1
|
Spt20, a structural subunit of the SAGA complex, regulates biofilm formation, asexual development, and virulence of Aspergillus fumigatus. Appl Environ Microbiol 2021; 88:e0153521. [PMID: 34669434 DOI: 10.1128/aem.01535-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. Previous work showed that in A. fumigatus, the Lim-domain binding protein PtaB can form a complex with the sequence-specific transcription factor SomA for regulating GAG biosynthesis, biofilm formation, and asexual development. However, transcriptional co-activators required for biofilm formation in A. fumigatus remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae transcriptional co-activator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in GAG biosynthesis, biofilm formation, conidiation, and virulence of A. fumigatus. RNA-sequence data demonstrated that Spt20 positively regulates the expression of GAG biosynthesis genes uge3 and agd3, developmental regulator medA, and genes involved in the conidiation pathway. Moreover, more than 10 subunits of the SAGA complex (known from yeast) could be immunoprecipitated with Spt20, suggesting that Spt20 acts as a structural subunit of the SAGA complex. Furthermore, distinct modules of SAGA regulate GAG biosynthesis, biofilm formation, and asexual development in A. fumigatus to varying degrees. In summary, the novel biofilm regulator Spt20 is reported, which plays a crucial role in the regulation of fungal asexual development, GAG biosynthesis, and virulence of A. fumigatus. These findings expand knowledge on the regulatory circuits of the SAGA complex relevant for biofilm formation and asexual development of A. fumigatus. IMPORTANCE Eukaryotic transcription is regulated by a large number of proteins, ranging from sequence-specific DNA binding factors to transcriptional co-activators (chromatin regulators and the general transcription machinery) and their regulators. Previous research indicated that the sequence-specific complex SomA/PtaB regulates biofilm formation and asexual development of Aspergillus fumigatus. However, transcriptional co-activators working with sequence-specific transcription factors to regulate A. fumigatus biofilm formation remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a novel regulator of biofilm formation and asexual development of A. fumigatus. Loss of spt20 caused severe defects in galactosaminogalactan (GAG) production, conidiation, and virulence. Moreover, nearly all modules of the SAGA complex were required for biofilm formation and asexual development of A. fumigatus. These results establish the SAGA complex as a transcriptional co-activator required for biofilm formation and asexual development of A. fumigatus.
Collapse
|
2
|
Kim JC, Lee MR, Kim S, Park SE, Lee SJ, Shin TY, Kim WJ, Kim J. Transcriptome Analysis of the Japanese Pine Sawyer Beetle, Monochamus alternatus, Infected with the Entomopathogenic Fungus Metarhizium anisopliae JEF-197. J Fungi (Basel) 2021; 7:jof7050373. [PMID: 34068801 PMCID: PMC8151162 DOI: 10.3390/jof7050373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are being made to replace these chemical agents with entomopathogenic fungi. We investigated the expression of immune-related genes in JPS beetle in response to infection with JEF-197, a Metarhizium anisopliae isolate, using RNA-seq. RNA samples were obtained from JEF-197, JPS adults treated with JEF-197, and non-treated JPS adults on the 8th day after fungal treatment, and RNA-seq was performed using Illumina sequencing. JPS beetle transcriptome was assembled de novo and differentially expressed gene (DEG) analysis was performed. There were 719 and 1953 up- and downregulated unigenes upon JEF-197 infection, respectively. Upregulated contigs included genes involved in RNA transport, ribosome biogenesis in eukaryotes, spliceosome-related genes, and genes involved in immune-related signaling pathways such as the Toll and Imd pathways. Forty-two fungal DEGs related to energy and protein metabolism were upregulated, and genes involved in the stress response were also upregulated in the infected JPS beetles. Together, our results indicate that infection of JPS beetles by JEF-197 induces the expression of immune-related genes.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Mi-Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Sihyeon Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Se-Jin Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea;
| | - Tae-Young Shin
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Woo-Jin Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| | - Jaesu Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Korea
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| |
Collapse
|
3
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
4
|
Schenstrøm SM, Rebula CA, Tatham MH, Hendus-Altenburger R, Jourdain I, Hay RT, Kragelund BB, Hartmann-Petersen R. Expanded Interactome of the Intrinsically Disordered Protein Dss1. Cell Rep 2018; 25:862-870. [PMID: 30355493 PMCID: PMC6218214 DOI: 10.1016/j.celrep.2018.09.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Dss1 (also known as Sem1) is a conserved, intrinsically disordered protein with a remarkably broad functional diversity. It is a proteasome subunit but also associates with the BRCA2, RPA, Csn12-Thp1, and TREX-2 complexes. Accordingly, Dss1 functions in protein degradation, DNA repair, transcription, and mRNA export. Here in Schizosaccharomyces pombe, we expand its interactome further to include eIF3, the COP9 signalosome, and the mitotic septins. Within its intrinsically disordered ensemble, Dss1 forms a transiently populated C-terminal helix that dynamically interacts with and shields a central binding region. The helix interfered with the interaction to ATP-citrate lyase but was required for septin binding, and in strains lacking Dss1, ATP-citrate lyase solubility was reduced and septin rings were more persistent. Thus, even weak, transient interactions within Dss1 may dynamically rewire its interactome.
Collapse
Affiliation(s)
- Signe M Schenstrøm
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ruth Hendus-Altenburger
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
5
|
Sgf73, a subunit of SAGA complex, is required for the assembly of RITS complex in fission yeast. Sci Rep 2015; 5:14707. [PMID: 26443059 PMCID: PMC4595766 DOI: 10.1038/srep14707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/07/2015] [Indexed: 02/04/2023] Open
Abstract
RNA interference (RNAi) is a widespread gene-silencing mechanism and is required for heterochromatin assembly in a variety of organisms. The RNA-induced transcriptional silencing complex (RITS), composed of Ago1, Tas3 and Chp1, is a key component of RNAi machinery in fission yeast that connects short interference RNA (siRNA) and heterochromatin formation. However, the process by which RITS is assembled is not well understood. Here, we identified Sgf73, a subunit of the SAGA co-transcriptional complex, is required for pericentromeric heterochromatin silencing and the generation of siRNA. This novel role of Sgf73 is independent of enzymatic activities or structural integrity of SAGA. Instead, Sgf73 is physically associated with Ago1 and Chp1. The interactions among the subunits of the RITS, including those between Tas3 and Chp1, between Chp1 and Ago1, between Ago1 and Tas3, were all impaired by the deletion of sgf73+. Consistently, the recruitment of Ago1 and Chp1 to the pericentromeric region was abolished in sgf73Δ cells. Our study unveils a moonlighting function of a SAGA subunit. It suggests Sgf73 is a novel factor that promotes assembly of RITS and RNAi-mediated heterochromatin formation.
Collapse
|