1
|
Thotamune W, Ubeysinghe S, Shrestha KK, Mostafa ME, Young MC, Karunarathne A. Optical Control of Cell-Surface and Endomembrane-Exclusive β-Adrenergic Receptor Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580335. [PMID: 38405895 PMCID: PMC10888897 DOI: 10.1101/2024.02.14.580335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, βARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions. Excessive βAR stimulation is linked to cardiac hypertrophy, leading to heart failure, while impaired stimulation causes compromised fight or flight stress responses and homeostasis. In addition to plasma membrane βAR, emerging evidence indicates potential pathological implications of deeper endomembrane βARs, such as inducing cardiomyocyte hypertrophy and apoptosis, underlying heart failure. However, the lack of approaches to control their signaling in subcellular compartments exclusively has impeded linking endomembrane βAR signaling with pathology. Informed by the β1AR-catecholamine interactions, we engineered an efficiently photo-labile, protected hydroxy β1AR pro-ligand (OptoIso) to trigger βAR signaling at the cell surface, as well as exclusive endomembrane regions upon blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but it also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. In addition to its application in the optical interrogation of βARs in unmodified cells, given its ability to control deep organelle βAR signaling, OptoIso will be a valuable experimental tool.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | | | - Kendra K. Shrestha
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
| | | | - Michael C. Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
2
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Kankanamge D, Tennakoon M, Karunarathne A, Gautam N. G protein gamma subunit, a hidden master regulator of GPCR signaling. J Biol Chem 2022; 298:102618. [PMID: 36272647 PMCID: PMC9678972 DOI: 10.1016/j.jbc.2022.102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Heterotrimeric G proteins (αβγ subunits) that are activated by G protein-coupled receptors (GPCRs) mediate the biological responses of eukaryotic cells to extracellular signals. The α subunits and the tightly bound βγ subunit complex of G proteins have been extensively studied and shown to control the activity of effector molecules. In contrast, the potential roles of the large family of γ subunits have been less studied. In this review, we focus on present knowledge about these proteins. Induced loss of individual γ subunit types in animal and plant models result in strikingly distinct phenotypes indicating that γ subtypes play important and specific roles. Consistent with these findings, downregulation or upregulation of particular γ subunit types result in various types of cancers. Clues about the mechanistic basis of γ subunit function have emerged from imaging the dynamic behavior of G protein subunits in living cells. This shows that in the basal state, G proteins are not constrained to the plasma membrane but shuttle between membranes and on receptor activation βγ complexes translocate reversibly to internal membranes. The translocation kinetics of βγ complexes varies widely and is determined by the membrane affinity of the associated γ subtype. On translocating, some βγ complexes act on effectors in internal membranes. The variation in translocation kinetics determines differential sensitivity and adaptation of cells to external signals. Membrane affinity of γ subunits is thus a parsimonious and elegant mechanism that controls information flow to internal cell membranes while modulating signaling responses.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mithila Tennakoon
- Department of Chemistry, St Louis University, St Louis, Missouri, USA
| | | | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
4
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Rajagopal V, Arumugam S, Hunter PJ, Khadangi A, Chung J, Pan M. The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology? Annu Rev Biomed Data Sci 2022; 5:341-366. [PMID: 35576556 DOI: 10.1146/annurev-biodatasci-072018-021246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern biology and biomedicine are undergoing a big data explosion, needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome project: a framework and approach for creating, sharing, and using biophysics-based computational models of single-cell physiology. Using examples in calcium signaling, bioenergetics, and endosomal trafficking, we highlight the need for spatially detailed, biophysics-based computational models to uncover new mechanisms underlying cell biology. We review progress and challenges to date toward creating cell physiome models. We then introduce bond graphs as an efficient way to create cell physiome models that integrate chemical, mechanical, electromagnetic, and thermal processes while maintaining mass and energy balance. Bond graphs enhance modularization and reusability of computational models of cells at scale. We conclude with a look forward at steps that will help fully realize this exciting new field of mechanistic biomedical data science. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Senthil Arumugam
- Cellular Physiology Lab, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences; European Molecular Biological Laboratory (EMBL) Australia; and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, Victoria, Australia
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Afshin Khadangi
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Joshua Chung
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Michael Pan
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Castillo-Badillo JA, Gautam N. An optogenetic model reveals cell shape regulation through FAK and fascin. J Cell Sci 2021; 134:269115. [PMID: 34114634 DOI: 10.1242/jcs.258321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Cell shape regulation is important, but the mechanisms that govern shape are not fully understood, in part due to limited experimental models in which cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we used an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retained its shape and a non-nucleated side that was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK; also known as PTK2), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin-bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jean A Castillo-Badillo
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
7
|
Live Cell Imaging and Optogenetics-Based Assays for GPCR Activity. Methods Mol Biol 2021. [PMID: 34085271 DOI: 10.1007/978-1-0716-1221-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
GPCRs are responsible for activation of numerous downstream effectors. Live cell imaging of these effectors therefore provides a real-time readout of GPCR activity and allows for better understanding of temporal dynamics of GPCR-mediated signaling. Opsins, or optically activatable GPCRs, allow for these signaling pathways to be activated in a spatiotemporally precise and reversible manner. Here, we describe optogenetic methods for activating Gi, Gq, and Gs signaling pathways. Additionally, we present assays for detecting activation of these pathways in real time through live cell imaging of Gβγ translocation, PIP3 increase, PIP2 hydrolysis, cAMP production, and cell migration. These assays can be utilized for GPCR-targeted drug development, as well as for studies of a wide range of GPCR-mediated physiological processes.
Collapse
|
8
|
Emon MAB, Knoll S, Doha U, Ladehoff L, Lalonde L, Baietto D, Sivaguru M, Bhargava R, Saif MTA. Dose- independent threshold illumination for non-invasive time-lapse fluorescence imaging of live cells. EXTREME MECHANICS LETTERS 2021; 46:101249. [PMID: 34095408 PMCID: PMC8171180 DOI: 10.1016/j.eml.2021.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fluorescent microscopy employs monochromatic light for excitation, which can adversely affect the cells being observed. We reported earlier that fibroblasts relax their contractile force in response to green light of typical intensity. Here we show that such effects are independent of extracellular matrix and cell lines. In addition, we establish a threshold intensity that elicits minimal or no adverse effect on cell contractility even for long-time exposure. This threshold intensity is wavelength dependent. We cultured fibroblasts on soft 2D elastic hydrogels embedded with fluorescent beads to trace substrate deformation and cell forces. The beads move towards cell center when cells contract, but they move away when cells relax. We use relaxation/contraction ratio (λ r), in addition to traction force, as measures of cell response to red (wavelength, λ=635-650 nm), green (λ=545-580 nm) and blue (λ=455-490 nm) lights with varying intensities. Our results suggest that intensities below 57, 31 and 3.5 W/m2 for red, green and blue lights, respectively, do not perturb force homeostasis. To our knowledge, these intensities are the lowest reported safe thresholds, implying that cell traction is a highly sensitive readout of the effect of light on cells. Most importantly, we find these threshold intensities to be dose-independent; i.e., safe regardless of the energy dosage or time of exposure. Conversely, higher intensities result in widespread force-relaxation in cells with λ r > 1. Furthermore, we present a photo-reaction based model that simulates photo-toxicity and predicts threshold intensity for different wavelengths within the visible spectra. In conclusion, we recommend employing illumination intensities below aforementioned wavelength-specific thresholds for time-lapse imaging of cells and tissues in order to avoid light-induced artifacts in experimental observations.
Collapse
Affiliation(s)
- M A Bashar Emon
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Samantha Knoll
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Umnia Doha
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Lauren Ladehoff
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
| | - Luke Lalonde
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Danielle Baietto
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
| | - Mayandi Sivaguru
- Carle Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign
| | - Rohit Bhargava
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign
| | - M Taher A Saif
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign
- Corresponding author: M Taher A Saif, Gutgsell Professor, Associate Head for Graduate Programs and Research, Mechanical Science and Engineering, Research Professor, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 2101D Mechanical Engineering Laboratory, 105 S. Mathews Avenue, Urbana, IL 61801, USA, , Tel: 217-333-8552, Fax: 217-244-6534, http://saif.mechse.illinois.edu/
| |
Collapse
|
9
|
Jaeger MG, Winter GE. Fast-acting chemical tools to delineate causality in transcriptional control. Mol Cell 2021; 81:1617-1630. [PMID: 33689749 DOI: 10.1016/j.molcel.2021.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.
Collapse
Affiliation(s)
- Martin G Jaeger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
10
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Seebach J, Klusmeier N, Schnittler H. Autoregulatory "Multitasking" at Endothelial Cell Junctions by Junction-Associated Intermittent Lamellipodia Controls Barrier Properties. Front Physiol 2021; 11:586921. [PMID: 33488392 PMCID: PMC7815704 DOI: 10.3389/fphys.2020.586921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Vascular endothelial cell (EC) junctions are key structures controlling tissue homeostasis in physiology. In the last three decades, excellent studies have addressed many aspects of this complex and highly dynamic regulation, including cell signaling, remodeling processes of the proteins of tight junctions, adherens junctions, and gap junctions, the cytoskeleton, and post-transcriptional modifications, transcriptional activation, and gene silencing. In this dynamic process, vascular endothelial cadherin (VE-cadherin) provides the core structure of EC junctions mediating the physical adhesion of cells as well as the control of barrier function and monolayer integrity via remodeling processes, regulation of protein expression and post-translational modifications. In recent years, research teams have documented locally restricted dynamics of EC junctions in which actin-driven protrusions in plasma membranes play a central role. In this regard, our research group showed that the dynamics of VE-cadherin is driven by small (1-5 μm) actin-mediated protrusions in plasma membranes that, due to this specific function, were named "junction-associated intermittent lamellipodia" (JAIL). JAIL form at overlapping, adjacent cells, and exactly at this site new VE-cadherin interactions occur, leading to new VE-cadherin adhesion sites, a process that restores weak or lost VE-cadherin adhesion. Mechanistically, JAIL formation occurs locally restricted (1-5 μm) and underlies autoregulation in which the local VE-cadherin concentration is an important parameter. A decrease in the local concentration of VE-cadherin stimulates JAIL formation, whereas an increase in the concentration of VE-cadherin blocks it. JAIL mediated VE-cadherin remodeling at the subjunctional level have been shown to be of crucial importance in angiogenesis, wound healing, and changes in permeability during inflammation. The concept of subjunctional regulation of EC junctions is strongly supported by permeability assays, which can be employed to quantify actin-driven subjunctional changes. In this brief review, we summarize and discuss the current knowledge and concepts of subjunctional regulation in the endothelium.
Collapse
Affiliation(s)
- Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nadine Klusmeier
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
12
|
Shaaya M, Fauser J, Karginov AV. Optogenetics: The Art of Illuminating Complex Signaling Pathways. Physiology (Bethesda) 2021; 36:52-60. [PMID: 33325819 PMCID: PMC8425415 DOI: 10.1152/physiol.00022.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Dissection of cell signaling requires tools that can mimic spatiotemporal dynamics of individual pathways in living cells. Optogenetic methods enable manipulation of signaling processes with precise timing and local control. In this review, we describe recent optogenetic approaches for regulation of cell signaling, highlight their advantages and limitations, and discuss examples of their application.
Collapse
Affiliation(s)
- Mark Shaaya
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Andrei V Karginov
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of Medicine, Chicago, Illinois
- University of Illinois Cancer Center, The University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Castillo-Badillo JA, Bandi AC, Harlalka S, Gautam N. SRRF-Stream Imaging of Optogenetically Controlled Furrow Formation Shows Localized and Coordinated Endocytosis and Exocytosis Mediating Membrane Remodeling. ACS Synth Biol 2020; 9:902-919. [PMID: 32155337 DOI: 10.1021/acssynbio.9b00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cleavage furrow formation during cytokinesis involves extensive membrane remodeling. In the absence of methods to exert dynamic control over these processes, it has been a challenge to examine the basis of this remodeling. Here we used a subcellular optogenetic approach to induce this at will and found that furrow formation is mediated by actomyosin contractility, retrograde plasma membrane flow, localized decrease in membrane tension, and endocytosis. FRAP, 4-D imaging, and inhibition or upregulation of endocytosis or exocytosis show that ARF6 and Exo70 dependent localized exocytosis supports a potential model for intercellular bridge elongation. TIRF and Super Resolution Radial Fluctuation (SRRF) stream microscopy show localized VAMP2-mediated exocytosis and incorporation of membrane lipids from vesicles into the plasma membrane at the front edge of the nascent daughter cell. Thus, spatially separated but coordinated plasma membrane depletion and addition are likely contributors to membrane remodeling during cytokinetic processes.
Collapse
|
14
|
Meshik X, O’Neill PR, Gautam N. Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration. ACS Synth Biol 2019; 8:498-510. [PMID: 30764607 DOI: 10.1021/acssynbio.8b00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
Collapse
|
15
|
Delgado JY, Selvin PR. A Revised View on the Role of Surface AMPAR Mobility in Tuning Synaptic Transmission: Limitations, Tools, and Alternative Views. Front Synaptic Neurosci 2018; 10:21. [PMID: 30079019 PMCID: PMC6062754 DOI: 10.3389/fnsyn.2018.00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Calcium dynamics in presynaptic terminals regulate the response dynamics of most central excitatory synapses. However, this dogma has been challenged by the hypothesis that mobility of the postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype glutamate receptors (AMPAR) plays a role in tuning fast excitatory synaptic transmission. In this review, we reevaluate the factors regulating postsynaptic AMPAR mobility, reassess the modeling parameters, analyze the experimental tools, and end by providing alternative ideas stemming from recent results. In particular, newer methods of labeling AMPARs with small fluorophores in live neurons, combined with super-resolution microscopy and sub-second dynamics, lends support to the idea that AMPARs are primarily within the synapse, are greatly constrained, and have much slower mobility than previously thought. We discuss new experiments which may be necessary to readdress the role of postsynaptic AMPAR mobility in tuning fast excitatory synaptic transmission.
Collapse
Affiliation(s)
- Jary Y Delgado
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Paul R Selvin
- Department of Physics, Biophysics, and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode. Dev Cell 2018; 46:9-22.e4. [PMID: 29937389 DOI: 10.1016/j.devcel.2018.05.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis.
Collapse
|
17
|
Saran S, Gupta N, Roy S. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons. NEUROPHOTONICS 2018; 5:025009. [PMID: 29845088 PMCID: PMC5966744 DOI: 10.1117/1.nph.5.2.025009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/11/2018] [Indexed: 05/15/2023]
Abstract
A detailed theoretical analysis of low-power, fast optogenetic control of firing of Chronos-expressing neurons has been presented. A three-state model for the Chronos photocycle has been formulated and incorporated in a fast-spiking interneuron circuit model. The effect of excitation wavelength, pulse irradiance, pulse width, and pulse frequency has been studied in detail and compared with ChR2. Theoretical simulations are in excellent agreement with recently reported experimental results and bring out additional interesting features. At very low irradiances ([Formula: see text]), the plateau current in Chronos exhibits a maximum. At [Formula: see text], the plateau current is 2 orders of magnitude smaller and saturates at longer pulse widths ([Formula: see text]) compared to ChR2 ([Formula: see text]). [Formula: see text] in Chronos saturates at much shorter pulse widths (1775 pA at 1.5 ms and [Formula: see text]) than in ChR2. Spiking fidelity is also higher at lower irradiances and longer pulse widths compared to ChR2. Chronos exhibits an average maximal driven rate of over [Formula: see text] in response to [Formula: see text] stimuli, each of 1-ms pulse-width, in the intensity range 0 to [Formula: see text]. The analysis is important to not only understand the photodynamics of Chronos and Chronos-expressing neurons but also to design opsins with optimized properties and perform precision experiments with required spatiotemporal resolution.
Collapse
Affiliation(s)
- Sant Saran
- Dayalbagh Educational Institute, Department of Electrical Engineering, Agra, Uttar Pradesh, India
| | - Neha Gupta
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, Uttar Pradesh, India
| | - Sukhdev Roy
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, Uttar Pradesh, India
- Address all correspondence to: Sukhdev Roy, E-mail:
| |
Collapse
|
18
|
Abstract
Subcellular optogenetics allows specific proteins to be optically activated or inhibited at a restricted subcellular location in intact living cells. It provides unprecedented control of dynamic cell behaviors. Optically modulating the activity of signaling molecules on one side of a cell helps optically control cell polarization and directional cell migration. Combining subcellular optogenetics with live cell imaging of the induced molecular and cellular responses in real time helps decipher the spatially and temporally dynamic molecular mechanisms that control a stereotypical complex cell behavior, cell migration. Here we describe methods for optogenetic control of cell migration by targeting three classes of key signaling switches that mediate directional cellular chemotaxis-G protein coupled receptors (GPCRs), heterotrimeric G proteins, and Rho family monomeric G proteins.
Collapse
Affiliation(s)
- Xenia Meshik
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Johnston CM, Krafft AJ, Russe MF, Rog-Zielinska EA. A new look at the heart-novel imaging techniques. Herzschrittmacherther Elektrophysiol 2017; 29:14-23. [PMID: 29242981 DOI: 10.1007/s00399-017-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/24/2017] [Indexed: 01/20/2023]
Abstract
The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.
Collapse
Affiliation(s)
- C M Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A J Krafft
- Department of Radiology, Medical Physics, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M F Russe
- Department of Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
21
|
Liao Z, Kasirer-Friede A, Shattil SJ. Optogenetic interrogation of integrin αVβ3 function in endothelial cells. J Cell Sci 2017; 130:3532-3541. [PMID: 28864764 DOI: 10.1242/jcs.205203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
The integrin αVβ3 is reported to promote angiogenesis in some model systems but not in others. Here, we used optogenetics to study the effects of αVβ3 interaction with the intracellular adapter kindlin-2 (Fermt2) on endothelial cell functions potentially relevant to angiogenesis. Because interaction of kindlin-2 with αVβ3 requires the C-terminal three residues of the β3 cytoplasmic tail (Arg-Gly-Thr; RGT), optogenetic probes LOVpep and ePDZ1 were fused to β3ΔRGT-GFP and mCherry-kindlin-2, respectively, and expressed in β3 integrin-null microvascular endothelial cells. Exposure of the cells to 450 nm (blue) light caused rapid and specific interaction of kindlin-2 with αVβ3 as assessed by immunofluorescence and total internal reflection fluorescence (TIRF) microscopy, and it led to increased endothelial cell migration, podosome formation and angiogenic sprouting. Analyses of kindlin-2 mutants indicated that interaction of kindlin-2 with other kindlin-2 binding partners, including c-Src, actin, integrin-linked kinase and phosphoinositides, were also likely necessary for these endothelial cell responses. Thus, kindlin-2 promotes αVβ3-dependent angiogenic functions of endothelial cells through its simultaneous interactions with β3 integrin and several other binding partners. Optogenetic approaches should find further use in clarifying spatiotemporal aspects of vascular cell biology.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| | - Ana Kasirer-Friede
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| | - Sanford J Shattil
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration. J Biol Chem 2017; 292:17482-17495. [PMID: 28864771 DOI: 10.1074/jbc.m117.787838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/27/2017] [Indexed: 12/25/2022] Open
Abstract
Chemokine-induced directional cell migration is a universal cellular mechanism and plays crucial roles in numerous biological processes, including embryonic development, immune system function, and tissue remodeling and regeneration. During the migration of a stationary cell, the cell polarizes, forms lamellipodia at the leading edge (LE), and triggers the concurrent retraction of the trailing edge (TE). During cell migration governed by inhibitory G protein (Gi)-coupled receptors (GPCRs), G protein βγ (Gβγ) subunits control the LE signaling. Interestingly, TE retraction has been linked to the activation of the small GTPase Ras homolog family member A (RhoA) by the Gα12/13 pathway. However, it is not clear how the activation of Gi-coupled GPCRs at the LE orchestrates the TE retraction in RAW264.7 macrophages. Here, using an optogenetic approach involving an opsin to activate the Gi pathway in defined subcellular regions of RAW cells, we show that in addition to their LE activities, free Gβγ subunits also govern TE retraction by operating two independent, yet synchronized, pathways. The first pathway involves RhoA activation, which prevents dephosphorylation of the myosin light chain, allowing actomyosin contractility to proceed. The second pathway activates phospholipase Cβ and induces myosin light chain phosphorylation to enhance actomyosin contractility through increasing cytosolic calcium. We further show that both of these pathways are essential, and inhibition of either one is sufficient to abolish the Gi-coupled GPCR-governed TE retraction and subsequent migration of RAW cells.
Collapse
Affiliation(s)
- Praneeth Siripurapu
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kasun Ratnayake
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kanishka Senarath
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
23
|
Surpassing light-induced cell damage in vitro with novel cell culture media. Sci Rep 2017; 7:849. [PMID: 28405003 PMCID: PMC5429800 DOI: 10.1038/s41598-017-00829-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Light is extensively used to study cells in real time (live cell imaging), separate cells using fluorescence activated cell sorting (FACS) and control cellular functions with light sensitive proteins (Optogenetics). However, photo-sensitive molecules inside cells and in standard cell culture media generate toxic by-products that interfere with cellular functions and cell viability when exposed to light. Here we show that primary cells from the rat central nervous system respond differently to photo-toxicity, in that astrocytes and microglia undergo morphological changes, while in developing neurons and oligodendrocyte progenitor cells (OPCs) it induces cellular death. To prevent photo-toxicity and to allow for long-term photo-stimulation without causing cellular damage, we formulated new photo-inert media called MEMO and NEUMO, and an antioxidant rich and serum free supplement called SOS. These new media reduced the detrimental effects caused by light and allowed cells to endure up to twenty times more light exposure without adverse effects, thus bypassing the optical constraints previously limiting experiments.
Collapse
|
24
|
Spangler SM, Bruchas MR. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 2017; 32:56-70. [PMID: 27875804 PMCID: PMC5395328 DOI: 10.1016/j.coph.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
Optogenetics has revolutionized neuroscience by providing means to control cell signaling with spatiotemporal control in discrete cell types. In this review, we summarize four major classes of optical tools to manipulate neuromodulatory GPCR signaling: opsins (including engineered chimeric receptors); photoactivatable proteins; photopharmacology through caging-photoswitchable molecules; fluorescent protein based reporters and biosensors. Additionally, we highlight technologies to utilize these tools in vitro and in vivo, including Cre dependent viral vector expression and two-photon microscopy. These emerging techniques targeting specific members of the GPCR signaling pathway offer an expansive base for investigating GPCR signaling in behavior and disease states, in addition to paving a path to potential therapeutic developments.
Collapse
Affiliation(s)
- Skylar M Spangler
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Towne C, Thompson KR. Overview on Research and Clinical Applications of Optogenetics. ACTA ACUST UNITED AC 2016; 75:11.19.1-11.19.21. [DOI: 10.1002/cpph.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chris Towne
- Circuit Therapeutics, Inc Menlo Park California
| | | |
Collapse
|
26
|
Colella M, Gerbino A, Hofer AM, Curci S. Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res 2016; 5. [PMID: 27803801 PMCID: PMC5074356 DOI: 10.12688/f1000research.8963.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR), a ubiquitous class C G-protein-coupled receptor (GPCR), is responsible for the control of calcium homeostasis in body fluids. It integrates information about external Ca
2+ and a surfeit of other endogenous ligands into multiple intracellular signals, but how is this achieved? This review will focus on some of the exciting concepts in CaR signaling and pharmacology that have emerged in the last few years.
Collapse
Affiliation(s)
- Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari , Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari , Bari, Italy
| | - Aldebaran M Hofer
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School and VA Boston Healthcare System, West Roxbury, MA, USA
| | - Silvana Curci
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School and VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
27
|
Xu Y, Nan D, Fan J, Bogan JS, Toomre D. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action. J Cell Sci 2016; 129:2085-95. [PMID: 27076519 DOI: 10.1242/jcs.174805] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA
| | - Di Nan
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Jiannan Fan
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Jonathan S Bogan
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8020, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA
| |
Collapse
|
28
|
O'Neill PR, Kalyanaraman V, Gautam N. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration. Mol Biol Cell 2016; 27:1442-50. [PMID: 26941336 PMCID: PMC4850032 DOI: 10.1091/mbc.e15-12-0832] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/24/2016] [Indexed: 11/12/2022] Open
Abstract
Cdc42 is believed to play an important role in controlling the polarity of migrating cells, but it has not been possible to directly determine the effects of localized Cdc42 activity. Optogenetic activation of Cdc42 at one side of the cell was used to identify local and distal signaling responses that contribute to directed cell migration. Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses.
Collapse
Affiliation(s)
- Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
Valon L, Etoc F, Remorino A, di Pietro F, Morin X, Dahan M, Coppey M. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics. Biophys J 2015; 109:1785-97. [PMID: 26536256 PMCID: PMC4643200 DOI: 10.1016/j.bpj.2015.08.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022] Open
Abstract
Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 μm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.
Collapse
Affiliation(s)
- Leo Valon
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Fred Etoc
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York
| | - Amanda Remorino
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Florencia di Pietro
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France.
| |
Collapse
|
30
|
Paramonov VM, Mamaeva V, Sahlgren C, Rivero-Müller A. Genetically-encoded tools for cAMP probing and modulation in living systems. Front Pharmacol 2015; 6:196. [PMID: 26441653 PMCID: PMC4569861 DOI: 10.3389/fphar.2015.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.
Collapse
Affiliation(s)
- Valeriy M Paramonov
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland
| | - Veronika Mamaeva
- Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Cecilia Sahlgren
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland ; Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, Netherlands
| | - Adolfo Rivero-Müller
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Faculty of Natural Sciences and Technology, Åbo Akademi University , Turku, Finland ; Department of Biochemistry and Molecular Biology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
31
|
Langenhan T, Barr MM, Bruchas MR, Ewer J, Griffith LC, Maiellaro I, Taghert PH, White BH, Monk KR. Model Organisms in G Protein-Coupled Receptor Research. Mol Pharmacol 2015; 88:596-603. [PMID: 25979002 PMCID: PMC4551050 DOI: 10.1124/mol.115.098764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism.
Collapse
Affiliation(s)
- Tobias Langenhan
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Maureen M Barr
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Michael R Bruchas
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - John Ewer
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Leslie C Griffith
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Isabella Maiellaro
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Paul H Taghert
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Benjamin H White
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Kelly R Monk
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| |
Collapse
|
32
|
O'Neill PR, Gautam N. Optimizing optogenetic constructs for control over signaling and cell behaviours. Photochem Photobiol Sci 2015; 14:1578-85. [PMID: 26135203 DOI: 10.1039/c5pp00171d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic tools have recently been developed that enable dynamic control over the activities of select signaling proteins. They provide the unique ability to rapidly turn signaling events on or off with subcellular control in living cells and organisms. This capability is leading to new insights into how the spatial and temporal coordination of signaling events governs dynamic cell behaviours such as migration and neurite outgrowth. These tools can also be used to dissect a protein's signaling functions at different organelles. Here we review the properties of photoreceptors from diverse organisms that have been leveraged to control signaling in mammalian cells. We emphasize recent engineering approaches that have been used to create optogenetic constructs with optimized spectral, kinetic, and signaling properties for controlling cell behaviours.
Collapse
Affiliation(s)
- P R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|