1
|
Kowalczyk M, Kowalczyk E, Galita G, Majsterek I, Talarowska M, Popławski T, Kwiatkowski P, Lichota A, Sienkiewicz M. Association of Polymorphic Variants in Argonaute Genes with Depression Risk in a Polish Population. Int J Mol Sci 2022; 23:ijms231810586. [PMID: 36142498 PMCID: PMC9500920 DOI: 10.3390/ijms231810586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Argonaute (AGO) proteins, through their key role in the regulation of gene expression, participate in many biological processes, including cell differentiation, proliferation, death and DNA repair. Accurate regulation of gene expression appears to be important for the proper development of complex neural circuits. Loss of AGO proteins is known to lead to early embryonic mortality in mice with various malformations, including anomalies of the central nervous system. Single-nucleotide polymorphisms (SNPs) of AGO genes can lead to deregulation of the processes in which AGO proteins are involved. The contribution of different SNPs in depression has been extensively studied. However, there are hardly any studies on the contribution of AGO genes. The aim of our research was to assess the relationship between the occurrence of depression and the presence of SNPs in genes AGO1 (rs636882) and AGO2 (rs4961280; rs2292779; rs2977490) in a Polish population. One hundred and one subjects in the study group were diagnosed with recurrent depressive disorder by a psychiatrist. The control group comprised 117 healthy subjects. Study participants performed the HDRS (Hamilton Depression Scale) test to confirm or exclude depression and assess severity. The frequency of polymorphic variants of genes AGO1 (rs636882) and AGO2 (rs4961280; rs2292779; rs2977490) was determined using TaqMan SNP genotyping assays and the TaqMan universal PCR master mix, no AmpErase UNG. The rs4961280/AGO2 polymorphism was associated with a decrease in depression occurrence in the codominant (OR = 0.51, p = 0.034), dominant (OR = 0.49, p = 0.01), and overdominant (OR = 0.58, p = 0.049) models. Based on the obtained results, we found that the studied patients demonstrated a lower risk of depression with the presence of the polymorphic variant of the rs4961280/AGO2 gene—genotype C/A and C/A-A/A.
Collapse
Affiliation(s)
- Mateusz Kowalczyk
- Babinski Memorial Hospital, Aleksandrowska St. 159, 91-229 Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego St. 7/9, 90-752 Lodz, Poland
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, Institute of Psychology, University of Lodz, Smugowa St. 10/12, 91-433 Lodz, Poland
| | - Tomasz Popławski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich Av. 72, 70-111 Szczecin, Poland
| | - Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-55-60
| |
Collapse
|
2
|
Shah SH, Schiapparelli LM, Ma Y, Yokota S, Atkins M, Xia X, Cameron EG, Huang T, Saturday S, Sun CB, Knasel C, Blackshaw S, Yates Iii JR, Cline HT, Goldberg JL. Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration. eLife 2022; 11:68148. [PMID: 35259089 PMCID: PMC8947766 DOI: 10.7554/elife.68148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein ‘transportome’ from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.
Collapse
Affiliation(s)
- Sahil H Shah
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | | | - Yuanhui Ma
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Satoshi Yokota
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Melissa Atkins
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Xin Xia
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Evan G Cameron
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Thanh Huang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah Saturday
- Neuroscience Department, The Scripps Research Institute, La Jolla, United States
| | - Catalin B Sun
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Cara Knasel
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John R Yates Iii
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Hollis T Cline
- Neuroscience Department, The Scripps Research Institute, La Jolla, United States
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| |
Collapse
|
3
|
Smith PR, Loerch S, Kunder N, Stanowick AD, Lou TF, Campbell ZT. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat Commun 2021; 12:6789. [PMID: 34815424 PMCID: PMC8611098 DOI: 10.1038/s41467-021-27160-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022] Open
Abstract
Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.
Collapse
Affiliation(s)
- Patrick R. Smith
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Sarah Loerch
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA ,grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA USA
| | - Nikesh Kunder
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Alexander D. Stanowick
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Tzu-Fang Lou
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Zachary T. Campbell
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA ,grid.267323.10000 0001 2151 7939The Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
4
|
Koppers M, Özkan N, Farías GG. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Front Cell Dev Biol 2020; 8:618733. [PMID: 33409284 PMCID: PMC7779554 DOI: 10.3389/fcell.2020.618733] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane-bound and membraneless organelles/biomolecular condensates ensure compartmentalization into functionally distinct units enabling proper organization of cellular processes. Membrane-bound organelles form dynamic contacts with each other to enable the exchange of molecules and to regulate organelle division and positioning in coordination with the cytoskeleton. Crosstalk between the cytoskeleton and dynamic membrane-bound organelles has more recently also been found to regulate cytoskeletal organization. Interestingly, recent work has revealed that, in addition, the cytoskeleton and membrane-bound organelles interact with cytoplasmic biomolecular condensates. The extent and relevance of these complex interactions are just beginning to emerge but may be important for cytoskeletal organization and organelle transport and remodeling. In this review, we highlight these emerging functions and emphasize the complex interplay of the cytoskeleton with these organelles. The crosstalk between membrane-bound organelles, biomolecular condensates and the cytoskeleton in highly polarized cells such as neurons could play essential roles in neuronal development, function and maintenance.
Collapse
Affiliation(s)
| | | | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Lessel D, Zeitler DM, Reijnders MRF, Kazantsev A, Hassani Nia F, Bartholomäus A, Martens V, Bruckmann A, Graus V, McConkie-Rosell A, McDonald M, Lozic B, Tan ES, Gerkes E, Johannsen J, Denecke J, Telegrafi A, Zonneveld-Huijssoon E, Lemmink HH, Cham BWM, Kovacevic T, Ramsdell L, Foss K, Le Duc D, Mitter D, Syrbe S, Merkenschlager A, Sinnema M, Panis B, Lazier J, Osmond M, Hartley T, Mortreux J, Busa T, Missirian C, Prasun P, Lüttgen S, Mannucci I, Lessel I, Schob C, Kindler S, Pappas J, Rabin R, Willemsen M, Gardeitchik T, Löhner K, Rump P, Dias KR, Evans CA, Andrews PI, Roscioli T, Brunner HG, Chijiwa C, Lewis MES, Jamra RA, Dyment DA, Boycott KM, Stegmann APA, Kubisch C, Tan EC, Mirzaa GM, McWalter K, Kleefstra T, Pfundt R, Ignatova Z, Meister G, Kreienkamp HJ. Germline AGO2 mutations impair RNA interference and human neurological development. Nat Commun 2020; 11:5797. [PMID: 33199684 PMCID: PMC7670403 DOI: 10.1038/s41467-020-19572-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Daniela M Zeitler
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Margot R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andriy Kazantsev
- Institute of Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Alexander Bartholomäus
- Institute of Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Victoria Martens
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Veronika Graus
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, 27707, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, 27707, USA
| | - Bernarda Lozic
- University Hospital of Split, Split, Croatia
- University of Split School of Medicine, Split, Croatia
| | - Ee-Shien Tan
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore, Singapore
| | - Erica Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Eppendorf, 20246, Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, 20246, Hamburg, Germany
| | | | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henny H Lemmink
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Breana W M Cham
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore, Singapore
| | | | - Linda Ramsdell
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Kimberly Foss
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Diana Mitter
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Steffen Syrbe
- Department of General Paediatrics, Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bianca Panis
- Department of Pediatrics, Zuyderland Medical Center, Heerlen and Sittard, 6419, the Netherlands
| | - Joanna Lazier
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jeremie Mortreux
- Département de Génétique Médicale, CHU Timone Enfants, Assistance Publique - Hôpitaux de Marseille AP-HM, Marseille, France
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - Tiffany Busa
- Département de Génétique Médicale, CHU Timone Enfants, Assistance Publique - Hôpitaux de Marseille AP-HM, Marseille, France
| | - Chantal Missirian
- Département de Génétique Médicale, CHU Timone Enfants, Assistance Publique - Hôpitaux de Marseille AP-HM, Marseille, France
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sabine Lüttgen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ilaria Mannucci
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claudia Schob
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stefan Kindler
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - John Pappas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rachel Rabin
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marjolein Willemsen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Katharina Löhner
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- NSW Health Pathology Randwick Genetics, Sydney, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- NSW Health Pathology Randwick Genetics, Sydney, Australia
| | - Peter Ian Andrews
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Australia
- New South Wales Health Pathology Genomics Laboratory Randwick, Sydney, Australia
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ene-Choo Tan
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195, US
| | | | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Zoya Ignatova
- Institute of Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Park AJ, Shetty MS, Baraban JM, Abel T. Selective role of the translin/trax RNase complex in hippocampal synaptic plasticity. Mol Brain 2020; 13:145. [PMID: 33172471 PMCID: PMC7653721 DOI: 10.1186/s13041-020-00691-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, translin knockout (KO) mice, which lack translin/trax, exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome (fragile X mental retardation protein-FMRP-KO mice). Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic protein kinase A (PKA) activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression (mGluR-LTD), a hallmark of the FMRP KO mice. On the contrary, translin KO mice exhibited deficits in N-methyl-d-aspartate receptor (NMDAR) dependent LTD, a phenotype not observed in the FMRP knockouts. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling and suggest that translin/trax and FMRP play distinct roles in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Gogos Lab, Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, Columbia University, L5-053, 3227 Broadway, New York, NY, 10027, USA.
| | - Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-471 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, 52242, IA, USA
| | - Jay M Baraban
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-471 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA. .,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, 52242, IA, USA.
| |
Collapse
|
7
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
9
|
Yoo KS, Lee K, Oh JY, Lee H, Park H, Park YS, Kim HK. Postsynaptic density protein 95 (PSD-95) is transported by KIF5 to dendritic regions. Mol Brain 2019; 12:97. [PMID: 31753031 PMCID: PMC6873588 DOI: 10.1186/s13041-019-0520-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic density protein 95 (PSD-95) is a pivotal postsynaptic scaffolding protein in excitatory neurons. Although the transport and regulation of PSD-95 in synaptic regions is well understood, dendritic transport of PSD-95 before synaptic localization still remains to be clarified. To evaluate the role of KIF5, conventional kinesin, in the dendritic transport of PSD-95 protein, we expressed a transport defective form of KIF5A (ΔMD) that does not contain the N-terminal motor domain. Expression of ΔMD significantly decreased PSD-95 level in the dendrites. Consistently, KIF5 was associated with PSD-95 in in vitro and in vivo assays. This interaction was mediated by the C-terminal tail regions of KIF5A and the third PDZ domain of PSD-95. Additionally, the ADPDZ3 (the association domain of NMDA receptor and PDZ3 domain) expression significantly reduced the levels of PSD-95, glutamate receptor 1 (GluA1) in dendrites. The association between PSD-95 and KIF5A was dose-dependent on Staufen protein, suggesting that the Staufen plays a role as a regulatory role in the association. Taken together, our data suggest a new mechanism for dendritic transport of the AMPA receptor-PSD-95.
Collapse
Affiliation(s)
- Ki-Seo Yoo
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, South Korea
| | - Kina Lee
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, South Korea
| | - Jun-Young Oh
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, South Korea.,Department of Structure and Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hyoeun Lee
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hyungju Park
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Young Seok Park
- Department of Neurosurgery, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, South Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, South Korea.
| |
Collapse
|
10
|
Kiltschewskij D, Cairns MJ. Temporospatial guidance of activity-dependent gene expression by microRNA: mechanisms and functional implications for neural plasticity. Nucleic Acids Res 2019; 47:533-545. [PMID: 30535081 PMCID: PMC6344879 DOI: 10.1093/nar/gky1235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNA are major regulators of neuronal gene expression at the post-transcriptional and translational levels. This layer of control is critical for spatially and temporally restricted gene expression, facilitating highly dynamic changes to cellular structure and function associated with neural plasticity. Investigation of microRNA function in the neural system, however, is at an early stage, and many aspects of the mechanisms employing these small non-coding RNAs remain unclear. In this article, we critically review current knowledge pertaining to microRNA function in neural activity, with emphasis on mechanisms of microRNA repression, their subcellular remodelling and functional impacts on neural plasticity and behavioural phenotypes.
Collapse
Affiliation(s)
- Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2323, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton, NSW, 2323, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2323, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton, NSW, 2323, Australia
| |
Collapse
|
11
|
Formicola N, Vijayakumar J, Besse F. Neuronal ribonucleoprotein granules: Dynamic sensors of localized signals. Traffic 2019; 20:639-649. [PMID: 31206920 DOI: 10.1111/tra.12672] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
Membrane-less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse-specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long-distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.
Collapse
|
12
|
Nganou G, Silva CG, Gladwyn-Ng I, Engel D, Coumans B, Delgado-Escueta AV, Tanaka M, Nguyen L, Grisar T, de Nijs L, Lakaye B. Importin-8 Modulates Division of Apical Progenitors, Dendritogenesis and Tangential Migration During Development of Mouse Cortex. Front Mol Neurosci 2018; 11:234. [PMID: 30042658 PMCID: PMC6048241 DOI: 10.3389/fnmol.2018.00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/13/2018] [Indexed: 01/18/2023] Open
Abstract
The building of the brain is a multistep process that requires the coordinate expression of thousands of genes and an intense nucleocytoplasmic transport of RNA and proteins. This transport is mediated by karyopherins that comprise importins and exportins. Here, we investigated the role of the ß-importin, importin-8 (IPO8) during mouse cerebral corticogenesis as several of its cargoes have been shown to be essential during this process. First, we showed that Ipo8 mRNA is expressed in mouse brain at various embryonic ages with a clear signal in the sub-ventricular/ventricular zone (SVZ/VZ), the cerebral cortical plate (CP) and the ganglionic eminences. We found that acute knockdown of IPO8 in cortical progenitors reduced both their proliferation and cell cycle exit leading to the increase in apical progenitor pool without influencing the number of basal progenitors (BPs). Projection neurons ultimately reached their appropriate cerebral cortical layer, but their dendritogenesis was specifically affected, resulting in neurons with reduced dendrite complexity. IPO8 knockdown also slowed the migration of cortical interneurons. Together, our data demonstrate that IPO8 contribute to the coordination of several critical steps of cerebral cortex development. These results suggest that the impairment of IPO8 function might be associated with some diseases of neuronal migration defects.
Collapse
Affiliation(s)
- Gerry Nganou
- GIGA-Neurosciences, University of Liege, Liege, Belgium.,GENESS International Consortium, Los Angeles, CA, United States
| | - Carla G Silva
- GIGA-Neurosciences, University of Liege, Liege, Belgium
| | | | | | - Bernard Coumans
- GIGA-Neurosciences, University of Liege, Liege, Belgium.,GENESS International Consortium, Los Angeles, CA, United States
| | - Antonio V Delgado-Escueta
- GENESS International Consortium, Los Angeles, CA, United States.,Epilepsy Genetics/Genomics Lab, Neurology and Research Services, VA Greater Los Angeles Healthcare System (VA GLAHS), University of California, Los Angeles, Los Angeles, CA, United States
| | - Miyabi Tanaka
- GENESS International Consortium, Los Angeles, CA, United States.,Epilepsy Genetics/Genomics Lab, Neurology and Research Services, VA Greater Los Angeles Healthcare System (VA GLAHS), University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Thierry Grisar
- GIGA-Neurosciences, University of Liege, Liege, Belgium.,GENESS International Consortium, Los Angeles, CA, United States
| | - Laurence de Nijs
- GENESS International Consortium, Los Angeles, CA, United States.,MHeNS, Maastricht University, Maastricht, Netherlands
| | - Bernard Lakaye
- GIGA-Neurosciences, University of Liege, Liege, Belgium.,GENESS International Consortium, Los Angeles, CA, United States
| |
Collapse
|
13
|
Patranabis S, Bhattacharyya SN. P-body-induced inactivation of let-7a miRNP prevents the death of growth factor-deprived neuronal cells. FASEB J 2018; 32:1493-1509. [PMID: 29167236 DOI: 10.1096/fj.201700633r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA processing bodies (P-bodies) are cytoplasmic RNA granules in eukaryotic cells that regulate gene expression by executing the translation suppression and degradation of mRNAs that are targeted to these bodies. P-bodies can also serve as storage sites for translationally repressed mRNAs both in mammalian cells and yeast cells. In this report, a unique role of mammalian P-bodies is documented. Depletion of P-body components dedifferentiate nerve growth factor-treated PC12 cells, whereas ectopic expression of P-body components induces the neuronal differentiation of precursor cells. Trophic factor withdrawal from differentiated cells induces a decrease in cellular P-body size and numbers that are coupled with dedifferentiation and cell death. Here, we report how the expression of P-body proteins-by ensuring the phosphorylation of argonaute protein 2 and the subsequent inactivation let-7a miRNPs-prevents the apoptotic death of growth factor-depleted neuronal cells.-Patranabis, S., Bhattacharyya, S. N. P-body-induced inactivation of let-7a miRNP prevents the death of growth factor-deprived neuronal cells.
Collapse
Affiliation(s)
- Somi Patranabis
- RNA Biology Research Laboratory, Molecular Genetics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Suvendra Nath Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
14
|
Noonan syndrome-associated SHP2 mutation differentially modulates the expression of postsynaptic receptors according to developmental maturation. Neurosci Lett 2017; 649:41-47. [PMID: 28366775 DOI: 10.1016/j.neulet.2017.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and related signaling involves both AMPA and NMDA subtype receptors. The expression of glutamate receptors is dynamically regulated during development. Recent studies showed that the dysregulation of glutamate receptor expression and function is associated with neurodevelopmental disorders including intellectual disability. Previously, a Noonan syndrome (NS)-associated SHP2 mutation (SHP2D61G) was shown to increase the synaptic delivery of AMPA receptor, subsequently impairing synaptic plasticity and learning in adult mice. However, how the mutant SHP2 affects glutamate receptor expression during development is not known. Here, we found that the SHP2D61G differentially regulates the expression of AMPA and NMDA receptors depending on the stage of neuronal maturation. In cultured neurons (immature stage; DIV 6), overexpression of SHP2D61G significantly increased the average size and the number of NMDA receptor-containing particles, but not those with AMPA receptors. In early matured neurons (DIV 12), SHP2D61G significantly increased only the average size of AMPA receptor particles, and subsequently increased their number in matured neurons (DIV 18). Importantly, all the changes described above for SHP2D61G neurons were reversed by inhibiting MAPK. These data demonstrate that the increased activation of MAPK signaling pathway by SHP2D61G could deregulate the surface expression of synaptic receptors during neuronal development, which likely contributes to cognitive impairments in NS patients.
Collapse
|
15
|
Zampedri C, Tinoco-Cuellar M, Carrillo-Rosas S, Diaz-Tellez A, Ramos-Balderas JL, Pelegri F, Maldonado E. Zebrafish P54 RNA helicases are cytoplasmic granule residents that are required for development and stress resilience. Biol Open 2016; 5:1473-1484. [PMID: 27489304 PMCID: PMC5087673 DOI: 10.1242/bio.015826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stress granules are cytoplasmic foci that directly respond to the protein synthesis status of the cell. Various environmental insults, such as oxidative stress or extreme heat, block protein synthesis; consequently, mRNA will stall in translation, and stress granules will immediately form and become enriched with mRNAs. P54 DEAD box RNA helicases are components of RNA granules such as P-bodies and stress granules. We studied the expression, in cytoplasmic foci, of both zebrafish P54 RNA helicases (P54a and P54b) during development and found that they are expressed in cytoplasmic granules under both normal conditions and stress conditions. In zebrafish embryos exposed to heat shock, some proportion of P54a and P54b helicases move to larger granules that exhibit the properties of genuine stress granules. Knockdown of P54a and/or P54b in zebrafish embryos produces developmental abnormalities restricted to the posterior trunk; further, these embryos do not form stress granules, and their survival upon exposure to heat-shock conditions is compromised. Our observations fit the model that cells lacking stress granules have no resilience or ability to recover once the stress has ended, indicating that stress granules play an essential role in the way organisms adapt to a changing environment. Summary: Stress granules are formed by mRNAs stalled in translation during stress conditions. P54 RNA helicases from zebrafish reside in cytoplasmic granules and are essential for heat-shock resilience.
Collapse
Affiliation(s)
- Cecilia Zampedri
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| | - Maryana Tinoco-Cuellar
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| | - Samantha Carrillo-Rosas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México, México, 04510
| | - Abigail Diaz-Tellez
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| | - Jose Luis Ramos-Balderas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México, México, 04510
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ernesto Maldonado
- EvoDevo Laboratory, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 77580
| |
Collapse
|
16
|
Burn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson AM, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Dev Biol 2015; 398:206-17. [PMID: 25481758 PMCID: PMC4340711 DOI: 10.1016/j.ydbio.2014.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 12/31/2022]
Abstract
Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers.
Collapse
Affiliation(s)
- K Mahala Burn
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yuko Shimada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Seinou-tou D301, Tennoudai 1-1-1, Tsukuba,, Ibaraki 305-8572, Japan
| | - Kathleen Ayers
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Soumya Vemuganti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Feiyue Lu
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Lynn Cooley
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Prospect Street, New Haven, CT 06510, United States.
| |
Collapse
|
17
|
Abstract
In eukaryotic cells, non-translating mRNAs can accumulate into cytoplasmic mRNP (messenger ribonucleoprotein) granules such as P-bodies (processing bodies) and SGs (stress granules). P-bodies contain the mRNA decay and translational repression machineries and are ubiquitously expressed in mammalian cells and lower eukaryote species including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. In contrast, SGs are only detected during cellular stress when translation is inhibited and form from aggregates of stalled pre-initiation complexes. SGs and P-bodies are related to NGs (neuronal granules), which are essential in the localization and control of mRNAs in neurons. Importantly, RNA granules are linked to the cytoskeleton, which plays an important role in mediating many of their dynamic properties. In the present review, we discuss how P-bodies, SGs and NGs are linked to cytoskeletal networks and the importance of these linkages in maintaining localization of their RNA cargoes.
Collapse
|
18
|
Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33:747-62. [PMID: 24452120 PMCID: PMC3976132 DOI: 10.3892/ijmm.2014.1629] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy
| |
Collapse
|
19
|
Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol 2014; 49:1309-26. [PMID: 24385256 DOI: 10.1007/s12035-013-8603-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are short nucleotides sequences that regulate the expression of genes in different eukaryotic cell types. A tremendous amount of knowledge on miRNAs has rapidly accumulated over the last few years, revealing the growing interest in this field of research. On the other hand, clarifying the physiological regulation of gene expression in the central nervous system is important for establishing a reference for comparison to the diseased state. It is well known that the fine tuning of neuronal networks relies on intricate molecular mechanisms, such as the adjustment of the synaptic transmission. As determined by recent studies, regulation of neuronal interactions by miRNAs has critical consequences in the development, adaptation to ambient demands, and degeneration of the nervous system. In contrast, activation of synaptic receptors triggers downstream signaling cascades that generate a vast array of effects, which includes the regulation of novel genes involved in the control of the miRNA life cycle. In this review, we have examined the hot topics on miRNA gene-regulatory activities in the broad field of neuronal communication-related processes. Furthermore, in addition to indicating the newly described effect of miRNAs on the regulation of specific neurotransmitter systems, we have pointed out how these systems affect the expression, transport, and stability of miRNAs. Moreover, we discuss newly described and under-investigation mechanisms involving the intercellular transfer of miRNAs, aided by exosomes and gap junctions. Thus, in the current review, we were able to highlight recent findings related to miRNAs that indisputably contributed towards the understanding of the nervous system in health and disease.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Atlântica 420, 09060-000, Santo André, SP, Brazil
| | | | | | | | | | | |
Collapse
|