1
|
Mubuchi A, Takechi M, Nishio S, Matsuda T, Itoh Y, Sato C, Kitajima K, Kitagawa H, Miyata S. Assembly of neuron- and radial glial-cell-derived extracellular matrix molecules promotes radial migration of developing cortical neurons. eLife 2024; 12:RP92342. [PMID: 38512724 PMCID: PMC10957175 DOI: 10.7554/elife.92342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.
Collapse
Affiliation(s)
- Ayumu Mubuchi
- Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Mina Takechi
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
| | - Shunsuke Nishio
- Faculty of Food and Agricultural Sciences, Fukushima UniversityFukushimaJapan
| | - Tsukasa Matsuda
- Faculty of Food and Agricultural Sciences, Fukushima UniversityFukushimaJapan
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Chihiro Sato
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Bioscience and Biotechnology Center, Nagoya UniversityNagoyaJapan
- Institute for Glyco-core Research, Nagoya UniversityNagoyaJapan
| | - Ken Kitajima
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Bioscience and Biotechnology Center, Nagoya UniversityNagoyaJapan
- Institute for Glyco-core Research, Nagoya UniversityNagoyaJapan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical UniversityKobeJapan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchuJapan
| |
Collapse
|
2
|
Skupien-Jaroszek A, Szczepankiewicz AA, Rysz A, Marchel A, Matyja E, Grajkowska W, Wilczynski GM, Dzwonek J. Morphological alterations of the neuronal Golgi apparatus upon seizures. Neuropathol Appl Neurobiol 2023; 49:e12940. [PMID: 37771048 DOI: 10.1111/nan.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
AIMS Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far. The aim of this study was to assess the changes in GA architecture in epilepsy. METHODS Golgi visualisation with immunohistochemical staining in the neocortex of adult patients who underwent epilepsy surgery; 3D reconstruction and quantitative morphometric analysis of GA structure in the rat hippocampi upon kainic acid (KA) induced seizures, as well as in vitro studies with the use of Ca2+ chelator BAPTA-AM in primary hippocampal neurons upon activation were performed. RESULTS We observed GA dispersion in neurons of the human neocortex of patients with epilepsy and hippocampal neurons in rats upon KA-induced seizures. The structural changes of GA were reversible, as GA morphology returned to normal within 24 h of KA treatment. KA-induced Golgi fragmentation observed in primary hippocampal neurons cultured in vitro was largely abolished by the addition of BAPTA-AM. CONCLUSIONS In our study, we have shown for the first time that the neuronal GA is fragmented in the human brain of patients with epilepsy and rat brain upon seizures. We have shown that seizure-induced GA dispersion can be reversible, suggesting that enhanced neuronal activity induces Golgi reorganisation that is involved in aberrant neuronal plasticity processes that underlie epilepsy. Moreover, our results revealed that elevated cytosolic Ca2+ is indispensable for these KA-induced morphological alterations of GA in vitro.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej A Szczepankiewicz
- Laboratory of Molecular and Structural Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Rysz
- Department of Neurosurgery, 1 Military Clinical Hospital in Lublin, Affiliate in Ełk, Ełk, Poland
| | - Andrzej Marchel
- Department of Neurosurgery, Medical University, Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Structural Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Diaz JR, Martá-Ariza M, Khodadadi-Jamayran A, Heguy A, Tsirigos A, Pankiewicz JE, Sullivan PM, Sadowski MJ. Apolipoprotein E4 Effects a Distinct Transcriptomic Profile and Dendritic Arbor Characteristics in Hippocampal Neurons Cultured in vitro. Front Aging Neurosci 2022; 14:845291. [PMID: 35572125 PMCID: PMC9099260 DOI: 10.3389/fnagi.2022.845291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The APOE gene is diversified by three alleles ε2, ε3, and ε4 encoding corresponding apolipoprotein (apo) E isoforms. Possession of the ε4 allele is signified by increased risks of age-related cognitive decline, Alzheimer's disease (AD), and the rate of AD dementia progression. ApoE is secreted by astrocytes as high-density lipoprotein-like particles and these are internalized by neurons upon binding to neuron-expressed apoE receptors. ApoE isoforms differentially engage neuronal plasticity through poorly understood mechanisms. We examined here the effects of native apoE lipoproteins produced by immortalized astrocytes homozygous for ε2, ε3, and ε4 alleles on the maturation and the transcriptomic profile of primary hippocampal neurons. Control neurons were grown in the presence of conditioned media from Apoe -/- astrocytes. ApoE2 and apoE3 significantly increase the dendritic arbor branching, the combined neurite length, and the total arbor surface of the hippocampal neurons, while apoE4 fails to produce similar effects and even significantly reduces the combined neurite length compared to the control. ApoE lipoproteins show no systemic effect on dendritic spine density, yet apoE2 and apoE3 increase the mature spines fraction, while apoE4 increases the immature spine fraction. This is associated with opposing effects of apoE2 or apoE3 and apoE4 on the expression of NR1 NMDA receptor subunit and PSD95. There are 1,062 genes differentially expressed across neurons cultured in the presence of apoE lipoproteins compared to the control. KEGG enrichment and gene ontology analyses show apoE2 and apoE3 commonly activate expression of genes involved in neurite branching, and synaptic signaling. In contrast, apoE4 cultured neurons show upregulation of genes related to the glycolipid metabolism, which are involved in dendritic spine turnover, and those which are usually silent in neurons and are related to cell cycle and DNA repair. In conclusion, our work reveals that lipoprotein particles comprised of various apoE isoforms differentially regulate various neuronal arbor characteristics through interaction with neuronal transcriptome. ApoE4 produces a functionally distinct transcriptomic profile, which is associated with attenuated neuronal development. Differential regulation of neuronal transcriptome by apoE isoforms is a newly identified biological mechanism, which has both implication in the development and aging of the CNS.
Collapse
Affiliation(s)
- Jenny R. Diaz
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Mitchell Martá-Ariza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Adriana Heguy
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Joanna E. Pankiewicz
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Patrick M. Sullivan
- Department of Medicine (Geriatrics), Duke University School of Medicine, Durham, NC, United States
- Durham VA Medical Center’s, Geriatric Research Education and Clinical Center, Durham, NC, United States
| | - Martin J. Sadowski
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Shahoumi LA. Oral Cancer Stem Cells: Therapeutic Implications and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:685236. [PMID: 35048028 PMCID: PMC8757826 DOI: 10.3389/froh.2021.685236] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is currently one of the 10 most common malignancies worldwide, characterized by a biologically highly diverse group of tumors with non-specific biomarkers and poor prognosis. The incidence rate of HNSCC varies widely throughout the world, with an evident prevalence in developing countries such as those in Southeast Asia and Southern Africa. Tumor relapse and metastasis following traditional treatment remain major clinical problems in oral cancer management. Current evidence suggests that therapeutic resistance and metastasis of cancer are mainly driven by a unique subpopulation of tumor cells, termed cancer stem cells (CSCs), or cancer-initiating cells (CICs), which are characterized by their capacity for self-renewal, maintenance of stemness and increased tumorigenicity. Thus, more understanding of the molecular mechanisms of CSCs and their behavior may help in developing effective therapeutic interventions that inhibit tumor growth and progression. This review provides an overview of the main signaling cascades in CSCs that drive tumor repropagation and metastasis in oral cancer, with a focus on squamous cell carcinoma. Other oral non-SCC tumors, including melanoma and malignant salivary gland tumors, will also be considered. In addition, this review discusses some of the CSC-targeted therapeutic strategies that have been employed to combat disease progression, and the challenges of targeting CSCs, with the aim of improving the clinical outcomes for patients with oral malignancies. Targeting of CSCs in head and neck cancer (HNC) represents a promising approach to improve disease outcome. Some CSC-targeted therapies have already been proven to be successful in pre-clinical studies and they are now being tested in clinical trials, mainly in combination with conventional treatment regimens. However, some studies revealed that CSCs may not be the only players that control disease relapse and progression of HNC. Further, clinical research studying a combination of therapies targeted against head and neck CSCs may provide significant advances.
Collapse
Affiliation(s)
- Linah A Shahoumi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
5
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
6
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
7
|
Mata R, Yao Y, Cao W, Ding J, Zhou T, Zhai Z, Gao C. The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. RESEARCH 2021; 2021:4189516. [PMID: 33623917 PMCID: PMC7879376 DOI: 10.34133/2021/4189516] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration, controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.
Collapse
Affiliation(s)
- Rani Mata
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Kozlova I, Sah S, Keable R, Leshchyns'ka I, Janitz M, Sytnyk V. Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci 2020; 13:592126. [PMID: 33281551 PMCID: PMC7689008 DOI: 10.3389/fnmol.2020.592126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.
Collapse
Affiliation(s)
- Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
10
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
12
|
Matsugaki A, Matsuzaka T, Murakami A, Wang P, Nakano T. 3D Printing of Anisotropic Bone-Mimetic Structure with Controlled Fluid Flow Stimuli for Osteocytes: Flow Orientation Determines the Elongation of Dendrites. Int J Bioprint 2020; 6:293. [PMID: 33088998 PMCID: PMC7557340 DOI: 10.18063/ijb.v6i4.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Although three-dimensional (3D) bioprinting techniques enable the construction of various living tissues and organs, the generation of bone-like oriented microstructures with anisotropic texture remains a challenge. Inside the mineralized bone matrix, osteocytes play mechanosensing roles in an ordered manner with a well-developed lacunar-canaliculi system. Therefore, control of cellular arrangement and dendritic processes is indispensable for construction of artificially controlled 3D bone-mimetic architecture. Herein, we propose an innovative methodology to induce controlled arrangement of osteocyte dendritic processes using the laminated layer method of oriented collagen sheets, combined with a custom-made fluid flow stimuli system. Osteocyte dendritic processes showed elongation depending on the competitive directional relationship between flow and substrate. To the best of our knowledge, this study is the first to report the successful construction of the anisotropic bone-mimetic microstructure and further demonstrate that the dendritic process formation in osteocytes can be controlled with selective fluid flow stimuli, specifically by regulating focal adhesion. Our results demonstrate how osteocytes adapt to mechanical stimuli by optimizing the anisotropic maturation of dendritic cell processes.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ami Murakami
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Pan Wang
- Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, 637662, Singapore
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Takechi M, Oshima K, Nadano D, Kitagawa H, Matsuda T, Miyata S. A pericellular hyaluronan matrix is required for the morphological maturation of cortical neurons. Biochim Biophys Acta Gen Subj 2020; 1864:129679. [PMID: 32623025 DOI: 10.1016/j.bbagen.2020.129679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is involved in many cellular functions. In the adult brain, HA forms macromolecular aggregates around synapses and plays important roles in neural plasticity. In contrast to the well-characterized function of HA in the adult brain, its roles in the developing brain remain largely unknown. METHODS Biochemical and histochemical analyses were performed to analyze the amount, solubility, and localization of HA in the developing mouse brain. By combining in utero labeling, cell isolation, and in vitro cultures, we examined the expression of hyaluronan synthase (HAS) and morphological maturation of cortical neurons. RESULTS The amount of HA increased during perinatal development and decreased in the adult. HA existed as a soluble form in the early stages; however, its solubility markedly decreased during postnatal development. HA localized in cell-sparse regions in the embryonic stages, but was broadly distributed during the postnatal development of the cerebral cortex. Developing cortical neurons expressed both Has2 and Has3, but not Has1, suggesting the autonomous production of HA by neurons themselves. HA formed a pericellular matrix around the cell bodies and neurites of developing cortical neurons, and the inhibition of HA synthesis reduced neurite outgrowth. CONCLUSION The formation of the pericellular HA matrix is essential for the proper morphological maturation of developing neurons. GENERAL SIGNIFICANCE This study provides new insights into the roles of hyaluronan in the brain. DEVELOPMENT
Collapse
Affiliation(s)
- Mina Takechi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-Ku, Kobe 658-8558, Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
14
|
Jani MS, Zou J, Veetil AT, Krishnan Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol 2020; 16:660-666. [PMID: 32152543 DOI: 10.1038/s41589-020-0491-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Nitric oxide synthase 3 (NOS3) produces the gasotransmitter nitric oxide (NO), which drives critical cellular signaling pathways by S-nitrosylating target proteins. Endogenous NOS3 resides at two distinct subcellular locations: the plasma membrane and the trans-Golgi network (TGN). However, NO generation arising from the activities of both these pools of NOS3 and its relative contribution to physiology or disease is not yet resolvable. We describe a fluorescent DNA-based probe technology, NOckout, that can be targeted either to the plasma membrane or the TGN, where it can quantitatively map the activities of endogenous NOS3 at these locations in live cells. We found that, although NOS3 at the Golgi is tenfold less active than at the plasma membrane, its activity is essential for the structural integrity of the Golgi. The newfound ability to spatially map NOS3 activity provides a platform to discover selective regulators of the distinct pools of NOS3.
Collapse
Affiliation(s)
- Maulik S Jani
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, Segarra M, Ruiz de Almodóvar C, Acker-Palmer A. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. eLife 2019; 8:49819. [PMID: 31868584 PMCID: PMC6927743 DOI: 10.7554/elife.49819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor that play important roles in the nervous system, although it is still unclear which receptors transduce those signals in neurons. Here, we show that in the developing hippocampus VEGFR2 (also known as KDR or FLK1) is expressed specifically in the CA3 region and it is required for dendritic arborization and spine morphogenesis in hippocampal neurons. Mice lacking VEGFR2 in neurons (Nes-cre Kdrlox/-) show decreased dendritic arbors and spines as well as a reduction in long-term potentiation (LTP) at the associational-commissural – CA3 synapses. Mechanistically, VEGFR2 internalization is required for VEGF-induced spine maturation. In analogy to endothelial cells, ephrinB2 controls VEGFR2 internalization in neurons. VEGFR2-ephrinB2 compound mice (Nes-cre Kdrlox/+ Efnb2lox/+) show reduced dendritic branching, reduced spine head size and impaired LTP. Our results demonstrate the functional crosstalk of VEGFR2 and ephrinB2 in vivo to control dendritic arborization, spine morphogenesis and hippocampal circuitry development.
Collapse
Affiliation(s)
- Eva Harde
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - LaShae Nicholson
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Beatriz Furones Cuadrado
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Diane Bissen
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Sylvia Wigge
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Severino Urban
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marta Segarra
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany.,European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
16
|
Chen D, Wang CY. Targeting cancer stem cells in squamous cell carcinoma. PRECISION CLINICAL MEDICINE 2019; 2:152-165. [PMID: 31598386 PMCID: PMC6770277 DOI: 10.1093/pcmedi/pbz016] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor and the sixth
most common cancer worldwide. Current treatment strategies for HNSCC are surgery,
radiotherapy, chemotherapy, immunotherapy or combinatorial therapies. However, the overall
5-year survival rate of HNSCC patients remains at about 50%. Cancer stem cells (CSCs), a
small population among tumor cells, are able to self-renew and differentiate into
different tumor cell types in a hierarchical manner, similar to normal tissue. In HNSCC,
CSCs are proposed to be responsible for tumor initiation, progression, metastasis, drug
resistance, and recurrence. In this review, we discuss the molecular and cellular
characteristics of CSCs in HNSCC. We summarize current approaches used in the literature
for identification of HNSCC CSCs, and mechanisms required for CSC regulation. We also
highlight the role of CSCs in treatment failure and therapeutic targeting options for
eliminating CSCs in HNSCC.
Collapse
Affiliation(s)
- Demeng Chen
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Bradford BM, Wijaya CAW, Mabbott NA. Discrimination of Prion Strain Targeting in the Central Nervous System via Reactive Astrocyte Heterogeneity in CD44 Expression. Front Cell Neurosci 2019; 13:411. [PMID: 31551718 PMCID: PMC6746926 DOI: 10.3389/fncel.2019.00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 01/15/2023] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are fatal, progressive, neurodegenerative, protein-misfolding disorders. Prion diseases may arise spontaneously, be inherited genetically or be acquired by infection and affect a variety of mammalian species including humans. Prion infections in the central nervous system (CNS) cause extensive neuropathology, including abnormal accumulations of misfolded host prion protein, vacuolar change resulting in sponge-like (spongiform) appearance of CNS tissue, neurodegeneration and reactive glial responses. Many different prion agent strains exist and these can differ based on disease duration, clinical signs and the targeting and distribution of the neuropathology in distinct brain areas. Reactive astrocytes are a prominent feature in the prion disease affected CNS as revealed by distinct morphological changes and upregulation of glial fibrillary acidic protein (GFAP). The CD44 antigen is a transmembrane glycoprotein involved in cell-cell interactions, cell adhesion and migration. Here we show that CD44 is also highly expressed in a subset of reactive astrocytes in regions of the CNS targeted by prions. Astrocyte heterogeneity revealed by differential CD44 upregulation occurs coincident with the earliest neuropathological changes during the pre-clinical phase of disease, and is not affected by the route of infection. The expression and distribution of CD44 was compared in brains from a large collection of 15 distinct prion agent strains transmitted to mice of different prion protein (Prnp) genotype backgrounds. Our data show that the pattern of CD44 upregulation observed in the hippocampus in each prion agent strain and host Prnp genotype combination was unique. Many mouse-adapted prion strains and hosts have previously been characterized based on the pattern of the distribution of the spongiform pathology or the misfolded PrP deposition within the brain. Our data show that CD44 expression also provides a reliable discriminatory marker of prion infection with a greater dynamic range than misfolded prion protein deposition, aiding strain identification. Together, our data reveal CD44 as a novel marker to detect reactive astrocyte heterogeneity during CNS prion disease and for enhanced identification of distinct prion agent strains.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christianus A W Wijaya
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Rojek KO, Krzemień J, Doleżyczek H, Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J, Holmgren L, Prószyński TJ. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol 2019; 17:e3000253. [PMID: 31042703 PMCID: PMC6513106 DOI: 10.1371/journal.pbio.3000253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Krzemień
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Doleżyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł M. Boguszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Rylski
- Centre of Postgraduate Medical Education, Warsaw, Poland
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
19
|
Targeted deletion of HYBID (hyaluronan binding protein involved in hyaluronan depolymerization/ KIAA1199/CEMIP) decreases dendritic spine density in the dentate gyrus through hyaluronan accumulation. Biochem Biophys Res Commun 2018; 503:1934-1940. [DOI: 10.1016/j.bbrc.2018.07.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022]
|
20
|
Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation 2018; 15:144. [PMID: 29764485 PMCID: PMC5952578 DOI: 10.1186/s12974-018-1192-7] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is often associated with a history of previous lesions in the nervous system. Impaired regulation of the activation and resolution of inflammatory cells and molecules in the injured neuronal tissue is a critical factor to the development of epilepsy. However, it is still unclear as to how that unbalanced regulation of inflammation contributes to epilepsy. Therefore, one of the goals in epilepsy research is to identify and elucidate the interconnected inflammatory pathways in systemic and neurological disorders that may further develop epilepsy progression. In this paper, inflammatory molecules, in neurological and systemic disorders (rheumatoid arthritis, Crohn’s, Type I Diabetes, etc.) that could contribute to epilepsy development, are reviewed. Understanding the neurobiology of inflammation in epileptogenesis will contribute to the development of new biomarkers for better screening of patients at risk for epilepsy and new therapeutic targets for both prophylaxis and treatment of epilepsy.
Collapse
Affiliation(s)
- Amna Rana
- Department of Pathology and Anatomy, Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA
| | - Alberto E Musto
- Department of Pathology and Anatomy, Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA.
| |
Collapse
|
21
|
Bijata M, Labus J, Guseva D, Stawarski M, Butzlaff M, Dzwonek J, Schneeberg J, Böhm K, Michaluk P, Rusakov DA, Dityatev A, Wilczyński G, Wlodarczyk J, Ponimaskin E. Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Rep 2018; 19:1767-1782. [PMID: 28564597 DOI: 10.1016/j.celrep.2017.05.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 02/04/2023] Open
Abstract
Rewiring of synaptic circuitry pertinent to memory formation has been associated with morphological changes in dendritic spines and with extracellular matrix (ECM) remodeling. Here, we mechanistically link these processes by uncovering a signaling pathway involving the serotonin 5-HT7 receptor (5-HT7R), matrix metalloproteinase 9 (MMP-9), the hyaluronan receptor CD44, and the small GTPase Cdc42. We highlight a physical interaction between 5-HT7R and CD44 (identified as an MMP-9 substrate in neurons) and find that 5-HT7R stimulation increases local MMP-9 activity, triggering dendritic spine remodeling, synaptic pruning, and impairment of long-term potentiation (LTP). The underlying molecular machinery involves 5-HT7R-mediated activation of MMP-9, which leads to CD44 cleavage followed by Cdc42 activation. One important physiological consequence of this interaction includes an increase in neuronal outgrowth and elongation of dendritic spines, which might have a positive effect on complex neuronal processes (e.g., reversal learning and neuronal regeneration).
Collapse
Affiliation(s)
- Monika Bijata
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daria Guseva
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michał Stawarski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Malte Butzlaff
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joanna Dzwonek
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Jenny Schneeberg
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katrin Böhm
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Piotr Michaluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland; UCL Institute of Neurology, University College of London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College of London, Queen Square, London WC1N 3BG, UK
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Grzegorz Wilczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Jakub Wlodarczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland.
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Pinner E, Gruper Y, Ben Zimra M, Kristt D, Laudon M, Naor D, Zisapel N. CD44 Splice Variants as Potential Players in Alzheimer’s Disease Pathology. J Alzheimers Dis 2017; 58:1137-1149. [DOI: 10.3233/jad-161245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Micha Ben Zimra
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Don Kristt
- Molecular Pathology Unit, Rabin Medical Center, Petah Tikva, Israel
| | | | - David Naor
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nava Zisapel
- Neurim Pharmaceuticals Ltd, Tel-Aviv, Israel
- Department of Neurobiology Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
23
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
24
|
Fowke TM, Karunasinghe RN, Bai JZ, Jordan S, Gunn AJ, Dean JM. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep 2017; 7:44135. [PMID: 28287145 PMCID: PMC5347017 DOI: 10.1038/srep44135] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan is a linear glycosaminoglycan that forms the backbone of perineuronal nets around neurons in the cerebral cortex. However, it remains controversial whether neurons are capable of independent hyaluronan synthesis. Herein, we examined the expression of hyaluronan and hyaluronan synthases (HASs) throughout cortical neuron development in vitro. Enriched cultures of cortical neurons were established from E16 rats. Neurons were collected at days in vitro (DIV) 0 (4 h), 1, 3, 7, 14, and 21 for qPCR or immunocytochemistry. In the relative absence of glia, neurons exhibited HAS1–3 mRNA at all time-points. By immunocytochemistry, puncta of HAS2–3 protein and hyaluronan were located on neuronal cell bodies, neurites, and lamellipodia/growth cones from as early as 4 h in culture. As neurons matured, hyaluronan was also detected on dendrites, filopodia, and axons, and around synapses. Percentages of hyaluronan-positive neurons increased with culture time to ~93% by DIV21, while only half of neurons at DIV21 expressed the perineuronal net marker Wisteria floribunda agglutinin. These data clearly demonstrate that neurons in vitro can independently synthesise hyaluronan throughout all maturational stages, and that hyaluronan production is not limited to neurons expressing perineuronal nets. The specific structural localisation of hyaluronan suggests potential roles in neuronal development and function.
Collapse
Affiliation(s)
- Tania M Fowke
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Rashika N Karunasinghe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Shawn Jordan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
25
|
Roszkowska M, Skupien A, Wójtowicz T, Konopka A, Gorlewicz A, Kisiel M, Bekisz M, Ruszczycki B, Dolezyczek H, Rejmak E, Knapska E, Mozrzymas JW, Wlodarczyk J, Wilczynski GM, Dzwonek J. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Mol Biol Cell 2016; 27:4055-4066. [PMID: 27798233 PMCID: PMC5156546 DOI: 10.1091/mbc.e16-06-0423] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 12/02/2022] Open
Abstract
CD44 is a novel molecular player that regulates structure and function of the synapse. It affects excitatory synaptic transmission, dendritic spine shape, number of functional synapses, and activity-dependent neuronal plasticity. These functions are exerted via the regulation of small Rho GTPases. Synaptic cell adhesion molecules regulate signal transduction, synaptic function, and plasticity. However, their role in neuronal interactions with the extracellular matrix (ECM) is not well understood. Here we report that the CD44, a transmembrane receptor for hyaluronan, modulates synaptic plasticity. High-resolution ultrastructural analysis showed that CD44 was localized at mature synapses in the adult brain. The reduced expression of CD44 affected the synaptic excitatory transmission of primary hippocampal neurons, simultaneously modifying dendritic spine shape. The frequency of miniature excitatory postsynaptic currents decreased, accompanied by dendritic spine elongation and thinning. These structural and functional alterations went along with a decrease in the number of presynaptic Bassoon puncta, together with a reduction of PSD-95 levels at dendritic spines, suggesting a reduced number of functional synapses. Lack of CD44 also abrogated spine head enlargement upon neuronal stimulation. Moreover, our results indicate that CD44 contributes to proper dendritic spine shape and function by modulating the activity of actin cytoskeleton regulators, that is, Rho GTPases (RhoA, Rac1, and Cdc42). Thus CD44 appears to be a novel molecular player regulating functional and structural plasticity of dendritic spines.
Collapse
Affiliation(s)
- Matylda Roszkowska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland.,Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Adam Gorlewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marek Bekisz
- Laboratory of Visual System, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Blazej Ruszczycki
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hubert Dolezyczek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Emilia Rejmak
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
26
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
27
|
Konopka A, Zeug A, Skupien A, Kaza B, Mueller F, Chwedorowicz A, Ponimaskin E, Wilczynski GM, Dzwonek J. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling. PLoS One 2016; 11:e0155053. [PMID: 27163367 PMCID: PMC4862642 DOI: 10.1371/journal.pone.0155053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of astrocytes.
Collapse
Affiliation(s)
- Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Andre Zeug
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Franziska Mueller
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Agnieszka Chwedorowicz
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| |
Collapse
|
28
|
Ferrari LF, Araldi D, Bogen O, Levine JD. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation. Neuroscience 2016; 324:390-8. [PMID: 26996509 DOI: 10.1016/j.neuroscience.2016.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation.
Collapse
Affiliation(s)
- L F Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - D Araldi
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - O Bogen
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - J D Levine
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Bijata M, Wlodarczyk J, Figiel I. Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Front Cell Neurosci 2015; 9:199. [PMID: 26074769 PMCID: PMC4443029 DOI: 10.3389/fncel.2015.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/09/2015] [Indexed: 11/13/2022] Open
Abstract
Dendritic outgrowth and arborization are important for establishing neural circuit formation. To date, little information exists about the involvement of the extracellular matrix (ECM) and its cellular receptors in these processes. In our studies, we focus on the role of dystroglycan (DG), a cell adhesion molecule that links ECM components to the actin cytoskeleton, in dendritic development and branching. Using a lentiviral vector to deliver short-hairpin RNA (shRNA) that specifically silences DG in cultured hippocampal neurons, we found that DG knockdown exerted an inhibitory effect on dendritic tree growth and arborization. The structural changes were associated with activation of the guanosine triphosphatase Cdc42. The overexpression of DG promoted dendritic length and branching. Furthermore, exposure of the cultures to autoactivating matrix metalloproteinase-9 (aaMMP-9), a β-DG-cleaving protease, decreased the complexity of dendritic arbors. This effect was abolished in neurons that overexpressed a β-DG mutant that was defective in MMP-9-mediated cleavage. Altogether, our results indicate that DG controls dendritic arborization in vitro in MMP-9-dependent manner.
Collapse
Affiliation(s)
- Monika Bijata
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| |
Collapse
|
30
|
Dzwonek J, Wilczynski GM. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci 2015; 9:175. [PMID: 25999819 PMCID: PMC4423434 DOI: 10.3389/fncel.2015.00175] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
CD44 is the major surface hyaluronan (HA) receptor implicated in intercellular and cell-matrix adhesion, cell migration and signaling. It is a transmembrane, highly glycosylated protein with several isoforms resulting from alternative gene splicing. The CD44 molecule consists of several domains serving different functions: the N-terminal extracellular domain, the stem region, the transmembrane domain and the C-terminal tail. In the nervous system, CD44 expression occurs in both glial and neuronal cells. The role of CD44 in the physiology and pathology of the nervous system is not entirely understood, however, there exists evidence suggesting it might be involved in the axon guidance, cytoplasmic Ca2+ clearance, dendritic arborization, synaptic transmission, epileptogenesis, oligodendrocyte and astrocyte differentiation, post-traumatic brain repair and brain tumour development.
Collapse
Affiliation(s)
- Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology Warsaw, Poland
| |
Collapse
|
31
|
Skupien A, Konopka A, Trzaskoma P, Labus J, Gorlewicz A, Swiech L, Babraj M, Dolezyczek H, Figiel I, Ponimaskin E, Wlodarczyk J, Jaworski J, Wilczynski GM, Dzwonek J. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi. Development 2014. [DOI: 10.1242/dev.119990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|