induced-pluripotent stem cell-derived myoblasts, transplant these cells into skeletal muscle of immunosuppressed dystrophic mice, and assess muscle function in situ by measuring the resistance of the transplanted muscle to repeated eccentric contractions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Generation of hiPSC-derived myoblasts. Basic Protocol 2: Transplantation of hiPSC-derived myoblasts in skeletal muscle of dystrophic mice. Basic Protocol 3: Assessment of muscle function in situ.
Collapse
Affiliation(s)
- Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Grabowska I, Zimowska M, Maciejewska K, Jablonska Z, Bazga A, Ozieblo M, Streminska W, Bem J, Brzoska E, Ciemerych MA. Adipose Tissue-Derived Stromal Cells in Matrigel Impacts the Regeneration of Severely Damaged Skeletal Muscles. Int J Mol Sci 2019; 20:E3313. [PMID: 31284492 PMCID: PMC6651806 DOI: 10.3390/ijms20133313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
In case of large injuries of skeletal muscles the pool of endogenous stem cells, i.e., satellite cells, might be not sufficient to secure proper regeneration. Such failure in reconstruction is often associated with loss of muscle mass and excessive formation of connective tissue. Therapies aiming to improve skeletal muscle regeneration and prevent fibrosis may rely on the transplantation of different types of stem cell. Among such cells are adipose tissue-derived stromal cells (ADSCs) which are relatively easy to isolate, culture, and manipulate. Our study aimed to verify applicability of ADSCs in the therapies of severely injured skeletal muscles. We tested whether 3D structures obtained from Matrigel populated with ADSCs and transplanted to regenerating mouse gastrocnemius muscles could improve the regeneration. In addition, ADSCs used in this study were pretreated with myoblasts-conditioned medium or anti-TGFβ antibody, i.e., the factors modifying their ability to proliferate, migrate, or differentiate. Analyses performed one week after injury allowed us to show the impact of 3D cultured control and pretreated ADSCs at muscle mass and structure, as well as fibrosis development immune response of the injured muscle.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Maciejewska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zuzanna Jablonska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bazga
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Ozieblo
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
8
|
Kowalski K, Dos Santos M, Maire P, Ciemerych MA, Brzoska E. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche. Stem Cell Res Ther 2018; 9:258. [PMID: 30261919 PMCID: PMC6161400 DOI: 10.1186/s13287-018-0993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022] Open
Abstract
Background Skeletal muscle regeneration is possible thanks to unipotent stem cells, which are satellite cells connected to the myofibers. Populations of stem cells other than muscle-specific satellite cells are considered as sources of cells able to support skeletal muscle reconstruction. Among these are bone marrow-derived mesenchymal stem cells (BM-MSCs), which are multipotent, self-renewing stem cells present in the bone marrow stroma. Available data documenting the ability of BM-MSCs to undergo myogenic differentiation are not definitive. In the current work, we aimed to check if the satellite cell niche could impact the ability of bone marrow-derived cells to follow a myogenic program. Methods We established a new in-vitro method for the coculture of bone marrow-derived cells (BMCs) that express CXCR4 (CXCR4+BMCs; the stromal-derived factor-1 (Sdf-1) receptor) with myofibers. Using various tests, we analyzed the myogenic identity of BMCs and their ability to fuse with myoblasts in vitro and in vivo. Results We showed that Sdf-1 treatment increased the number of CXCR4+BMCs able to bind the myofiber and occupy the satellite cell niche. Moreover, interaction with myofibers induced the expression of myogenic regulatory factors (MRFs) in CXCR4+BMCs. CXCR4+BMCs, pretreated by the coculture with myofibers and Sdf-1, participated in myotube formation in vitro and also myofiber reconstruction in vivo. We also showed that Sdf-1 overexpression in vivo (in injured and regenerating muscles) supported the participation of CXCR4+BMCs in new myofiber formation. Conclusion We showed that CXCR4+BMC interaction with myofibers (that is, within the satellite cell niche) induced CXCR4+BMC myogenic commitment. CXCR4+BMCs, pretreated using such a method of culture, were able to participate in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Matthieu Dos Santos
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
9
|
Lei Z, Singh G, Min Z, Shixuan C, Xu K, Pengcheng X, Xueer W, Yinghua C, Lu Z, Lin Z. Bone marrow-derived mesenchymal stem cells laden novel thermo-sensitive hydrogel for the management of severe skin wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:159-167. [PMID: 29853078 DOI: 10.1016/j.msec.2018.04.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 01/03/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are easy to collect and culture, and it is identified that it has multi-directional differentiation potential, moreover it has low immunogenicity, hence it can be used as an allogeneic cell source for skin wound healing. Hydrogel has been widely used in skin wound healing own to it is able to mimic the 3D microenvironment of cells, which supports cell proliferation, migration and secretion. In this study, we created a novel biocompatible thermo-sensitive hydrogel to carry BMSCs for full-thickness skin wound healing. The thermo-sensitive hydrogel loaded with BMSCs can fast achieve sol-gel transition after implanting to the wound. Histological results confirmed that hydrogel-BMSCs combination group showed significant promotion of wound closure, epithelial cells' proliferation and re-epithelialization, and reduced inflammatory responses in the wounds and in the tissues surrounding the wounds. The combination therapy also can promote collagen deposition, TGF-β1 and bFGF secretion and tissue remodeling. The present study provides a promising strategy for the clinical treatment of skin wounds.
Collapse
Affiliation(s)
- Zhang Lei
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gurankit Singh
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada
| | - Zhang Min
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chen Shixuan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kaige Xu
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada
| | - Xu Pengcheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wang Xueer
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chen Yinghua
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhang Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Elderly Health Services Research Center, Southern Medical University, Guangzhou 510515, China.
| | - Zhang Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Proteomics and Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Takei D, Nishi M, Fukada SI, Doi M, Okamura H, Uezumi A, Zhang L, Yoshida M, Miyazato M, Ichimura A, Takeshima H. Gm7325 is MyoD-dependently expressed in activated muscle satellite cells. Biomed Res 2018. [PMID: 28637957 DOI: 10.2220/biomedres.38.215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Gm7325 gene, bioinformatically identified in the mouse genome, encodes a small protein but has not been characterized until recently. Our gene expression analysis revealed that Gm7325 transcription is remarkably upregulated in injured skeletal muscle tissues. Activated satellite cells and immature myotubes were densely decorated with positive signals for Gm7325 mRNA in in situ hybridization analysis, while no obvious signals were observed in quiescent satellite cells and mature myofibers. In the 5'-flanking regions of mouse Gm7325 and its human homologue, conserved E-box motifs for helix-loop-helix transcription factors are repeatedly arranged around the putative promoter regions. Reporter gene assays suggested that MyoD, a master transcription factor for myogenesis, binds to the conserved E-box motifs to activate Gm7325 expression. Therefore, Gm7325, as a novel MyoD-target gene, is specifically induced in activated satellite cells, and may have an important role in skeletal myogenesis.
Collapse
Affiliation(s)
- Daisuke Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University
| | | | - Masao Doi
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Lidan Zhang
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Mikiya Miyazato
- National Cerebral and Cardiovascular Center Research Institute
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University
| | | |
Collapse
|
11
|
Regenerative Medicine Applications of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:115-141. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.
Collapse
|
12
|
Klomps LV, Zomorodi N, Kim HM. Role of transplanted bone marrow cells in development of rotator cuff muscle fatty degeneration in mice. J Shoulder Elbow Surg 2017; 26:2177-2186. [PMID: 28869071 DOI: 10.1016/j.jse.2017.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff muscle fatty degeneration after a chronic tendon tear is an irreversible pathologic change associated with poor clinical outcomes of tendon repair, and its exact pathogenesis remains unknown. We sought to investigate the role of transplanted bone marrow cells in the development of fatty degeneration, specifically in adipocyte accumulation, using a mouse model. METHODS Fourteen mice were divided into 2 bone marrow chimeric animal groups: bone marrow transplantation (BMT) group and reverse BMT group. For the BMT group, C57BL/6J wild-type mice underwent whole body irradiation followed by BMT into the retro-orbital sinus from green fluorescent protein (GFP)-transgenic donor mice. For the reverse BMT group, GFP-transgenic mice received BMT from C57BL/6J wild-type donor mice after irradiation. The supraspinatus tendon, infraspinatus tendon, and suprascapular nerve were surgically transected 3 weeks after transplantation. The rotator cuff muscles were harvested 13 weeks after transplantation for histologic analysis and GFP immunohistochemistry. RESULTS On histologic examination, both groups showed substantial fatty degeneration, fibrosis, and atrophy of the cuff muscles. The BMT group showed no noticeable GFP immunostaining, whereas the reverse BMT group showed significantly stronger GFP staining in most adipocytes (P < .001). However, both groups also showed that a small number of adipocytes originated from transplanted bone marrow cells. A small number of myocytes showed a large cytoplasmic lipid vacuole resembling adipocytes. CONCLUSIONS This study's findings suggest that most adipocytes in fatty degeneration of the rotator cuff muscles originate from sources other than bone marrow-derived stem cells, and there may be more than 1 source for the adipocytes.
Collapse
Affiliation(s)
- Lawrence V Klomps
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Naseem Zomorodi
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine Milton S. Hershey Medical Center, Hershey, PA, USA
| | - H Mike Kim
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
13
|
Kawano F, Ono Y, Fujita R, Watanabe A, Masuzawa R, Shibata K, Hasegawa S, Nakata K, Nakai N. Prenatal myonuclei play a crucial role in skeletal muscle hypertrophy in rodents. Am J Physiol Cell Physiol 2016; 312:C233-C243. [PMID: 27927611 DOI: 10.1152/ajpcell.00151.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022]
Abstract
Multinucleated muscle fibers are formed by the fusion of myogenic progenitor cells during embryonic and fetal myogenesis. However, the role of prenatally incorporated myonuclei in the skeletal muscle fibers of adult animals is poorly understood. We demonstrated, using muscle-specific reporter mice, that the prenatal myonuclei remained in the adult soleus muscle, although cardiotoxin injection caused the loss of prenatal myonuclei. Overloading by the tendon transection of synergists failed to induce compensatory hypertrophy in regenerated soleus muscle fibers of adult rats, whereas unloading by tail suspension normally induced the fiber atrophy. Loss of hypertrophying function correlated with the lowered histone acetylation at the transcription start site of Igf1r gene, which was one of the genes that did not respond to the overloading. These parameters were improved by the transplantation of cells harvested from the juvenile soleus muscles of neonatal rats in association with enhanced histone acetylation of Igf1r gene. These results indicated that the presence of prenatal myonuclei was closely related to the status of histone acetylation, which could regulate the responsiveness of muscle fibers to physiological stimuli.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan;
| | - Yusuke Ono
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Ryo Fujita
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Atsuya Watanabe
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan
| | - Ryo Masuzawa
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan
| | - Kazuhiro Shibata
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan
| | | | - Ken Nakata
- Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Naoya Nakai
- School of Human Cultures, University of Shiga Prefecture, Hikone, Japan
| |
Collapse
|
14
|
Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Sci Rep 2016; 6:36863. [PMID: 27827439 PMCID: PMC5101832 DOI: 10.1038/srep36863] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Homotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours. Here we investigate cell-to-cell interaction between mouse mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs). MSCs represent an important source of adult stem cells since they have great potential for regenerative medicine, even though they are also involved in cancer progression. We report that MSCs can either fuse forming heterokaryons, or be invaded by ESCs through entosis. While entosis-derived hybrids never share their genomes and induce degradation of the target cell, fusion-derived hybrids can convert into synkaryons. Importantly we show that hetero-to-synkaryon transition occurs through cell division and not by nuclear membrane fusion. Additionally, we also observe that the ROCK-actin/myosin pathway is required for both fusion and entosis in ESCs but only for entosis in MSCs. Overall, we show that MSCs can undergo fusion or entosis in culture by generating distinct functional cellular entities. These two processes are profoundly different and their outcomes should be considered given the beneficial or possible detrimental effects of MSC-based therapeutic applications.
Collapse
|
15
|
The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model. PLoS One 2016; 11:e0161693. [PMID: 27551730 PMCID: PMC4994951 DOI: 10.1371/journal.pone.0161693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders.
Collapse
|
16
|
Sankavaram SR, Svensson MA, Olsson T, Brundin L, Johansson CB. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis. PLoS One 2015. [PMID: 26207625 PMCID: PMC4514791 DOI: 10.1371/journal.pone.0133903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss. Aim In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei. Results Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis), we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord. Conclusion This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord motor neurons or other neurons that are compromised in the central nervous system.
Collapse
Affiliation(s)
- Sreenivasa R. Sankavaram
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael A. Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lou Brundin
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Clas B. Johansson
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Public Dental Service at Gällö, Jämtland Härjedalen County Council, Gällö, Sweden
- * E-mail:
| |
Collapse
|
17
|
Leonard CA, Lee WY, Tailor P, Salo PT, Kubes P, Krawetz RJ. Allogeneic Bone Marrow Transplant from MRL/MpJ Super-Healer Mice Does Not Improve Articular Cartilage Repair in the C57Bl/6 Strain. PLoS One 2015; 10:e0131661. [PMID: 26120841 PMCID: PMC4486721 DOI: 10.1371/journal.pone.0131661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023] Open
Abstract
Background Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ) “super-healer” mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant. Methodology The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ “super-healer” mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints. Principal Findings Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair. Conclusion and Significance The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.
Collapse
Affiliation(s)
- Catherine A. Leonard
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Woo-Yong Lee
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Disease, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Pankaj Tailor
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Paul T. Salo
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Disease, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Roman J. Krawetz
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Westgren M, Götherström C. Stem cell transplantation before birth - a realistic option for treatment of osteogenesis imperfecta? Prenat Diagn 2015; 35:827-32. [PMID: 25962526 DOI: 10.1002/pd.4611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023]
Abstract
Osteogenesis imperfecta (OI) is characterized by severe bone deformities, growth retardation and bones that break easily, often from little or no apparent cause. OI is a genetic disorder primarily with defective type I collagen with a wide spectrum of clinical expression. In the more severe cases, it can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure and stability, growth and fracture healing. Prenatal and postnatal cell transplantation has been investigated in preclinical and clinical studies of OI and suggests that this procedure is safe and has positive effects. Cell transplantation resulted in improved linear growth, mobility and reduced fracture incidence. However, the effect is transient and for this reason re-transplantation may be needed. So far there is limited experience in this area, and proper studies are required to accurately determine if MSC transplantation is of clinical benefit in the treatment of OI. In this review, we summarize what is currently known in this field.
Collapse
Affiliation(s)
- Magnus Westgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden.,Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Improvement of endurance of DMD animal model using natural polyphenols. BIOMED RESEARCH INTERNATIONAL 2015; 2015:680615. [PMID: 25861640 PMCID: PMC4377377 DOI: 10.1155/2015/680615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy. Different mechanisms were hypothesized such as reduced hydroxyl radicals, nuclear factor-κB deactivation, and NO protection from inactivation. Following these promising evidences, we investigated the effect of the administration of a mix of dietary natural polyphenols (ProAbe) on dystrophic mdx mice in terms of muscular architecture and functionality. We observed a reduction of muscle fibrosis deposition and myofiber necrosis together with an amelioration of vascularization. More importantly, the recovery of the morphological features of dystrophic muscle leads to an improvement of the endurance of treated dystrophic mice. Our data confirmed that ProAbe-based diet may represent a strategy to coadjuvate the treatment of DMD.
Collapse
|
20
|
Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762695. [PMID: 25054145 PMCID: PMC4099119 DOI: 10.1155/2014/762695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies), the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.
Collapse
|
21
|
Arpke RW, Darabi R, Mader TL, Zhang Y, Toyama A, Lonetree CL, Nash N, Lowe DA, Perlingeiro RC, Kyba M. A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells 2013; 31:1611-20. [PMID: 23606600 PMCID: PMC3767774 DOI: 10.1002/stem.1402] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Transplantation of a myogenic cell population into an immunodeficient recipient is an excellent way of assessing the in vivo muscle-generating capacity of that cell population. To facilitate both allogeneic and xenogeneic transplantations of muscle-forming cells in mice, we have developed a novel immunodeficient muscular dystrophy model, the NSG-mdx(4Cv) mouse. The IL2Rg mutation, which is linked to the Dmd gene on the X chromosome, simultaneously depletes NK cells and suppresses thymic lymphomas, issues that limit the utility of the SCID/mdx model. The NSG-mdx(4Cv) mouse presents a muscular dystrophy of similar severity to the conventional mdx mouse. We show that this animal supports robust engraftment of both pig and dog muscle mononuclear cells. The question of whether satellite cells prospectively isolated by flow cytometry can confer a functional benefit upon transplantation has been controversial. Using allogeneic Pax7-ZsGreen donors and NSG-mdx(4Cv) recipients, we demonstrate definitively that as few as 900 FACS-isolated satellite cells can provide functional regeneration in vivo, in the form of an increased mean maximal force-generation capacity in cell-transplanted muscles, compared to a sham-injected control group. These studies highlight the potency of satellite cells to improve muscle function and the utility of the NSG-mdx(4Cv) model for studies on muscle regeneration and Duchenne muscular dystrophy therapy.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Dogs
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/metabolism
- Female
- Genotype
- Heterografts
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/surgery
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/transplantation
- Stem Cell Transplantation/methods
- Swine
- Transplantation, Homologous
Collapse
Affiliation(s)
- Robert W. Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Radbod Darabi
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Tara L. Mader
- Program in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN
| | - Yu Zhang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Akira Toyama
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Cara-lin Lonetree
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Nardina Nash
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Dawn A. Lowe
- Program in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN
| | - Rita C.R. Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
22
|
Lessa TB, Carvalho RC, Franciolli ALR, de Oliveira LJ, Barreto R, Feder D, Bressan FF, Miglino MA, Ambrósio CE. Muscle reorganisation through local injection of stem cells in the diaphragm of mdx mice. Acta Vet Scand 2012; 54:73. [PMID: 23231953 PMCID: PMC3537552 DOI: 10.1186/1751-0147-54-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022] Open
Abstract
Background The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.
Collapse
|
23
|
Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. Blood 2012; 120:e105-16. [PMID: 22995900 DOI: 10.1182/blood-2012-06-440636] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We demonstrate a methodology for tracing the clonal history of hematopoietic stem and progenitor cells (HSPCs) behavior in live tissues in 4 dimensions (4D). This integrates genetic combinatorial marking using lentiviral vectors encoding various fluorescent proteins (FPs) with advanced imaging methods. Five FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were concurrently used to create a diverse palette of color-marked cells. A key advantage of imaging using a confocal/2-photon hybrid microscopy approach is the simultaneous assessment of uniquely 5FP-marked cells in conjunction with structural components of the tissues at high resolution. Volumetric analyses revealed that spectrally coded HSPC-derived cells can be detected noninvasively in various intact tissues, including the bone marrow, for extensive periods of time after transplantation. Live studies combining video-rate multiphoton and confocal imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. This methodology has applications in the understanding of clonal architecture in normal and perturbed hematopoiesis.
Collapse
|
24
|
Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Rev Rep 2012; 8:363-74. [PMID: 21874281 DOI: 10.1007/s12015-011-9304-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex(®) reagent were observed. The level of TGF-β1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.
Collapse
|
25
|
Vieira DFF, Guarniero R, Vaz CES, de Santana PJ. EFFECT OF USE OF BONE-MARROW CENTRIFUGATE ON MUSCLE INJURY TREATMENT: EXPERIMENTAL STUDY ON RABBITS. Rev Bras Ortop 2011; 46:718-25. [PMID: 27047832 PMCID: PMC4799337 DOI: 10.1016/s2255-4971(15)30331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/26/2011] [Indexed: 12/02/2022] Open
Abstract
Objective: The objective of this study was to evaluate the effect of bone-marrow centrifugate on the healing of muscle injuries in rabbits. Methods: This experimental study involved use of fifteen adult male New Zealand White rabbits. Each animal received a transverse lesion in the middle of the right tibialis anterior muscle, to which an absorbable collagen sponge, soaked in a centrifugate of bone marrow aspirate from the ipsilateral iliac bone, was added. The left hind limb was used as a control and underwent the same injury, but in this case only the absorbable collagen sponge. Thirty days later, the animals were sacrificed to study the muscle healing. These muscle areas were subjected to histological analysis with histomorphometry, with the aim of measuring the number of muscle cells per square micrometer undergoing regeneration and the proportion of resultant fibrosis. Results: The centrifugation method used in this study resulted in an average concentration of nucleated cells greater than the number of these cells in original aspirates, without causing significant cell destruction. Addition of the bone marrow centrifugate did not result in any significant increase in the number of muscle cells undergoing regeneration, in relation to the control group. There was also no significant difference in the proportion of resultant fibrosis, compared with the control group. Conclusion: Administration of the bone marrow centrifugate used in this study did not favor healing of muscle injuries in rabbits.
Collapse
Affiliation(s)
- Daniel Ferreira Fernandes Vieira
- Orthopedics and Traumatology, Master's degree in Medicine and Health Sciences at the Universidade Estadual de Londrina - Londrina, PR, Brazil
| | - Roberto Guarniero
- Associate Professor of the School of Medicine of Universidade de São Paulo - São Paulo, SP, Brazil
| | - Carlos Eduardo Sanches Vaz
- Doctor and Adjunct Professor of the Orthopedics and Traumatology Discipline of Universidade Estadual de Londrina - Londrina, PR, Brazil
| | - Paulo José de Santana
- Doctor and Adjunct Professor of the Orthopedics and Traumatology Discipline of Universidade Estadual de Londrina - Londrina, PR, Brazil
| |
Collapse
|
26
|
Borselli C, Cezar CA, Shvartsman D, Vandenburgh HH, Mooney DJ. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 2011; 32:8905-14. [PMID: 21911253 DOI: 10.1016/j.biomaterials.2011.08.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
Abstract
Many cell types of therapeutic interest, including myoblasts, exhibit reduced engraftment if cultured prior to transplantation. This study investigated whether polymeric scaffolds that direct cultured myoblasts to migrate outwards and repopulate the host damaged tissue, in concert with release of angiogenic factors designed to enhance revascularizaton of the regenerating tissue, would enhance the efficacy of this cell therapy and lead to functional muscle regeneration. This was investigated in the context of a severe injury to skeletal muscle tissue involving both myotoxin-mediated direct damage and induction of regional ischemia. Local and sustained release of VEGF and IGF-1 from macroporous scaffolds used to transplant and disperse cultured myogenic cells significantly enhanced their engraftment, limited fibrosis, and accelerated the regenerative process. This resulted in increased muscle mass and, improved contractile function. These results demonstrate the importance of finely controlling the microenvironment of transplanted cells in the treatment of severe muscle damage.
Collapse
Affiliation(s)
- Cristina Borselli
- School of Engineering and Applied Sciences, Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
27
|
Hyodo S, Matsubara K, Kameda K, Matsubara Y. Endometrial injury increases side population cells in the uterine endometrium: a decisive role of estrogen. TOHOKU J EXP MED 2011; 224:47-55. [PMID: 21551981 DOI: 10.1620/tjem.224.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Normal endometrial growth is essential for embryonic implantation and maintenance of pregnancy. The uterine endometrium contains stem cells that are involved in tissue regeneration. Side population cells (SP cells) are an emerging cell population that may be responsible for the regeneration process of uterine endometrium. In this study, we investigated the changes in the distribution of SP cells using a mouse model of uterine endometrial injury that was induced by peritoneal injection of lipopolysaccharide (LPS). The uterine horns were collected 0, 6, 12, and 18 hours after LPS injection. ATP-binding cassette and sub-family G member 2 (Abcg2) is highly expressed on the cellular membrane of some stem and progenitor cells, and was used as a marker for SP cells. Immunohistochemistry demonstrated that Abcg2-positive cells were increased around the uterine endometrial glands from 6 to 12 h after LPS injection. The percentage of Abcg2-positive cells was calculated using flow cytometry. The percentage of stromal SP cells was significantly higher at 6 h after LPS injection, compared with the value before the injection (3.01 ± 0.41% vs. 1.63 ± 0.31%, P < 0.05). To evaluate the influence of ovarian hormones, we implanted pellets containing 17β-estradiol (0.1 mg), progesterone (10 mg), or a combination of 17β-estradiol and progesterone in the bilaterally ovariectomized mice. Ovariectomy abolished the increase in SP cells, which was restored by estradiol, but not by progesterone or the combination treatment. In conclusion, estrogen is required for the increase of SP cells, thereby leading to the regeneration of the uterine endometrium.
Collapse
Affiliation(s)
- Shinji Hyodo
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Japan
| | | | | | | |
Collapse
|
28
|
Turner NJ, Badylak SF. Regeneration of skeletal muscle. Cell Tissue Res 2011; 347:759-74. [PMID: 21667167 DOI: 10.1007/s00441-011-1185-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/20/2011] [Indexed: 01/12/2023]
Abstract
Skeletal muscle has a robust capacity for regeneration following injury. However, few if any effective therapeutic options for volumetric muscle loss are available. Autologous muscle grafts or muscle transposition represent possible salvage procedures for the restoration of mass and function but these approaches have limited success and are plagued by associated donor site morbidity. Cell-based therapies are in their infancy and, to date, have largely focused on hereditary disorders such as Duchenne muscular dystrophy. An unequivocal need exists for regenerative medicine strategies that can enhance or induce de novo formation of functional skeletal muscle as a treatment for congenital absence or traumatic loss of tissue. In this review, the three stages of skeletal muscle regeneration and the potential pitfalls in the development of regenerative medicine strategies for the restoration of functional skeletal muscle in situ are discussed.
Collapse
Affiliation(s)
- Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
29
|
Götherström C, Lundqvist A, Duprez IR, Childs R, Berg L, le Blanc K. Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy 2011; 13:269-78. [DOI: 10.3109/14653249.2010.523077] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Merritt EK, Cannon MV, Hammers DW, Le LN, Gokhale R, Sarathy A, Song TJ, Tierney MT, Suggs LJ, Walters TJ, Farrar RP. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng Part A 2010; 16:2871-81. [PMID: 20412030 DOI: 10.1089/ten.tea.2009.0826] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.
Collapse
Affiliation(s)
- Edward K Merritt
- Department of Kinesiology, The University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments. J Transl Med 2010; 8:106. [PMID: 21034498 PMCID: PMC2988720 DOI: 10.1186/1479-5876-8-106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/30/2010] [Indexed: 01/14/2023] Open
Abstract
Background The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context. Methods We apply this approach to two studies, illustrating its broad applicability. The first examines the longitudinal changes in circulating human memory T cell populations within individual patients in response to a melanoma peptide (gp100209-2M) cancer vaccine, using 5 monoclonal antibodies (mAbs) to delineate subpopulations of viable, gp100-specific, CD8+ T cells. The second study measures the mobilization of stem cells in porcine bone marrow that may be associated with wound healing, and uses 5 different staining panels consisting of 8 mAbs each. Results In the first study, our analysis suggests that the cell surface markers CD45RA, CD27 and CD28, commonly used in historical lower order (2-4 color) flow cytometry analysis to distinguish memory from naïve and effector T cells, may not be obligate parameters in defining central memory T cells (TCM). In the second study, we identify novel phenotypes such as CD29+CD31+CD56+CXCR4+CD90+Sca1-CD44+, which may characterize progenitor cells that are significantly increased in wounded animals as compared to controls. Conclusions Taken together, these results demonstrate that Exhaustive Expansion supports thorough interrogation of complex higher-order flow cytometry data sets and aids in the identification of potentially clinically relevant findings.
Collapse
|
32
|
Wakabayashi M, Ito Y, Hamazaki TS, Okochi H. Efficient Myogenic Differentiation of Murine Dermal Sca-1 (−) Cells via Initial Aggregation Culture. Tissue Eng Part A 2010; 16:3251-9. [DOI: 10.1089/ten.tea.2009.0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mutsumi Wakabayashi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Ito
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuo S. Hamazaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Li Z, Liu HY, Lei QF, Zhang C, Li SN. Improved motor function in dko mice by intravenous transplantation of bone marrow-derived mesenchymal stromal cells. Cytotherapy 2010; 13:69-77. [PMID: 20735169 DOI: 10.3109/14653249.2010.510502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS We explored the potential therapeutic value of transplanting bone marrow (BM)-derived mesenchymal stromal cells (MSC) into utrophin/dystrophin-deficient double knock-out (dko) mice, a murine model of Duchenne muscular dystrophy. METHODS MSC from male rats were isolated and transplanted into female dko mice via the caudal vein. Behavior and locomotor function were later evaluated, along with the expression of dystrophin and utrophin in the sarcolemma of myofiber tissues. The presence of grafted cells was confirmed via polymerase chain reaction for the sex-determining region of the Y-chromosome. RESULTS Locomotor activity improved significantly (P < 0.05) from 5 to 15 weeks after cell transplantation, as measured by traction, rotating rod and running wheel tests. We also found that the expression of dystrophin and utrophin increased significantly (P < 0.05) and progressively in the sarcolemma from 5 to 15 weeks after transplantation. The median lifespan of mice in the normal group (74.1 weeks) was significantly (P < 0.001) higher than those in the control (22.0 weeks) and transplantation (35.0 weeks) groups, and the median lifespan of mice in the transplantation group was significantly (P < 0.001) higher than that in the control group. CONCLUSIONS Results of this study demonstrate that BM MSC have potential value in xenogeneic transplantation therapy for muscular dystrophy.
Collapse
Affiliation(s)
- Zhong Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
34
|
Qiu Z, Miao C, Li J, Lei X, Liu S, Guo W, Cao Y, Duan EK. Skeletal myogenic potential of mouse skin-derived precursors. Stem Cells Dev 2010; 19:259-68. [PMID: 19594362 DOI: 10.1089/scd.2009.0058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell transplantation-based therapy could be an effective way for the treatment of many diseases. Among numerous somatic stem cells isolated and purified, skin-derived precursors (SKPs) are abundant autologous cells, providing a large reservoir of cells for therapeutic transplantation. Previous studies showed that SKPs could be differentiated into neural and mesodermal progeny in vitro. In the present study, we attempted to differentiate SKPs to muscle progenitors in vitro. After treatment with a combination of growth factors, SKPs were differentiated into cells expressing markers of muscle progenitors, including Pax7. Furthermore, some of these cells expressed desmin, TnT, Mstn, and Myog, suggesting their differentiation into the muscular lineage. After single point injection, the differentiation of SKPs from green fluorescent protein positive donors into muscle precursors was also demonstrated in vivo. Additionally, donor SKPs migrated to the niche of muscle progenitors, participated in the regeneration of recipient muscles, and expressed markers of muscle progenitors, including Pax7, M-cadherin, and MyoD. After recovery of donor cells from recipient muscles at 3 weeks postinjection, some of the injected SKPs were converted to myogenic precursors, based on the expression of specific markers (Pax7 and MyoD). Some of these donor cells also expressed muscle makers (desmin, TnT, and Myog). At 20 weeks postinjection, the injected SKPs were localized to recipient muscles without decreases in their population size. In summary, these findings indicated that SKPs could develop into muscle progenitors and differentiated muscle cells in vitro and in vivo, thus providing valuable autologous cells for the treatment of muscle diseases.
Collapse
Affiliation(s)
- Zhifang Qiu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China. , Graduate University of the Chinese Academy of Sciences, Shijingshan District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shimode K, Iwasaki N, Majima T, Funakoshi T, Sawaguchi N, Onodera T, Minami A. Local Upregulation of Stromal Cell–Derived Factor-1 After Ligament Injuries Enhances Homing Rate of Bone Marrow Stromal Cells in Rats. Tissue Eng Part A 2009; 15:2277-84. [DOI: 10.1089/ten.tea.2008.0224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Kazumi Shimode
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Frontier Research Center for Post-genomic Science and Technology, Hokkaido University, Sapporo, Japan
| | - Tokifumi Majima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Frontier Research Center for Post-genomic Science and Technology, Hokkaido University, Sapporo, Japan
| | - Tadanao Funakoshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naohiro Sawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akio Minami
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Frontier Research Center for Post-genomic Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
36
|
Kozhevnikova MN, Mikaelyan AS, Starostin VI. Molecular-genetic and immunophenotypic analysis of antigen profile and osteogenic and adipogenic potentials of mesenchymal stromal cells from fetal liver and adult bone marrow in rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Gang EJ, Darabi R, Bosnakovski D, Xu Z, Kamm KE, Kyba M, Perlingeiro RCR. Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Exp Cell Res 2009; 315:2624-36. [PMID: 19460366 DOI: 10.1016/j.yexcr.2009.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell preparations have been proposed for muscle regeneration in musculoskeletal disorders. Although MSCs have great in vitro expansion potential and possess the ability to differentiate into several mesenchymal lineages, myogenesis has proven to be much more difficult to induce. We have recently demonstrated that Pax3, the master regulator of the embryonic myogenic program, enables the in vitro differentiation of a murine mesenchymal stem cell line (MSCB9-Pax3) into myogenic progenitors. Here we show that injection of these cells into cardiotoxin-injured muscles of immunodeficient mice leads to the development of muscle tumors, resembling rhabdomyosarcomas. We then extended these studies to primary human mesenchymal stem cells (hMSCs) isolated from bone marrow. Upon genetic modification with a lentiviral vector encoding PAX3, hMSCs activated the myogenic program as demonstrated by expression of myogenic regulatory factors. Upon transplantation, the PAX3-modified MSCs did not generate rhabdomyosarcomas but rather, resulted in donor-derived myofibers. These were found at higher frequency in PAX3-transduced hMSCs than in mock-transduced MSCs. Nonetheless, neither engraftment of PAX3-modified or unmodified MSCs resulted in improved contractility. Thus these findings suggest that limitations remain to be overcome before MSC preparations result in effective treatment for muscular dystrophies.
Collapse
Affiliation(s)
- Eun Ji Gang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9133, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Gayraud-Morel B, Chrétien F, Tajbakhsh S. Skeletal muscle as a paradigm for regenerative biology and medicine. Regen Med 2009; 4:293-319. [PMID: 19317647 DOI: 10.2217/17460751.4.2.293] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue development and regeneration share common features, since modules of regulatory pathways and transcription factors that are crucial for prenatal development are redeployed for tissue reconstruction after trauma. Regenerative medicine has therefore gained important insights through the study of developmental and regenerative biology. Moreover, diverse experimental models have been used to investigate the regeneration process in different tissues and organs. Paradoxically, little is known regarding the relative contribution of stem cells with respect to the supporting tissue during tissue regeneration. Particular attention will be given to mouse models using distinct injury paradigms to investigate the regenerative biology of skeletal muscle. An understanding of the response of stem and parenchymal cells is crucial for the development of clinical strategies to combat the normal decline in tissue performance during aging or its reconstitution after trauma and during disease. This review addresses these issues, focusing on muscle regeneration and how different factors, including genes, cells and the environment, impinge on this process.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells & Development, Department of Developmental Biology, Pasteur Institute, CNRS URA 2578, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
39
|
Chang H, Yoshimoto M, Umeda K, Iwasa T, Mizuno Y, Fukada SI, Yamamoto H, Motohashi N, Miyagoe-Suzuki Y, Takeda S, Heike T, Nakahata T. Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J 2009; 23:1907-19. [PMID: 19168704 DOI: 10.1096/fj.08-123661] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Satellite cells are myogenic stem cells responsible for the postnatal regeneration of skeletal muscle. Here we report the successful in vitro induction of Pax7-positive satellite-like cells from mouse embryonic stem (mES) cells. Embryoid bodies were generated from mES cells and cultured on Matrigel-coated dishes with Dulbecco's modified Eagle medium containing fetal bovine serum and horse serum. Pax7-positive satellite-like cells were enriched by fluorescence-activated cell sorting using a novel anti-satellite cell antibody, SM/C-2.6. SM/C-2.6-positive cells efficiently differentiate into skeletal muscle fibers both in vitro and in vivo. Furthermore, the cells demonstrate satellite cell characteristics such as extensive self-renewal capacity in subsequent muscle injury model, long-term engraftment up to 24 wk, and the ability to be secondarily transplanted with remarkably high engraftment efficiency compared to myoblast transplantation. This is the first report of transplantable, functional satellite-like cells derived from mES cells and will provide a foundation for new therapies for degenerative muscle disorders.
Collapse
Affiliation(s)
- Hsi Chang
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Syogoin Kawahara-cho Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Darabi R, Santos FNC, Perlingeiro RCR. The Therapeutic Potential of Embryonic and Adult Stem Cells for Skeletal Muscle Regeneration. ACTA ACUST UNITED AC 2008; 4:217-25. [DOI: 10.1007/s12015-008-9023-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2008] [Indexed: 11/28/2022]
|
41
|
Mori J, Ishihara Y, Matsuo K, Nakajima H, Terada N, Kosaka K, Kizaki Z, Sugimoto T. Hematopoietic contribution to skeletal muscle regeneration in acid alpha-glucosidase knockout mice. J Histochem Cytochem 2008; 56:811-7. [PMID: 18505932 DOI: 10.1369/jhc.2008.951244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that cells from bone marrow (BM) can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved remain unknown. We performed BM transplantation in acid alpha-glucosidase (GAA) knockout mice, a model of glycogen storage disease type II, and our observations suggested that the BM cells contribute to skeletal muscle fiber formation. Furthermore, we showed that most CD45+:Sca1+ cells have a donor character in regenerating muscle of recipient mice. Based on these findings, CD45+:Sca1+ cells were sorted from regenerating muscles. The cell number was increased with granulocyte colony-stimulating factor after cardiotoxin injury, and the cells were transplanted directly into the tibialis anterior (TA) muscles of GAA knockout mice. Sections of the TA muscles stained with anti-laminin-alpha2 antibody showed that the number of CD45+:Sca1+ cells contributing to muscle fiber formation and glycogen levels were decreased in transplanted muscles. Our results indicated that hematopoietic stem cells, such as CD45+:Sca1+ cells, are involved in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medicine, Kamigyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases. Med Mol Morphol 2008; 41:14-9. [PMID: 18470676 DOI: 10.1007/s00795-007-0389-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 12/21/2022]
Abstract
Because bone marrow stromal cells (MSCs) are easily accessible from both healthy donors and patients and can be expanded on a therapeutic scale, they have attracted attention for cell-based therapy. Benefits of MSCs have been discussed mainly from two aspects: one is their tissue protective and immunomodulatory effects, and the other is their capability under specific manipulations to differentiate into various cell types. In this review, their differentiation into functional neural and muscle cell lineages is the focus, and their potential to the application for tissue reconstruction in neurodegenerative and muscle degenerative diseases is discussed.
Collapse
|
43
|
Gang EJ, Bosnakovski D, Simsek T, To K, Perlingeiro RC. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp Cell Res 2008; 314:1721-33. [DOI: 10.1016/j.yexcr.2008.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/29/2008] [Accepted: 02/20/2008] [Indexed: 11/28/2022]
|
44
|
Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell 2008; 100:231-41. [PMID: 17997718 DOI: 10.1042/bc20070102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND INFORMATION DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. RESULTS We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4',6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. CONCLUSIONS These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.
Collapse
|
45
|
Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, Corbel SY, Steinman L, Rossi FMV, Blau HM. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 2008; 10:575-83. [PMID: 18425116 DOI: 10.1038/ncb1720] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 04/09/2008] [Indexed: 12/13/2022]
Abstract
Transplanted bone marrow-derived cells (BMDCs) have been reported to fuse with cells of diverse tissues, but the extremely low frequency of fusion has led to the view that such events are biologically insignificant. Nonetheless, in mice with a lethal recessive liver disease (tyrosinaemia), transplantation of wild-type BMDCs restored liver function by cell fusion and prevented death, indicating that cell fusion can have beneficial effects. Here we report that chronic inflammation resulting from severe dermatitis or autoimmune encephalitis leads to robust fusion of BMDCs with Purkinje neurons and formation of hundreds of binucleate heterokaryons per cerebellum, a 10-100-fold higher frequency than previously reported. Single haematopoietic stem-cell transplants showed that the fusogenic cell is from the haematopoietic lineage and parabiosis experiments revealed that fusion can occur without irradiation. Transplantation of rat bone marrow into mice led to activation of dormant rat Purkinje neuron-specific genes in BMDC nuclei after fusion with mouse Purkinje neurons, consistent with nuclear reprogramming. The precise neurological role of these heterokaryons awaits elucidation, but their frequency in brain after inflammation is clearly much higher than previously appreciated.
Collapse
Affiliation(s)
- Clas B Johansson
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5175, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Luth ES, Jun SJ, Wessen MK, Liadaki K, Gussoni E, Kunkel LM. Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation. J Cell Sci 2008; 121:1426-34. [PMID: 18397996 DOI: 10.1242/jcs.021675] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the contribution of bone marrow-derived cells to regenerating skeletal muscle has been repeatedly documented, there remains considerable debate as to whether this incorporation is exclusively a result of inflammatory cell fusion to regenerating myofibers or whether certain populations of bone marrow-derived cells have the capacity to differentiate into muscle. The present study uses a dual-marker approach in which GFP(+) cells were intravenously transplanted into lethally irradiated beta-galactosidase(+) recipients to allow for simple determination of donor and host contribution to the muscle. FACS analysis of cardiotoxin-damaged muscle revealed that CD45(+) bone-marrow side-population (SP) cells, a group enriched in hematopoietic stem cells, can give rise to CD45(-)/Sca-1(+)/desmin(+) cells capable of myogenic differentiation. Moreover, after immunohistochemical examination of the muscles of both SP- and whole bone marrow-transplanted animals, we noted the presence of myofibers composed only of bone marrow-derived cells. Our findings suggest that a subpopulation of bone marrow SP cells contains precursor cells whose progeny have the potential to differentiate towards a muscle lineage and are capable of de novo myogenesis following transplantation and initiation of muscle repair via chemical damage.
Collapse
Affiliation(s)
- Eric S Luth
- Program in Genomics, Division of Genetics, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
47
|
Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 2008; 11:935-44. [PMID: 17979875 PMCID: PMC4401265 DOI: 10.1111/j.1582-4934.2007.00106.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This invited review discusses the latest advances stem cell biology, tissue engineering and the transition from bench to bedside. An overview is presented as to which the best cell source might be for cell therapy and tissue engineering applications, best biomaterials currently available and the challenges the field faces to translate basic research into therapies for a large number of human diseases.
Collapse
Affiliation(s)
- Pascale V Guillot
- Imperial College London, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | | | | | | |
Collapse
|
48
|
Fukada SI, Yamamoto Y, Segawa M, Sakamoto K, Nakajima M, Sato M, Morikawa D, Uezumi A, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Yamamoto H. CD90-positive cells, an additional cell population, produce laminin α2 upon transplantation to dy3k/dy3k mice. Exp Cell Res 2008; 314:193-203. [DOI: 10.1016/j.yexcr.2007.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/12/2007] [Accepted: 09/22/2007] [Indexed: 11/25/2022]
|
49
|
LaBarge MA, Petersen OW, Bissell MJ. Of microenvironments and mammary stem cells. ACTA ACUST UNITED AC 2007; 3:137-46. [PMID: 17873346 PMCID: PMC3004778 DOI: 10.1007/s12015-007-0024-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/26/2023]
Abstract
In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Mark A LaBarge
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | | | | |
Collapse
|
50
|
Louboutin JP, Liu B, Chekmasova AA, Reyes BAS, van Bockstaele EJ, Strayer DS. Delivering genes to the organ-localized immune system: long-term results of direct intramarrow transduction. J Gene Med 2007; 9:843-51. [PMID: 17694566 DOI: 10.1002/jgm.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We studied the distribution of transgene-expressing cells after direct gene transfer into the bone marrow (BM). Rats received direct injection into the femoral BM of SV(Nef-FLAG), a Tag-deleted recombinant SV40 carrying a marker gene (FLAG epitope). Controls received an unrelated rSV40 or saline. Blood cells (5%) and femoral marrow cells (25%) expressed FLAG throughout. FLAG expression was assessed in different organs at 1, 4 and 16 months. FLAG+ macrophages were seen throughout the body, and were prominent in the spleen. FLAG+ cells were common in pulmonary alveoli. The former included alveolar macrophages and type II pneumocytes. These cells were not detected at 1 month, occasional at 4 months and common at 16 months after intramarrow injection. Rare liver cells were positive for both FLAG and ferritin, indicating that some hepatocytes also expressed this BM-delivered transgene. Control animals were negative. Thus: (a) fixed tissue phagocytes may be accessible to gene delivery by intramarrow transduction of their progenitors; (b) transduced BM-resident cells or their derivatives may migrate to other organs (lungs) and may differentiate into epithelial cells; and (c) intramarrow injection of rSV40s does not detectably transduce parenchymal cells of other organs.
Collapse
|