1
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
2
|
Özgün F, Kaya Z, Morova T, Geverts B, Abraham TE, Houtsmuller AB, van Royen ME, Lack NA. DNA binding alters ARv7 dimer interactions. J Cell Sci 2021; 134:jcs258332. [PMID: 34318896 DOI: 10.1242/jcs.258332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Androgen receptor (AR) splice variants are proposed to be a potential driver of lethal castration-resistant prostate cancer. AR splice variant 7 (ARv7) is the most commonly observed isoform and strongly correlates with resistance to second-generation anti-androgens. Despite this clinical evidence, the interplay between ARv7 and the highly expressed full-length AR (ARfl) remains unclear. In this work, we show that ARfl/ARv7 heterodimers readily form in the nucleus via an intermolecular N/C interaction that brings the four termini of the proteins in close proximity. Combining fluorescence resonance energy transfer and fluorescence recovery after photobleaching, we demonstrate that these heterodimers undergo conformational changes following DNA binding, indicating dynamic nuclear receptor interaction. Although transcriptionally active, ARv7 can only form short-term interactions with DNA at highly accessible high-occupancy ARfl binding sites. Dimerization with ARfl does not affect ARv7 binding dynamics, suggesting that DNA binding occupancy is determined by the individual protein monomers and not the homodimer or heterodimer complex. Overall, these biophysical studies reveal detailed properties of ARv7 dynamics as both a homodimer or heterodimer with ARfl.
Collapse
Affiliation(s)
- Fatma Özgün
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Zeynep Kaya
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Bart Geverts
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Martin E van Royen
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Nathan A Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
3
|
Keizer VIP, Coppola S, Houtsmuller AB, Geverts B, van Royen ME, Schmidt T, Schaaf MJM. Repetitive switching between DNA binding modes enables target finding by the glucocorticoid receptor. J Cell Sci 2019; 132:jcs.217455. [DOI: 10.1242/jcs.217455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Transcription factor mobility is a determining factor in the regulation of gene expression. Here, we have studied the intranuclear dynamics of the glucocorticoid receptor (GR) using fluorescence recovery after photobleaching and single-molecule microscopy. First we have described the dynamic states in which the GR occurs. Subsequently we have analyzed the transitions between these states using a continuous time Markov chain model, and functionally investigated these states by making specific mutations in the DNA-binding domain. This analysis revealed that the GR diffuses freely through the nucleus, and once it leaves this free diffusion state it most often enters a repetitive switching mode. In this mode it alternates between slow diffusion as a result of brief nonspecific DNA binding events, and a state of stable binding to specific DNA target sites. This repetitive switching mechanism results in a compact searching strategy which facilitates finding DNA target sites by the GR.
Collapse
Affiliation(s)
| | - Stefano Coppola
- Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Geverts
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E. van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thomas Schmidt
- Institute of Physics, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
4
|
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27:1876-1892. [PMID: 30109749 PMCID: PMC6201731 DOI: 10.1002/pro.3496] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.
Collapse
Affiliation(s)
- Emily R. Weikum
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Xu Liu
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Eric A. Ortlund
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| |
Collapse
|
5
|
Mehta GD, Ball DA, Eriksson PR, Chereji RV, Clark DJ, McNally JG, Karpova TS. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Mol Cell 2018; 72:875-887.e9. [PMID: 30318444 DOI: 10.1016/j.molcel.2018.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
It is unknown how the dynamic binding of transcription factors (TFs) is molecularly linked to chromatin remodeling and transcription. Using single-molecule tracking (SMT), we show that the chromatin remodeler RSC speeds up the search process of the TF Ace1p for its response elements (REs) at the CUP1 promoter. We quantified smFISH mRNA data using a gene bursting model and demonstrated that RSC regulates transcription bursts of CUP1 only by modulating TF occupancy but does not affect initiation and elongation rates. We show by SMT that RSC binds to activated promoters transiently, and based on MNase-seq data, that RSC does not affect the nucleosomal occupancy at CUP1. Therefore, transient binding of Ace1p and rapid bursts of transcription at CUP1 may be dependent on short repetitive cycles of nucleosome mobilization. This type of regulation reduces the transcriptional noise and ensures a homogeneous response of the cell population to heavy metal stress.
Collapse
Affiliation(s)
- Gunjan D Mehta
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Ball
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Eriksson
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Razvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - James G McNally
- Institute for Soft Matter and Functional Materials, Helmholtz Center Berlin, Berlin 12489, Germany
| | - Tatiana S Karpova
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Paul MW, Zelensky AN, Wyman C, Kanaar R. Single-Molecule Dynamics and Localization of DNA Repair Proteins in Cells. Methods Enzymol 2018; 600:375-406. [PMID: 29458767 DOI: 10.1016/bs.mie.2017.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct observation of individual protein molecules in their native environment, at nanometer resolution, in a living cell, in motion is not only fascinating but also uniquely informative. Several recent major technological advances in genomic engineering, protein and synthetic fluorophore development, and light microscopy have dramatically increased the accessibility of this approach. This chapter describes the procedures for modifying endogenous genomic loci to producing fluorescently tagged proteins, their high-resolution visualization, and analysis of their dynamics in mammalian cells, using DNA repair proteins BRCA2 and RAD51 as an example.
Collapse
Affiliation(s)
- Maarten W Paul
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Goldstein I, Hager GL. Dynamic enhancer function in the chromatin context. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:10.1002/wsbm.1390. [PMID: 28544514 PMCID: PMC6638546 DOI: 10.1002/wsbm.1390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Clauß K, Popp AP, Schulze L, Hettich J, Reisser M, Escoter Torres L, Uhlenhaut NH, Gebhardt JCM. DNA residence time is a regulatory factor of transcription repression. Nucleic Acids Res 2017; 45:11121-11130. [PMID: 28977492 PMCID: PMC5737411 DOI: 10.1093/nar/gkx728] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.
Collapse
Affiliation(s)
- Karen Clauß
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Schulze
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Reisser
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Laura Escoter Torres
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
9
|
Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD, Karpova TS, Hager GL. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 2017; 123:76-88. [PMID: 28315485 PMCID: PMC5522764 DOI: 10.1016/j.ymeth.2017.03.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.
Collapse
Affiliation(s)
- Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 2016; 38:1150-1157. [PMID: 27633730 DOI: 10.1002/bies.201600137] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor (TF) signaling regulates gene transcription and requires a complex network of proteins. This network includes co-activators, co-repressors, multiple TFs, histone-modifying complexes, and the basal transcription machinery. It has been widely appreciated that pioneer factors, such as FoxA1 and GATA1, play an important role in opening closed chromatin regions, thereby allowing binding of a secondary factor. In this review we will focus on a newly proposed model wherein multiple TFs, such as steroid receptors (SRs), can function in a pioneering role. This model, termed dynamic assisted loading, integrates data from widely divergent methodologies, including genome wide ChIP-Seq, digital genomic footprinting, DHS-Seq, live cell protein dynamics, and biochemical studies of ATP-dependent remodeling complexes, to present a real time view of TF chromatin interactions. Under this view, many TFs can act as initiating factors for chromatin landscape programming. Furthermore, enhancer and promoter states are more accurately described as energy-dependent, non-equilibrium steady states.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Genome-wide footprinting: ready for prime time? Nat Methods 2016; 13:222-228. [PMID: 26914206 DOI: 10.1038/nmeth.3766] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/31/2015] [Indexed: 01/16/2023]
Abstract
High-throughput sequencing technologies have allowed many gene locus-level molecular biology assays to become genome-wide profiling methods. DNA-cleaving enzymes such as DNase I have been used to probe accessible chromatin. The accessible regions contain functional regulatory sites, including promoters, insulators and enhancers. Deep sequencing of DNase-seq libraries and computational analysis of the cut profiles have been used to infer protein occupancy in the genome at the nucleotide level, a method introduced as 'digital genomic footprinting'. The approach has been proposed as an attractive alternative to the analysis of transcription factors (TFs) by chromatin immunoprecipitation followed by sequencing (ChIP-seq), and in theory it should overcome antibody issues, poor resolution and batch effects. Recent reports point to limitations of the DNase-based genomic footprinting approach and call into question the scope of detectable protein occupancy, especially for TFs with short-lived chromatin binding. The genomics community is grappling with issues concerning the utility of genomic footprinting and is reassessing the proposed approaches in terms of robust deliverables. Here we summarize the consensus as well as different views emerging from recent reports, and we describe the remaining issues and hurdles for genomic footprinting.
Collapse
|
12
|
Chiu CL, Patsch K, Cutrale F, Soundararajan A, Agus DB, Fraser SE, Ruderman D. Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS). Sci Rep 2016; 6:22435. [PMID: 26936218 PMCID: PMC4776155 DOI: 10.1038/srep22435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) pathway plays a central role in prostate cancer (PCa) growth and progression and is a validated therapeutic target. In response to ligand binding AR translocates to the nucleus, though the molecular mechanism is not well understood. We therefore developed multimodal Image Correlation Spectroscopy (mICS) to measure anisotropic molecular motion across a live cell. We applied mICS to AR translocation dynamics to reveal its multimodal motion. By integrating fluorescence imaging methods we observed evidence for diffusion, confined movement, and binding of AR within both the cytoplasm and nucleus of PCa cells. Our findings suggest that in presence of cytoplasmic diffusion, the probability of AR crossing the nuclear membrane is an important factor in determining the AR distribution between cytoplasm and the nucleus, independent of functional microtubule transport. These findings may have implications for the future design of novel therapeutics targeting the AR pathway in PCa.
Collapse
Affiliation(s)
- Chi-Li Chiu
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Katherin Patsch
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern, California, USA
| | | | - David B Agus
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern, California, USA
| | - Daniel Ruderman
- Center for Applied Molecular Medicine, University of Southern, California, USA
| |
Collapse
|
13
|
Harkes R, Keizer VIP, Schaaf MJM, Schmidt T. Depth-of-Focus Correction in Single-Molecule Data Allows Analysis of 3D Diffusion of the Glucocorticoid Receptor in the Nucleus. PLoS One 2015; 10:e0141080. [PMID: 26555072 PMCID: PMC4640500 DOI: 10.1371/journal.pone.0141080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
Single-molecule imaging of proteins in a 2D environment like membranes has been frequently used to extract diffusive properties of multiple fractions of receptors. In a 3D environment the apparent fractions however change with observation time due to the movements of molecules out of the depth-of-field of the microscope. Here we developed a mathematical framework that allowed us to correct for the change in fraction size due to the limited detection volume in 3D single-molecule imaging. We applied our findings on the mobility of activated glucocorticoid receptors in the cell nucleus, and found a freely diffusing fraction of 0.49±0.02. Our analysis further showed that interchange between this mobile fraction and an immobile fraction does not occur on time scales shorter than 150 ms.
Collapse
Affiliation(s)
- Rolf Harkes
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Veer I. P. Keizer
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Marcel J. M. Schaaf
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Reuter M, Zelensky A, Smal I, Meijering E, van Cappellen WA, de Gruiter HM, van Belle GJ, van Royen ME, Houtsmuller AB, Essers J, Kanaar R, Wyman C. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. ACTA ACUST UNITED AC 2015; 207:599-613. [PMID: 25488918 PMCID: PMC4259808 DOI: 10.1083/jcb.201405014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nuclear BRCA2 is oligomeric and associated with RAD51, possibly sequestering it until it is delivered to DNA damage sites. Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2.
Collapse
Affiliation(s)
- Marcel Reuter
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Alex Zelensky
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Ihor Smal
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Erik Meijering
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Wiggert A van Cappellen
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - H Martijn de Gruiter
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Gijsbert J van Belle
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Martin E van Royen
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands Department of Genetics, Cancer Genomics Centre Netherlands, Department of Medical Informatics, Department of Radiology, Erasmus Optical Imaging Centre, Department of Pathology, Department of Vascular Surgery, and Department of Radiation Oncology, Erasmus University Medical Centre, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
15
|
Geverts B, van Royen ME, Houtsmuller AB. Analysis of biomolecular dynamics by FRAP and computer simulation. Methods Mol Biol 2015; 1251:109-33. [PMID: 25391797 DOI: 10.1007/978-1-4939-2080-8_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a Monte Carlo simulation environment for modelling complex biological molecular interaction networks and for the design, validation, and quantitative analysis of FRAP assays to study these. The program is straightforward in its implementation and can be instructed through an intuitive script language. The simulation tool fits very well in a systems biology research setting that aims to maintain an interactive cycle of experiment-driven modelling and model-driven experimentation: the model and the experiment are in the same simulation. The full program can be obtained by request to the authors.
Collapse
Affiliation(s)
- Bart Geverts
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam, 3000 CA, The Netherlands
| | | | | |
Collapse
|