1
|
Sun J, Wang H, Zhan Y, Zhao T, Li C, Cheng C, Wang Z, Zou A, Chang Y. Identification of Key Genes Correlated with Economic Trait Superiorities and Their SNP Screening Through Transcriptome Comparisons, WGCNA and Pearson Correlation Coefficient in the Sea Cucumber Apostichopus Japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:12. [PMID: 39601948 DOI: 10.1007/s10126-024-10384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Variation in morphology-driven economic traits is a common issue hindering the development of the sea cucumber aquaculture industry. In this study, transcriptome comparisons, weighted gene correlation network analysis (WGCNA) and Pearson correlation coefficient (PCC) were first employed to identify key genes correlated with morphological variation in the sea cucumber Apostichopus japonicus, after which the relationship between identified key genes (relative expression and genotype) and economic trait phenotypes was investigated to screen potential biomarker targets for molecular-assisted breeding. The results showed that three genes (putative ficolin-2, fibrinogen c domain-containing protein 1, and angiopoietin-4) were closely associated with economic trait superiorities. Two single nucleotide polymorphisms (SNPs) were identified in the putative ficolin-2 gene as having a strong correlation with body weight and papilla number. The findings from this study will enrich breeding biomarker resources and benefit the development of molecular-assisted breeding techniques in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China
| | - Haolin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China
| | - Chengda Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
| | - Cao Cheng
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Zengdong Wang
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Ange Zou
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China.
| |
Collapse
|
2
|
Miotelo L, Ferro M, Maloni G, Otero IVR, Nocelli RCF, Bacci M, Malaspina O. Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158086. [PMID: 35985603 DOI: 10.1016/j.scitotenv.2022.158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The concern about pesticide exposure to neotropical bees has been increasing in the last few years, and knowledge gaps have been identified. Although stingless bees, (e.g.: Melipona scutellaris), are more diverse than honeybees and they stand out in the pollination of several valuable economical crops, toxicity assessments with stingless bees are still scarce. Nowadays new approaches in ecotoxicological studies, such as omic analysis, were pointed out as a strategy to reveal mechanisms of how bees deal with these stressors. To date, no molecular techniques have been applied for the evaluation of target and/or non-target organs in stingless bees, such as the Malpighian tubules (Mt). Therefore, in the present study, we evaluated the differentially expressed genes (DEGs) in the Mt of M. scutellaris after one and eight days of exposure to LC50/100 (0.000543 ng a.i./μL) of thiamethoxam (TMX). Through functional annotation analysis of four transcriptome libraries, the time course line approach revealed 237 DEGs (nine clusters) associated with carbon/energy metabolism and cellular processes (lysosomes, autophagy, and glycan degradation). The expression profiles of Mt were altered by TMX in processes, such as detoxification, excretion, tissue regeneration, oxidative stress, apoptosis, and DNA repair. Transcriptome analysis showed that cell metabolism in Mt was mainly affected after 8 days of exposure. Nine genes were selected from different clusters and validated by RT-qPCR. According to our findings, TMX promotes several types of damage in Mt cells at the molecular level. Therefore, interference of different cellular processes directly affects the health of M. scutellaris by compromising the function of Mt.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Geovana Maloni
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | | - Mauricio Bacci
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
3
|
Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 2022; 74:35-62. [DOI: 10.1007/s00251-021-01239-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
|
4
|
Chen X, Xu P, Zhang H, Su X, Guo L, Zhou X, Wang J, Huang P, Zhang Q, Sun R. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. Oncol Lett 2021; 22:754. [PMID: 34539858 PMCID: PMC8436358 DOI: 10.3892/ol.2021.13015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, due to the complex and numerous targets of Sarcandrae Herb (also known as Zhong Jie Feng), network pharmacology was performed to analyze its therapeutic effect on 2 cervical cancer cell lines, which could assist with the development of novel therapies. The results suggested that the natural flavonoid quercetin (Que), the effective antitumor ingredient in SH, which is widely present in a variety of plants, may depend on the target, EGFR. Previous studies have shown that EGFR serves a crucial role in the occurrence and development of cervical cancer, but its downstream molecules and regulatory mechanisms remain unknown. The anti-cervical cancer cell properties of Que, which are present in ubiquitous plants, were examined in vitro to identify the association between Que and its underlying pathway using MTT assays, flow cytometry, western blot analysis and Transwell assays. It was found that Que reduced cervical cancer cell viability, promoted G2/M phase cell cycle arrest and cell apoptosis, as well as inhibited cell migration and invasion. The Tyr1068 phosphorylation site of EGFR and the corresponding ERK target were also examined and the 2 kinases were markedly activated by Que. Furthermore, the EGFR inhibitor, afatinib and the ERK inhibitor, U0126 blocked the increase of EGFR and ERK phosphorylation, and resulted in a notable enhancement of apoptosis and cell cycle arrest. Therefore, to the best of our knowledge, the current results provided the first evidence that EGFR and ERK activation induced by Que could resist Que-induced anticancer activities. On this basis, the present study determined the role of EGFR and the underlying signaling pathways involved in the anti-cervical cancer malignant behavior induced by Que and identified the negative regulatory association.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pengli Xu
- Collaborative Innovation Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200030, P.R. China
| | - Xiaosan Su
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Lihua Guo
- Department of Oncology, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xuhong Zhou
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Junliang Wang
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tokyo 163-8001, Japan
| | - Qingzhi Zhang
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruifen Sun
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
5
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
6
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
7
|
ERK signaling dynamics in the morphogenesis and homeostasis of Drosophila. Curr Opin Genet Dev 2020; 63:9-15. [DOI: 10.1016/j.gde.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
|
8
|
WASH phosphorylation balances endosomal versus cortical actin network integrities during epithelial morphogenesis. Nat Commun 2019; 10:2193. [PMID: 31097705 PMCID: PMC6522504 DOI: 10.1038/s41467-019-10229-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Filamentous actin (F-actin) networks facilitate key processes like cell shape control, division, polarization and motility. The dynamic coordination of F-actin networks and its impact on cellular activities are poorly understood. We report an antagonistic relationship between endosomal F-actin assembly and cortical actin bundle integrity during Drosophila airway maturation. Double mutants lacking receptor tyrosine phosphatases (PTP) Ptp10D and Ptp4E, clear luminal proteins and disassemble apical actin bundles prematurely. These defects are counterbalanced by reduction of endosomal trafficking and by mutations affecting the tyrosine kinase Btk29A, and the actin nucleation factor WASH. Btk29A forms protein complexes with Ptp10D and WASH, and Btk29A phosphorylates WASH. This phosphorylation activates endosomal WASH function in flies and mice. In contrast, a phospho-mimetic WASH variant induces endosomal actin accumulation, premature luminal endocytosis and cortical F-actin disassembly. We conclude that PTPs and Btk29A regulate WASH activity to balance the endosomal and cortical F-actin networks during epithelial tube maturation.
Collapse
|
9
|
Carter TY, Gadwala S, Chougule AB, Bui APN, Sanders AC, Chaerkady R, Cormier N, Cole RN, Thomas JH. Actomyosin contraction during cellularization is regulated in part by Src64 control of Actin 5C protein levels. Genesis 2019; 57:e23297. [PMID: 30974046 DOI: 10.1002/dvg.23297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 11/09/2022]
Abstract
Src64 is required for actomyosin contraction during cellularization of the Drosophila embryonic blastoderm. The mechanism of actomyosin ring constriction is poorly understood even though a number of cytoskeletal regulators have been implicated in the assembly, organization, and contraction of these microfilament rings. How these cytoskeletal processes are regulated during development is even less well understood. To investigate the role of Src64 as an upstream regulator of actomyosin contraction, we conducted a proteomics screen to identify proteins whose expression levels are controlled by src64. Global levels of actin are reduced in src64 mutant embryos. Furthermore, we show that reduction of the actin isoform Actin 5C causes defects in actomyosin contraction during cellularization similar to those caused by src64 mutation, indicating that a relatively high level of Actin 5C is required for normal actomyosin contraction and furrow canal structure. However, reduction of Actin 5C levels only slows down actomyosin ring constriction rather than preventing it, suggesting that src64 acts not only to modulate actin levels, but also to regulate the actomyosin cytoskeleton by other means.
Collapse
Affiliation(s)
- Tammy Y Carter
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Swetha Gadwala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ashish B Chougule
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Anh P N Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alex C Sanders
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathaly Cormier
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
10
|
Hunter MV, Willoughby PM, Bruce AE, Fernandez-Gonzalez R. Oxidative Stress Orchestrates Cell Polarity to Promote Embryonic Wound Healing. Dev Cell 2018; 47:377-387.e4. [DOI: 10.1016/j.devcel.2018.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
|
11
|
Yao L, Wang S, Westholm JO, Dai Q, Matsuda R, Hosono C, Bray S, Lai EC, Samakovlis C. Genome-wide identification of Grainy head targets in Drosophila reveals regulatory interactions with the POU domain transcription factor Vvl. Development 2017; 144:3145-3155. [PMID: 28760809 DOI: 10.1242/dev.143297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
Grainy head (Grh) is a conserved transcription factor (TF) controlling epithelial differentiation and regeneration. To elucidate Grh functions we identified embryonic Grh targets by ChIP-seq and gene expression analysis. We show that Grh controls hundreds of target genes. Repression or activation correlates with the distance of Grh-binding sites to the transcription start sites of its targets. Analysis of 54 Grh-responsive enhancers during development and upon wounding suggests cooperation with distinct TFs in different contexts. In the airways, Grh-repressed genes encode key TFs involved in branching and cell differentiation. Reduction of the POU domain TF Ventral veins lacking (Vvl) largely ameliorates the airway morphogenesis defects of grh mutants. Vvl and Grh proteins additionally interact with each other and regulate a set of common enhancers during epithelial morphogenesis. We conclude that Grh and Vvl participate in a regulatory network controlling epithelial maturation.
Collapse
Affiliation(s)
- Liqun Yao
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden
| | - Shenqiu Wang
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden.,Cancer Biology & Genetics Program, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jakub O Westholm
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.,Science for Life Laboratory, Tomtebodavägen 232, 171 21 Solna, Sweden
| | - Qi Dai
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden.,Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Ryo Matsuda
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Christos Samakovlis
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden .,Science for Life Laboratory, Tomtebodavägen 232, 171 21 Solna, Sweden.,Molecular Pneumology, UGMLC, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
12
|
Toll pathway is required for wound-induced expression of barrier repair genes in the Drosophila epidermis. Proc Natl Acad Sci U S A 2017; 114:E2682-E2688. [PMID: 28289197 DOI: 10.1073/pnas.1613917114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epidermis serves as a protective barrier in animals. After epidermal injury, barrier repair requires activation of many wound response genes in epidermal cells surrounding wound sites. Two such genes in Drosophila encode the enzymes dopa decarboxylase (Ddc) and tyrosine hydroxylase (ple). In this paper we explore the involvement of the Toll/NF-κB pathway in the localized activation of wound repair genes around epidermal breaks. Robust activation of wound-induced transcription from ple and Ddc requires Toll pathway components ranging from the extracellular ligand Spätzle to the Dif transcription factor. Epistasis experiments indicate a requirement for Spätzle ligand downstream of hydrogen peroxide and protease function, both of which are known activators of wound-induced transcription. The localized activation of Toll a few cell diameters from wound edges is reminiscent of local activation of Toll in early embryonic ventral hypoderm, consistent with the hypothesis that the dorsal-ventral patterning function of Toll arose from the evolutionary cooption of a morphogen-responsive function in wound repair. Furthermore, the combinatorial activity of Toll and other signaling pathways in activating epidermal barrier repair genes can help explain why developmental activation of the Toll, ERK, or JNK pathways alone fail to activate wound repair loci.
Collapse
|
13
|
Matsubayashi Y, Millard TH. Analysis of the Molecular Mechanisms of Reepithelialization in Drosophila Embryos. Adv Wound Care (New Rochelle) 2016; 5:243-250. [PMID: 27274434 PMCID: PMC4876545 DOI: 10.1089/wound.2014.0549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Significance: The epidermis provides the main barrier function of skin, and therefore its repair following wounding is an essential component of wound healing. Repair of the epidermis, also known as reepithelialization, occurs by collective migration of epithelial cells from around the wound edge across the wound until the advancing edges meet and fuse. Therapeutic manipulation of this process could potentially be used to accelerate wound healing. Recent Advances: It is difficult to analyze the cellular and molecular mechanisms of reepithelialization in human tissue, so a variety of model organisms have been used to improve our understanding of the process. One model system that has been especially useful is the embryo of the fruit fly Drosophila, which provides a simple, accessible model of the epidermis and can be manipulated genetically, allowing detailed analysis of reepithelialization at the molecular level. This review will highlight the key insights that have been gained from studying reepithelialization in Drosophila embryos. Critical Issues: Slow reepithelialization increases the risk of wounds becoming infected and ulcerous; therefore, the development of therapies to accelerate or enhance the process would be a great clinical advance. Improving our understanding of the molecular mechanisms that underlie reepithelialization will help in the development of such therapies. Future Directions: Research in Drosophila embryos has identified a variety of genes and proteins involved in triggering and driving reepithelialization, many of which are conserved in humans. These novel reepithelialization proteins are potential therapeutic targets and therefore findings obtained in Drosophila may ultimately lead to significant clinical advances.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Faculty of Life Sciences, The Healing Foundation Centre, University of Manchester, Manchester, United Kingdom
| | - Tom H. Millard
- Faculty of Life Sciences, The Healing Foundation Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Eikenes ÅH, Malerød L, Lie-Jensen A, Sem Wegner C, Brech A, Liestøl K, Stenmark H, Haglund K. Src64 controls a novel actin network required for proper ring canal formation in the Drosophila male germline. Development 2016; 142:4107-18. [PMID: 26628094 DOI: 10.1242/dev.124370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In many organisms, germ cells develop as cysts in which cells are interconnected via ring canals (RCs) as a result of incomplete cytokinesis. However, the molecular mechanisms of incomplete cytokinesis remain poorly understood. Here, we address the role of tyrosine phosphorylation of RCs in the Drosophila male germline. We uncover a hierarchy of tyrosine phosphorylation within germline cysts that positively correlates with RC age. The kinase Src64 is responsible for mediating RC tyrosine phosphorylation, and loss of Src64 causes a reduction in RC diameter within germline cysts. Mechanistically, we show that Src64 controls an actin network around the RCs that depends on Abl and the Rac/SCAR/Arp2/3 pathway. The actin network around RCs is required for correct RC diameter in cysts of developing germ cells. We also identify that Src64 is required for proper germ cell differentiation in the Drosophila male germline independent of its role in RC regulation. In summary, we report that Src64 controls actin dynamics to mediate proper RC formation during incomplete cytokinesis during germline cyst development in vivo.
Collapse
Affiliation(s)
- Åsmund Husabø Eikenes
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| | - Lene Malerød
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| | - Anette Lie-Jensen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| | - Catherine Sem Wegner
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| | - Knut Liestøl
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department of Informatics, University of Oslo, Oslo N-0316, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway
| |
Collapse
|
15
|
Guo S, Mao L, Ji F, Wang S, Xie Y, Fei H, Wang XD. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death. Biochem Biophys Res Commun 2016; 471:545-52. [PMID: 26891866 DOI: 10.1016/j.bbrc.2016.02.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
Abstract
Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13' cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway.
Collapse
Affiliation(s)
- Shiguang Guo
- Department of Intensive Care Unit, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Li Mao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng Ji
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yue Xie
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Haodong Fei
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiao-dong Wang
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, Han S, Gao J, Tang C, Su L, Hu D. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med 2016; 37:639-48. [PMID: 26821191 PMCID: PMC4771097 DOI: 10.3892/ijmm.2016.2472] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto-oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metallopro-teinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Collapse
Affiliation(s)
- Xue Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Longlong Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianxin Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chaowu Tang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
17
|
Matsubayashi Y, Coulson-Gilmer C, Millard TH. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing. J Cell Biol 2015. [PMID: 26216900 PMCID: PMC4523608 DOI: 10.1083/jcb.201411037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Camilla Coulson-Gilmer
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Tom H Millard
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
18
|
Adler J, Parmryd I. Quantifying colocalization: thresholding, void voxels and the H(coef). PLoS One 2014; 9:e111983. [PMID: 25375829 PMCID: PMC4222960 DOI: 10.1371/journal.pone.0111983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
A critical step in the analysis of images is identifying the area of interest e.g. nuclei. When the nuclei are brighter than the remainder of the image an intensity can be chosen to identify the nuclei. Intensity thresholding is complicated by variations in the intensity of individual nuclei and their intensity relative to their surroundings. To compensate thresholds can be based on local rather than global intensities. By testing local thresholding methods we found that the local mean performed poorly while the Phansalkar method and a new method based on identifying the local background were superior. A new colocalization coefficient, the H(coef), highlights a number of controversial issues. (i) Are molecular interactions measurable (ii) whether to include voxels without fluorophores in calculations, and (iii) the meaning of negative correlations. Negative correlations can arise biologically (a) because the two fluorophores are in different places or (b) when high intensities of one fluorophore coincide with low intensities of a second. The cases are distinct and we argue that it is only relevant to measure correlation using pixels that contain both fluorophores and, when the fluorophores are in different places, to just report the lack of co-occurrence and omit these uninformative negative correlation. The H(coef) could report molecular interactions in a homogenous medium. But biology is not homogenous and distributions also reflect physico-chemical properties, targeted delivery and retention. The H(coef) actually measures a mix of correlation and co-occurrence, which makes its interpretation problematic and in the absence of a convincing demonstration we advise caution, favouring separate measurements of correlation and of co-occurrence.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingela Parmryd
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Muñoz-Soriano V, López-Domenech S, Paricio N. Why mammalian wound-healing researchers may wish to turn toDrosophilaas a model. Exp Dermatol 2014; 23:538-42. [DOI: 10.1111/exd.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética; Facultad CC Biológicas; Universidad de Valencia; Burjasot Spain
| | - Sandra López-Domenech
- Departamento de Genética; Facultad CC Biológicas; Universidad de Valencia; Burjasot Spain
| | - Nuria Paricio
- Departamento de Genética; Facultad CC Biológicas; Universidad de Valencia; Burjasot Spain
| |
Collapse
|
20
|
Krautz R, Arefin B, Theopold U. Damage signals in the insect immune response. FRONTIERS IN PLANT SCIENCE 2014; 5:342. [PMID: 25071815 PMCID: PMC4093659 DOI: 10.3389/fpls.2014.00342] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 05/24/2023]
Abstract
Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes.
Collapse
Affiliation(s)
| | | | - Ulrich Theopold
- *Correspondence: Ulrich Theopold, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, Sweden e-mail:
| |
Collapse
|
21
|
Zhu Y, Zhou J, Ao R, Yu B. A-769662 protects osteoblasts from hydrogen dioxide-induced apoptosis through activating of AMP-activated protein kinase (AMPK). Int J Mol Sci 2014; 15:11190-203. [PMID: 24960362 PMCID: PMC4100207 DOI: 10.3390/ijms150611190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 05/04/2014] [Indexed: 12/17/2022] Open
Abstract
Here we report that 5'-monophosphate (AMP)-activated protein kinase (AMPK) agonist A-769662 inhibited hydrogen peroxide (H2O2)-induced viability loss and apoptosis of human and mouse osteoblast cells. H2O2-induced moderate AMPK activation in osteoblast cells, which was enhanced by A-769662. Inactivation of AMPK by its inhibitor compound C, or by target shRNA-mediated silencing and kinase dead (KD) mutation exacerbated H2O2-induced cytotoxicity in osteoblast cells. A-769662-mediated protective effect against H2O2 was also blocked by AMPK inhibition or depletion. A-769662 inhibited reactive oxygen species (ROS) accumulation by H2O2 in osteoblast cells. Meanwhile, H2O2-induced ATP depletion was inhibited by A-769662, but was aggravated by compound C. Further, H2O2 induced AMPK-dependent and pro-survival autophagy in cultured osteoblast cells, which was enhanced by A-769662. Our results suggested that activation of AMPK by H2O2 is anti-apoptosis and pro-survival in osteoblast cells, probably due to its anti-oxidant, pro-autophagy and ATP preservation abilities, and A-769662-mediated cell-protective effect in osteoblast cells requires AMPK activation. Our study suggests that A-769662 might be further investigated as a novel anti-osteonecrosis agent.
Collapse
Affiliation(s)
- Yalong Zhu
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| | - Jianhua Zhou
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| | - Rongguang Ao
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| | - Baoqing Yu
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| |
Collapse
|