1
|
Anand A, Gautam G, Srivastava G, Yadav S, Ramalingam K, Siddiqi MI, Goyal N. Molecular, structural, and functional characterization of delta subunit of T-complex protein-1 from Leishmania donovani. Infect Immun 2024; 92:e0023424. [PMID: 39248465 PMCID: PMC11475657 DOI: 10.1128/iai.00234-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 09/10/2024] Open
Abstract
Chaperonins/Heat shock protein 60 are ubiquitous multimeric protein complexes that assist in the folding of partially and/or misfolded proteins using metabolic energy into their native stage. The eukaryotic group II chaperonin, also referred as T-complex protein-1 ring complex (TRiC)/T-complex protein-1 (TCP1)/chaperonin containing T-complex protein (CCT), contains 8-9 paralogous subunits, arranged in each of the two rings of hetero-oligomeric complex. In Leishmania, till date, only one subunit, LdTCP1γ, has been well studied. Here, we report the molecular, structural, and functional characterization of TCP1δ subunit of Leishmania donovani (LdTCP1δ), the causative agent of Indian kala-azar. LdTCP1δ gene exhibited only 27.9% identity with LdTCP1γ and clustered in a separate branch in the phylogenic tree of LdTCP1 subunits. The purified recombinant protein formed a high molecular weight complex (0.75 MDa), arranged into 16-mer assembly, and performed in vitro chaperonin activity as assayed by ATP-dependent luciferase folding. LdTCP1δ exhibits 1.8-fold upregulated expression in metabolically active, rapidly dividing log phase promastigotes. Over-expression of LdTCP1δ in promastigotes results in increased infectivity and rate of multiplication of intracellular amastigotes. The study thus establishes the existence of an individual functionally active homo-oligomeric complex of LdTCP1δ chaperonin with its role in parasite infectivity and multiplication.
Collapse
Affiliation(s)
- Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gunjan Gautam
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gaurava Srivastava
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Cruz KP, Petersen ALOA, Amorim MF, Pinho AGSF, Palma LC, Dantas DAS, Silveira MRG, Silva CSA, Cordeiro ALJ, Oliveira IG, Pita GB, Souza BCA, Bomfim GC, Brodskyn CI, Fraga DBM, Lima IS, de_Santana MBR, Teixeira HMP, de_Menezes JPB, Santos WLC, Veras PST. Intraperitoneal Administration of 17-DMAG as an Effective Treatment against Leishmania braziliensis Infection in BALB/c Mice: A Preclinical Study. Pathogens 2024; 13:630. [PMID: 39204231 PMCID: PMC11357173 DOI: 10.3390/pathogens13080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Leishmaniasis is a significant global public health issue that is caused by parasites from Leishmania genus. With limited treatment options and rising drug resistance, there is a pressing need for new therapeutic approaches. Molecular chaperones, particularly Hsp90, play a crucial role in parasite biology and are emerging as promising targets for drug development. OBJECTIVE This study evaluates the efficacy of 17-DMAG in treating BALB/c mice from cutaneous leishmaniasis through in vitro and in vivo approaches. MATERIALS AND METHODS We assessed 17-DMAG's cytotoxic effect on bone marrow-derived macrophages (BMMΦ) and its effects against L. braziliensis promastigotes and intracellular amastigotes. Additionally, we tested the compound's efficacy in BALB/c mice infected with L. braziliensis via intraperitoneal administration to evaluate the reduction in lesion size and the decrease in parasite load in the ears and lymph nodes of infected animals. RESULTS 17-DMAG showed selective toxicity [selective index = 432) towards Leishmania amastigotes, causing minimal damage to host cells. The treatment significantly reduced lesion sizes in mice and resulted in parasite clearance from ears and lymph nodes. It also diminished inflammatory responses and reduced the release of pro-inflammatory cytokines (IL-6, IFN-γ, TNF) and the regulatory cytokine IL-10, underscoring its dual leishmanicidal and anti-inflammatory properties. CONCLUSIONS Our findings confirm the potential of 17-DMAG as a viable treatment for cutaneous leishmaniasis and support further research into its mechanisms and potential applications against other infectious diseases.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Antonio L. O. A. Petersen
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Baiano Federal Institute of Education, Science and Technology—Santa Inês Campus, BR 420, Santa Inês Road, Rural Zone, Ubaíra 45320-000, Bahia, Brazil
| | - Marina F. Amorim
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Alan G. S. F. Pinho
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Luana C. Palma
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Diana A. S. Dantas
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Mariana R. G. Silveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Carine S. A. Silva
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Ana Luiza J. Cordeiro
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Izabella G. Oliveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Gabriella B. Pita
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Bianca C. A. Souza
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Gilberto C. Bomfim
- Laboratory of Population Genetics and Molecular Evolution, Biology Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil;
| | - Cláudia I. Brodskyn
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Deborah B. M. Fraga
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| | - Isadora S. Lima
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Maria B. R. de_Santana
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Helena M. P. Teixeira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Juliana P. B. de_Menezes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Washington L. C. Santos
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
- Department of Pathology and Forensic Medicine, Bahia Medical School, Federal University of Bahia, Salvador 40110-906, Bahia, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| |
Collapse
|
3
|
Yang Y, Pian Y, Li J, Xu L, Lu Z, Dai Y, Li Q. Integrative analysis of genome and transcriptome reveal the genetic basis of high temperature tolerance in pleurotus giganteus (Berk. Karun & Hyde). BMC Genomics 2023; 24:552. [PMID: 37723428 PMCID: PMC10506213 DOI: 10.1186/s12864-023-09669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Pleurotus giganteus is a commonly cultivated mushroom with notable high temperature resistance, making it significant for the growth of the edible fungi industry in the tropics. Despite its practical importance,, the genetic mechanisms underlying its ability to withstand high temperature tolerance remain elusive. RESULTS In this study, we performed high-quality genome sequencing of a monokaryon isolated from a thermotolerant strain of P. giganteus. The genome size was found to be 40.11 Mb, comprising 17 contigs and 13,054 protein-coding genes. Notably, some genes related to abiotic stress were identified in genome, such as genes regulating heat shock protein, protein kinase activity and signal transduction. These findings provide valuable insights into the genetic basis of P. giganteus' high temperature resistance. Furthermore, the phylogenetic tree showed that P. giganteus was more closely related to P. citrinopileatus than other Pleurotus species. The divergence time between Pleurotus and Lentinus was estimated as 153.9 Mya, and they have a divergence time with Panus at 168.3 Mya, which proved the taxonomic status of P. giganteus at the genome level. Additionally, a comparative transcriptome analysis was conducted between mycelia treated with 40 °C heat shock for 18 h (HS) and an untreated control group (CK). Among the 2,614 differentially expressed genes (DEGs), 1,303 genes were up-regulated and 1,311 were down-regulated in the HS group. The enrichment analysis showed that several genes related to abiotic stress, including heat shock protein, DnaJ protein homologue, ubiquitin protease, transcription factors, DNA mismatch repair proteins, and zinc finger proteins, were significantly up-regulated in the HS group. These genes may play important roles in the high temperature adaptation of P. giganteus. Six DEGs were selected according to fourfold expression changes and were validated by qRT-PCR, laying a good foundation for further gene function analysis. CONCLUSION Our study successfully reported a high-quality genome of P. giganteus and identified genes associated with high-temperature tolerance through an integrative analysis of the genome and transcriptome. This study lays a crucial foundation for understanding the high-temperature tolerance mechanism of P. giganteus, providing valuable insights for genetic modification of P. giganteus strains and the development of high-temperature strains for the edible fungus industry, particularly in tropical regions.
Collapse
Affiliation(s)
- Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
| | - Yongru Pian
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Jingyi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Lin Xu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Zhu Lu
- Jilin Academy of Vegetables and Flowers Sciences, Changchun, China
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China.
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China.
| |
Collapse
|
4
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
5
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
6
|
Mukkala AN, Kariyawasam R, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Elevated baseline expression of seven virulence factor RNA transcripts in visceralizing species of Leishmania: a preliminary quantitative PCR study. Ther Adv Infect Dis 2022; 9:20499361221102665. [PMID: 35663431 PMCID: PMC9158425 DOI: 10.1177/20499361221102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Leishmaniasis is a neglected tropical disease that manifests as three major disease phenotypes: cutaneous, mucocutaneous, and visceral. In this preliminary study, we quantified virulence factor (VF) RNA transcript expression in Leishmania species, stratified by geographic origin and propensity for specific disease phenotypes. Methods: Cultured promastigotes of 19 Leishmania clinical and ATCC isolates were extracted for total cellular RNA, cDNA was reverse transcribed, and qPCR assays were performed to quantify VF RNA transcript expression for hsp23, hsp70, hsp83, hsp100, mpi, cpb, and gp63. Results: Comparison of visceralizing species (Leishmania donovani, Leishmania chagasi, and Leishmania infantum) versus non-visceralizing species [Leishmania (Viannia) spp., Leishmania tropica, Leishmania major, Leishmania mexicana, and Leishmania amazonensis] revealed a significantly greater pooled transcript expression for visceralizing species (p = 0.0032). Similarly, Old World species demonstrated significantly higher VF RNA transcript expression than New World species (p = 0.0015). On a per-gene basis, species with a propensity to visceralize ubiquitously expressed higher levels of gp63 (p = 0.005), cpb (p = 0.0032), mpi (p = 0.0032), hsp23 (p = 0.0039), hsp70 (p = 0.0032), hsp83 (p = 0.0032), and hsp100 (p = 0.0032). Conclusion: Here, we provide quantitative, preliminary evidence of elevated VF RNA transcript expression driven largely by the visceralizing causative species of Leishmania. This work highlights the extensive heterogeneity in pathogenicity mechanisms between Leishmania species, which may partly underpin the fatal progression of visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Ruwandi Kariyawasam
- Division of Diagnostic and Applied Microbiology, University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories-Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Toronto, ON, Canada
| | - Braulio M. Valencia
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea K. Boggild
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Tropical Disease Unit, Toronto General Hospital, Room 13EN-218, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
7
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
8
|
Yadav S, Anand A, Ramalingam K, Balodi DC, Maras JS, Goyal N. Unraveling of interacting protein network of chaperonin TCP1 gamma subunit of Leishmania donovani. Cell Stress Chaperones 2022; 27:205-222. [PMID: 35199315 PMCID: PMC9106790 DOI: 10.1007/s12192-022-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/03/2022] Open
Abstract
T-complex polypeptide-1 (TCP1) is a group II chaperonin that folds various cellular proteins. About 10% of cytosolic proteins in yeast have been shown to flux through the TCP1 protein complex indicating that it interacts and folds a plethora of substrate proteins that perform essential functions. In Leishmania donovani, the gamma subunit of TCP1 (LdTCP1γ) has been shown to form a homo-oligomeric complex and exhibited ATP-dependent protein folding activity. LdTCP1γ is essential for the growth and infectivity of the parasite. The interacting partners of L. donovani TCP1γ, involved in many cellular processes, are far from being understood. In this study, we utilized co-immunoprecipitation assay coupled with liquid chromatography-mass spectrometry (LC-MS) to unravel protein-protein interaction (PPI) networks of LdTCP1γ in the L. donovani parasite. Label-free quantification (LFQ) proteomic analysis revealed 719 interacting partners of LdTCP1γ. String analysis showed that LdTCP1γ interacts with all subunits of TCP1 complex as well as other proteins belonging to pathways like metabolic process, ribosome, protein folding, sorting, and degradation. Trypanothione reductase, identified as one of the interacting partners, is refolded by LdTCP1γ. In addition, the differential expression of LdTCP1γ modulates the trypanothione reductase activity in L. donovani parasite. The study provides novel insight into the role of LdTCP1γ that will pave the way to better understand parasite biology by identifying the interacting partners of this chaperonin.
Collapse
Affiliation(s)
- Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India
| | - Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Deep Chandra Balodi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India.
| |
Collapse
|
9
|
Wang L, Liao B, Gong L, Xiao S, Huang Z. Haploid Genome Analysis Reveals a Tandem Cluster of Four HSP20 Genes Involved in the High-Temperature Adaptation of Coriolopsis trogii. Microbiol Spectr 2021; 9:e0028721. [PMID: 34406871 PMCID: PMC8552761 DOI: 10.1128/spectrum.00287-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Coriolopsis trogii is a typical thermotolerant basidiomycete fungus, but its thermotolerance mechanisms are currently unknown. In this study, two monokaryons of C. trogii strain Ct001 were assembled: Ct001_29 had a genome assembly size of 38.85 Mb and encoded 13,113 genes, while Ct001_31 was 40.19 Mb in length and encoded 13,309 genes. Comparative intra- and interstrain genomic analysis revealed the rich genetic diversity of C. trogii, which included more than 315,194 single-nucleotide polymorphisms (SNPs), 30,387 insertion/deletions (indels), and 1,460 structural variations. Gene family analysis showed that the expanded families of C. trogii were functionally enriched in lignocellulose degradation activities. Furthermore, a total of 14 allelic pairs of heat shock protein 20 (HSP20) genes were identified in the C. trogii genome. The expression profile obtained from RNA sequencing (RNA-Seq) showed that four tandem-duplicated allelic pairs, HSP20.5 to HSP20.8, had more than 5-fold higher expression at 35°C than at 25°C. In particular, HSP20.5 and HSP20.8 were the most highly expressed HSP20 genes. Allelic expression bias was found for HSP20.5 and HSP20.8; the expression of Ct29HSP20.8 was at least 1.34-fold higher than that of Ct31HSP20.8, and that of Ct31HSP20.5 was at least 1.5-fold higher than that of Ct29HSP20.5. The unique structural and expression profiles of the HSP20 genes revealed by these haplotype-resolved genomes provide insight into the molecular mechanisms of high-temperature adaptation in C. trogii. IMPORTANCE Heat stress is one of the most frequently encountered environmental stresses for most mushroom-forming fungi. Currently available fungal genomes are mostly haploid because high heterozygosity hinders diploid genome assembly. Here, two haplotype genomes of C. trogii, a thermotolerant basidiomycete, were assembled separately. A conserved tandem cluster of four HSP20 genes showing allele-specific expression was found to be closely related to high-temperature adaptation in C. trogii. The obtained haploid genomes and their comparison offer a more thorough understanding of the genetic background of C. trogii. In addition, the responses of HSP20 genes at 35°C, which may contribute to the growth and survival of C. trogii at high temperatures, could inform the selection and breeding of elite strains in the future.
Collapse
Affiliation(s)
- Lining Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, People’s Republic of China
| | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Lu Gong
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Abstract
Leishmania donovani is a parasitic protist that causes the lethal Kala-azar fever in India and East Africa. Gene expression in Leishmania is regulated by gene copy number variation and inducible translation while RNA synthesis initiates at a small number of sites per chromosome and proceeds through polycistronic transcription units, precluding a gene-specific regulation (C. Clayton and M. Shapira, Mol Biochem Parasitol 156:93–101, 2007, https://doi.org/10.1016/j.molbiopara.2007.07.007). Here, we analyze the dynamics of chromatin structure in both life cycle stages of the parasite and find evidence for an additional, epigenetic gene regulation pathway in this early branching eukaryote. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis (J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Nat Methods 10:1213–1218, 2013, https://doi.org/10.1038/nmeth.2688) predominantly shows euchromatin at transcription start regions in fast-growing promastigotes, but mostly heterochromatin in the slowly proliferating amastigotes, the mammalian stage, reflecting a previously shown increase of histone synthesis in the latter stage. IMPORTANCELeishmania parasites are important pathogens with a global impact and cause poverty-related illness and death. They are devoid of classic cis- and trans-acting transcription regulators but use regulated translation and gene copy number variations to adapt to hosts and environments. In this work, we show that transcription start regions present as open euchromatin in fast-growing insect stages but as less-accessible heterochromatin in the slowly proliferating amastigote stage, indicating an epigenetic control of gene accessibility in this early branching eukaryotic pathogen. This finding should stimulate renewed interest in the control of RNA synthesis in Leishmania and related parasites.
Collapse
|
11
|
Cruz KP, Patricio BFC, Pires VC, Amorim MF, Pinho AGSF, Quadros HC, Dantas DAS, Chaves MHC, Formiga FR, Rocha HVA, Veras PST. Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Front Chem 2021; 9:644827. [PMID: 34055735 PMCID: PMC8161503 DOI: 10.3389/fchem.2021.644827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a spectrum of neglected tropical diseases and its cutaneous form (CL) is characterized by papillary or ulcerated skin lesions that negatively impact patients' quality of life. Current CL treatments suffer limitations, such as severe side effects and high cost, making the search for new therapeutic alternatives an imperative. In this context, heat shock protein 90 (Hsp90) could present a novel therapeutic target, as evidence suggests that Hsp90 inhibitors, such as 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin (17-DMAG), may represent promising chemotherapeutic agents against CL. As innovative input for formulation development of 17-DMAG, nano-based drug delivery systems could provide controlled release, targeting properties, and reduced drug toxicity. In this work, a double emulsion method was used to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing 17-DMAG. The nanoparticle was developed using two distinct protocols: Protocol 1 (P1) and Protocol 2 (P2), which differed concerning the organic solvent (acetone or dichloromethane, respectively) and procedure used to form double-emulsions (Ultra-Turrax® homogenization or sonication, respectively). The nanoparticles produced by P2 were comparatively smaller (305.5 vs. 489.0 nm) and more homogeneous polydispersion index (PdI) (0.129 vs. 0.33) than the ones made by P1. Afterward, the P2 was optimized and the best composition consisted of 2 mg of 17-DMAG, 100 mg of PLGA, 5% of polyethylene glycol (PEG 8000), 1.5 mL of the internal aqueous phase, 1% of polyvinyl alcohol (PVA), and 4 mL of the organic phase. Optimized P2 nanoparticles had a particle size of 297.2 nm (288.6-304.1) and encapsulation efficacy of 19.35% (15.42-42.18) by the supernatant method and 31.60% (19.9-48.79) by the filter/column method. Release kinetics performed at 37°C indicated that ~16% of the encapsulated 17-DMAG was released about to 72 h. In a separate set of experiments, a cell uptake assay employing confocal fluorescence microscopy revealed the internalization by macrophages of P2-optimized rhodamine B labeled nanoparticles at 30 min, 1, 2, 4, 6, 24, 48, and 72 h. Collectively, our results indicate the superior performance of P2 concerning the parameters used to assess nanoparticle development. Therefore, these findings warrant further research to evaluate optimized 17-DMAG-loaded nanoparticles (NP2-17-DMAG) for toxicity and antileishmanial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Beatriz F. C. Patricio
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinícius C. Pires
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marina F. Amorim
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Alan G. S. F. Pinho
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Helenita C. Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Diana A. S. Dantas
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marcelo H. C. Chaves
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabio R. Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Brazil
| | - Helvécio V. A. Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq), Salvador, Brazil
| |
Collapse
|
12
|
Kurre D, Suguna K. Network of Entamoeba histolytica HSP18.5 dimers formed by two overlapping [IV]-X-[IV] motifs. Proteins 2021; 89:1039-1054. [PMID: 33792100 DOI: 10.1002/prot.26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones with low molecular weight that prevent the aggregation of proteins during stress conditions and maintain protein homeostasis in the cell. sHSPs exist in dynamic equilibrium as a mixture of oligomers of various sizes with a constant exchange of subunits between them. Many sHSPs form cage-like assemblies that may dissociate into smaller oligomers during stress conditions. We carried out the functional and structural characterization of a small heat shock protein, HSP18.5, from Entamoeba histolytica (EhHSP18.5). It showed a pH-dependent change in its oligomeric state, which varied from a tetramer to larger than 48-mer. EhHSP18.5 protected Nde I and lysozyme substrates from temperature and chemical stresses, respectively. The crystal structure of EhHSP18.5 was determined at a resolution of 3.28 Å in C2221 cell with four subunits in the asymmetric unit forming two non-metazoan sHSP-type dimers. Unlike the reported cage-like structures, EhHSP18.5 formed a network of linear chains of molecules in the crystal. Instead of a single [IV]-X-[IV] motif, EhHSP18.5 has two overlapping I/V-X-I/V sequences at the C-terminus giving rise to novel interactions between the dimers. Negative staining Electron Microscopy images of EhHSP18.5 showed the presence of multiple oligomers: closed structures of various sizes and long tube-like structures.
Collapse
Affiliation(s)
- Devanshu Kurre
- Molecular Biophysics unit, Indian Institute of Science, Bangalore, India
| | - Kaza Suguna
- Molecular Biophysics unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
14
|
Wang N, Sun H, Liu D, Jiang X, Zheng M, Zhu W, Liu Q, Zheng W, Feng X. Ac-HSP20 Is Associated With the Infectivity and Encystation of Acanthamoeba castellanii. Front Microbiol 2021; 11:595080. [PMID: 33510719 PMCID: PMC7835678 DOI: 10.3389/fmicb.2020.595080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Acanthamoeba castellanii is a pathogenic and opportunistic free-living amoeba that causes Acanthamoeba keratitis (AK) and granulomatous amebic encephalitis (GAE) in immunocompromised individuals. The biological and pathogenic characterizations behind this opportunistic protozoan is not fully understood. This study aimed to determine the biological functions of heat shock protein (HSP)-20 of A. castellanii (Ac-HSP20) involved in the maintenance of life cycle and the infectivity of A. castellanii. Immunoscreening A. castellanii cDNA library with A. castellanii infected rabbit sera identified three positive clones, one of them was a putative heat shock protein (Ac-HSP20). The recombinant 23 kDa Ac-HSP20 protein (rAc-HSP20) was successfully expressed in Escherichia coli BL21 (DE3) and purified using metal affinity chromatography. The rabbits immunized with rAc-HSP20 produced high titer antibody (1:25,600). Immunolocalization with the antibody identified the expression of native Ac-HSP20 on the surface of both A. castellanii trophozoites and cysts. Further, Western blot with antibody identified that the expression of native Ac-HSP20 was 7.5 times higher in cysts than in trophozoites. Blocking Ac-HSP20 on the membrane of trophozoites with specific antibody or silencing Ac-hsp20 gene transcription by siRNA inhibited their transformation into cysts at the early stage but returned to normal at the late stage by stimulating the transcription of Ac-hsp20. Incubation of trophozoites with anti-Ac-HSP20 IgG increased macrophage-involved phagocytosis to the protozoa and inhibited trophozoite infectivity on the cornea of rabbits compared with that without antibody. Our study provides that Ac-HSP20 is a surface antigen involved in the encystation and infectivity of A. castellanii and thus an important target for vaccine and drug development.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Hongyu Sun
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Di Liu
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Xiaoming Jiang
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Meiyu Zheng
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Wenhe Zhu
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Wenyu Zheng
- Department of Microsurgery, Jilin City Central Hospital, Jilin City, China
| | - Xianmin Feng
- Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| |
Collapse
|
15
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
16
|
Fialho Junior L, da Fonseca Pires S, Burchmore R, McGill S, Weidt S, Ruiz JC, Guimarães FG, Chapeourouge A, Perales J, de Andrade HM. Proteomic analysis reveals differentially abundant proteins probably involved in the virulence of amastigote and promastigote forms of Leishmania infantum. Parasitol Res 2021; 120:679-692. [PMID: 33415401 DOI: 10.1007/s00436-020-07020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/13/2020] [Indexed: 01/12/2023]
Abstract
Owing to the importance and clinical diversity of Leishmania infantum, studying its virulence factors is promising for understanding the relationship between parasites and hosts. In the present study, differentially abundant proteins from strains with different degrees of virulence in promastigote and amastigote forms were compared using two quantitative proteomics techniques, differential gel electrophoresis and isobaric mass tag labeling, followed by identification by mass spectrometry. A total of 142 proteins were identified: 96 upregulated and 46 downregulated proteins in the most virulent strain compared to less virulent. The interaction between the proteins identified in each evolutionary form was predicted. The results showed that in the amastigote form of the most virulent strain, there was a large group of proteins related to glycolysis, heat shock, and ribosomal proteins, whereas in the promastigote form, the group consisted of stress response, heat shock, and ribosomal proteins. In addition, biological processes related to metabolic pathways, ribosomes, and oxidative phosphorylation were enriched in the most virulent strain (BH400). Finally, we noted several proteins previously found to play important roles in L. infantum infection, which showed increased abundance in the virulent strain, such as ribosomal proteins, HSP70, enolase, fructose 1,6-biphosphate aldolase, peroxidoxin, and tryparedoxin peroxidase, many of which interact with each other.
Collapse
Affiliation(s)
- Luiz Fialho Junior
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Simone da Fonseca Pires
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, Scotland, G12 1QH, UK
| | - Suzanne McGill
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, Scotland, G12 1QH, UK
| | - Stefan Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, Scotland, G12 1QH, UK
| | - Jeronimo Conceição Ruiz
- Grupo Informática de Biossistemas e Genômica, Programa de Pós- Graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico Goncalves Guimarães
- Grupo Informática de Biossistemas e Genômica, Programa de Pós- Graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander Chapeourouge
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil
| | - Hélida Monteiro de Andrade
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
17
|
Anantanawat K, Papanicolaou A, Hill K, Xu W. Molecular Response of the Mediterranean Fruit Fly (Diptera: Tephritidae) to Heat. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2495-2504. [PMID: 32725189 DOI: 10.1093/jee/toaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 06/11/2023]
Abstract
Tephritid fruit flies are highly successful invaders and some-such as the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)-are able to adapt to a large range of crops. Biosecurity controls require that shipments of produce are ensured to be pest-free, which is increasingly difficult due to the ban of key pesticides. Instead, stress-based strategies including controlled atmosphere, temperature, and irradiation can be used to eradicate flies inside products. However, unlike pesticide science, we do not yet have a robust scientific approach to measure cost-effectively whether a sufficiently lethal stress has been delivered and understand what this stress does to the biology of the pest. The latter is crucial as it would enable a combination of stresses targeting multiple molecular pathways and thus allow for lower doses of each to achieve higher lethality and reduce the development of resistance. Using heat as an example, this is the first study investigating the molecular stress response to heat in Tephritidae. Using a novel setup delivering measured doses of heat on C. capitata larvae and a high-density 11 timepoint gene expression experiment, we identified key components of lethal heat-stress response. While unraveling the complete molecular mechanism of fruit fly response to lethal stress would be a long-term project, this work curates and develops 31 potential biomarkers to assess whether sufficient lethal stress has been delivered. Further, as these protocols are straightforward and less expensive than other-omic approaches, our studies and approach will assist other researchers working on stress response.
Collapse
Affiliation(s)
- Kay Anantanawat
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
18
|
Bea A, Kröber-Boncardo C, Sandhu M, Brinker C, Clos J. The Leishmania donovani SENP Protease Is Required for SUMO Processing but Not for Viability. Genes (Basel) 2020; 11:E1198. [PMID: 33066659 PMCID: PMC7602377 DOI: 10.3390/genes11101198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 01/13/2023] Open
Abstract
The protozoan parasite Leishmania donovani is part of an early eukaryotic branch and depends on post-transcriptional mechanisms for gene expression regulation. This includes post-transcriptional protein modifications, such as protein phosphorylation. The presence of genes for protein SUMOylation, i.e., the covalent attachment of small ubiquitin-like modifier (SUMO) polypeptides, in the Leishmania genomes prompted us to investigate the importance of the sentrin-specific protease (SENP) and its putative client, SUMO, for the vitality and infectivity of Leishmania donovani. While SENP null mutants are viable with reduced vitality, viable SUMO null mutant lines could not be obtained. SUMO C-terminal processing is disrupted in SENP null mutants, preventing SUMO from covalent attachment to proteins and nuclear translocation. Infectivity in vitro is not affected by the loss of SENP-dependent SUMO processing. We conclude that SENP is required for SUMO processing, but that functions of unprocessed SUMO are critical for Leishmania viability.
Collapse
Affiliation(s)
- Annika Bea
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Constanze Kröber-Boncardo
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Manpreet Sandhu
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
- Boehringer Ingelheim RCV, A-1121 Vienna, Austria
| | - Christine Brinker
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany; (A.B.); (C.K.-B.); (M.S.); (C.B.)
| |
Collapse
|
19
|
Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes (Basel) 2020; 11:genes11101159. [PMID: 33007987 PMCID: PMC7601497 DOI: 10.3390/genes11101159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023] Open
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR–Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR–Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite’s biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.
Collapse
|
20
|
Kröber-Boncardo C, Lorenzen S, Brinker C, Clos J. Casein kinase 1.2 over expression restores stress resistance to Leishmania donovani HSP23 null mutants. Sci Rep 2020; 10:15969. [PMID: 32994468 PMCID: PMC7525241 DOI: 10.1038/s41598-020-72724-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.
Collapse
Affiliation(s)
- Constanze Kröber-Boncardo
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Brinker
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany.
| |
Collapse
|
21
|
Aramin S, Fassler R, Chikne V, Goldenberg M, Arian T, Kolet Eliaz L, Rimon O, Ram O, Michaeli S, Reichmann D. TrypOx, a Novel Eukaryotic Homolog of the Redox-Regulated Chaperone Hsp33 in Trypanosoma brucei. Front Microbiol 2020; 11:1844. [PMID: 32849441 PMCID: PMC7423844 DOI: 10.3389/fmicb.2020.01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 01/28/2023] Open
Abstract
ATP-independent chaperones are widespread across all domains of life and serve as the first line of defense during protein unfolding stresses. One of the known crucial chaperones for bacterial survival in a hostile environment (e.g., heat and oxidative stress) is the highly conserved, redox-regulated ATP-independent bacterial chaperone Hsp33. Using a bioinformatic analysis, we describe novel eukaryotic homologs of Hsp33 identified in eukaryotic pathogens belonging to the kinetoplastids, a family responsible for lethal human diseases such as Chagas disease as caused by Trypanosoma cruzi, African sleeping sickness caused by Trypanosoma brucei spp., and leishmaniasis pathologies delivered by various Leishmania species. During their pathogenic life cycle, kinetoplastids need to cope with elevated temperatures and oxidative stress, the same conditions which convert Hsp33 into a powerful chaperone in bacteria, thus preventing aggregation of a wide range of misfolded proteins. Here, we focused on a functional characterization of the Hsp33 homolog in one of the members of the kinetoplastid family, T. brucei, (Tb927.6.2630), which we have named TrypOx. RNAi silencing of TrypOx led to a significant decrease in the survival of T. brucei under mild oxidative stress conditions, implying a protective role of TrypOx during the Trypanosomes growth. We then adopted a proteomics-driven approach to investigate the role of TrypOx in defining the oxidative stress response. Depletion of TrypOx significantly altered the abundance of proteins mediating redox homeostasis, linking TrypOx with the antioxidant system. Using biochemical approaches, we identified the redox-switch domain of TrypOx, showing its modularity and oxidation-dependent structural plasticity. Kinetoplastid parasites such as T. brucei need to cope with high levels of oxidants produced by the innate immune system, such that parasite-specific antioxidant proteins like TrypOx - which are depleted in mammals - are highly promising candidates for drug targeting.
Collapse
Affiliation(s)
- Samar Aramin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Mor Goldenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Arian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kolet Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Oded Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Ram
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Bar Routaray C, Bhor R, Bai S, Kadam NS, Jagtap S, Doshi PJ, Sundar S, Sawant S, Kulkarni MJ, Pai K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii- Guggul and Amphotericin B on a clinical isolate of Leishmania donovani. J Proteomics 2020; 223:103800. [DOI: 10.1016/j.jprot.2020.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
23
|
Das S, Banerjee A, Kamran M, Ejazi SA, Asad M, Ali N, Chakrabarti S. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. J Biol Chem 2020; 295:9934-9947. [PMID: 32471865 DOI: 10.1074/jbc.ra120.014587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of resistance to available antileishmanial drugs advocates identification of new drug targets and their inhibitors for visceral leishmaniasis. Here, we identified Leishmania donovani heat shock protein 78 (LdHSP78), a putative caseinolytic protease, as important for parasite infection of host macrophages and a potential therapeutic target. Enrichment of LdHSP78 in infected humans, hamsters, and parasite amastigotes suggested its importance for disease persistence. Heterozygous knockouts of L. donovani HSP78 (LdHSP78+/-) and Leishmania mexicana HSP78 (LmxHSP78+/-) were generated using a flanking UTR-based multifragment ligation strategy and the CRISPR-Cas9 technique, respectively to investigate the significance of HSP78 for disease manifestation. The LdHSP78+/- parasite burden was dramatically reduced in both murine bone marrow-derived macrophages and hamsters, in association with enrichment of proinflammatory cytokines and NO. This finding implies that LdHSP78+/- parasites cannot suppress immune activation and escape NO-mediated toxicity in macrophages. Furthermore, phosphorylation of the mitogen-activated protein kinase p38 was enhanced and phosphorylation of extracellular signal-regulated kinase 1/2 was decreased in cells infected with LdHSP78+/- parasites, compared with WT parasites. Virulence of the LdHSP78+/- strain was restored by episomal addition of the LdHSP78 gene. Finally, using high-throughput virtual screening, we identified P 1,P 5-di(adenosine-5')-pentaphosphate (Ap5A) ammonium salt as an LdHSP78 inhibitor. It selectively induced amastigote death at doses similar to amphotericin B doses, while exhibiting much less cytotoxicity to healthy macrophages than amphotericin B. In summary, using both a genetic knockout approach and pharmacological inhibition, we establish LdHSP78 as a drug target and Ap5A as a potential lead for improved antileishmanial agents.
Collapse
Affiliation(s)
- Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Anindyajit Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Salt Lake, Kolkata, West Bengal, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
24
|
Avelange-Macherel MH, Rolland A, Hinault MP, Tolleter D, Macherel D. The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins. Int J Mol Sci 2019; 21:E97. [PMID: 31877784 PMCID: PMC6981728 DOI: 10.3390/ijms21010097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
The small heat shock proteins (sHSPs) are molecular chaperones that share an alpha-crystallin domain but display a high diversity of sequence, expression, and localization. They are especially prominent in plants, populating most cellular compartments. In pea, mitochondrial HSP22 is induced by heat or oxidative stress in leaves but also strongly accumulates during seed development. The molecular function of HSP22 was addressed by studying the effect of temperature on its structural properties and chaperone effects using a recombinant or native protein. Overexpression of HSP22 significantly increased bacterial thermotolerance. The secondary structure of the recombinant protein was not affected by temperature in contrast with its quaternary structure. The purified protein formed large polydisperse oligomers that dissociated upon heating (42 °C) into smaller species (mainly monomers). The recombinant protein appeared thermosoluble but precipitated with thermosensitive proteins upon heat stress in assays either with single protein clients or within complex extracts. As shown by in vitro protection assays, HSP22 at high molar ratio could partly prevent the heat aggregation of rhodanese but not of malate dehydrogenase. HSP22 appears as a holdase that could possibly prevent the aggregation of some proteins while co-precipitating with others to facilitate their subsequent refolding by disaggregases or clearance by proteases.
Collapse
Affiliation(s)
| | | | | | | | - David Macherel
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France; (M.-H.A.-M.)
| |
Collapse
|
25
|
Anas M, Kumari V, Gupta N, Dube A, Kumar N. Protein quality control machinery in intracellular protozoan parasites: hopes and challenges for therapeutic targeting. Cell Stress Chaperones 2019; 24:891-904. [PMID: 31228085 PMCID: PMC6717229 DOI: 10.1007/s12192-019-01016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023] Open
Abstract
Intracellular protozoan parasites have evolved an efficient protein quality control (PQC) network comprising protein folding and degradation machineries that protect the parasite's proteome from environmental perturbations and threats posed by host immune surveillance. Interestingly, the components of PQC machinery in parasites have acquired sequence insertions which may provide additional interaction interfaces and diversify the repertoire of their biological roles. However, the auxiliary functions of PQC machinery remain poorly explored in parasite. A comprehensive understanding of this critical machinery may help to identify robust biological targets for new drugs against acute or latent and drug-resistant infections. Here, we review the dynamic roles of PQC machinery in creating a safe haven for parasite survival in hostile environments, serving as a metabolic sensor to trigger transformation into phenotypically distinct stages, acting as a lynchpin for trafficking of parasite cargo across host membrane for immune evasion and serving as an evolutionary capacitor to buffer mutations and drug-induced proteotoxicity. Versatile roles of PQC machinery open avenues for exploration of new drug targets for anti-parasitic intervention and design of strategies for identification of potential biomarkers for point-of-care diagnosis.
Collapse
Affiliation(s)
- Mohammad Anas
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Varsha Kumari
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niharika Gupta
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Anuradha Dube
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niti Kumar
- Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
26
|
Gu X, Zhao Y, Su Y, Wu J, Wang Z, Hu J, Liu L, Zhao Z, Hoffmann AA, Chen B, Li Z. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta. Evol Appl 2019; 12:1147-1163. [PMID: 31293628 PMCID: PMC6597872 DOI: 10.1111/eva.12793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Many insects have the capacity to increase their resistance to high temperatures by undergoing heat hardening at nonlethal temperatures. Although this response is well established, its molecular underpinnings have only been investigated in a few species where it seems to relate at least partly to the expression of heat shock protein (Hsp) genes. Here, we studied the mechanism of hardening and associated transcription responses in larvae of two invasive fruit fly species in China, Bactrocera dorsalis and Bactrocera correcta. Both species showed hardening which increased resistance to 45°C, although the more widespread B. dorsalis hardened better at higher temperatures compared to B. correcta which hardened better at lower temperatures. Transcriptional analyses highlighted expression changes in a number of genes representing different biochemical pathways, but these changes and pathways were inconsistent between the two species. Overall B. dorsalis showed expression changes in more genes than B. correcta. Hsp genes tended to be upregulated at a hardening temperature of 38°C in both species, while at 35°C many Hsp genes tended to be upregulated in B. correcta but not B. dorsalis. One candidate gene (the small heat shock protein gene, Hsp23) with a particularly high level of upregulation was investigated functionally using RNA interference (RNAi). We found that RNAi may be more efficient in B. dorsalis, in which suppression of the expression of this gene removed the hardening response, whereas in B. correcta RNAi did not decrease the hardening response. The different patterns of gene expression in these two species at the two hardening temperatures highlight the diverse mechanisms underlying hardening even in closely related species. These results may provide target genes for future control efforts against such pest species.
Collapse
Affiliation(s)
- Xinyue Gu
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yun Su
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jiajiao Wu
- Guangdong Inspection and Quarantine Technology CenterGuangzhouChina
| | - Ziya Wang
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Juntao Hu
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lijun Liu
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zihua Zhao
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Present address:
College of Life SciencesHebei UniversityBaodingChina
| | - Zhihong Li
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
27
|
Rashidi S, Mojtahedi Z, Shahriari B, Kalantar K, Ghalamfarsa G, Mohebali M, Hatam G. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog Glob Health 2019; 113:124-132. [PMID: 31099725 DOI: 10.1080/20477724.2019.1616952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani and Leishmania infantum. The infected dogs with canine visceral leishmaniasis (CVL) are important reservoirs for VL in humans, so the diagnosis, treatment and vaccination of the infected dogs will ultimately decrease the rate of human VL. Proteomics and immunoproteomics techniques have facilitated the introduction of novel drug, vaccine and diagnostic targets. Our immunoproteomic study was conducted to identify new immunoreactive proteins in amastigote form of L. infantum. The strain of L. infantum (MCAN/IR/07/Moheb-gh) was obtained from CVL-infected dogs. J774 macrophage cells were infected with the L. infantum promastigotes. The infected macrophages were ruptured, and pure amastigotes were extracted from the macrophages. After protein extraction, two-dimensional gel electrophoresis was employed for protein separation followed by Western blotting. Western blotting was performed, using symptomatic and asymptomatic sera of the infected dogs with CVL. Thirteen repeatable immunoreactive spots were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Some, including prohibitin, ornithine aminotransferase, annexin A4, and apolipoprotein A-I, have been critically involved in metabolic pathways, survival, and pathogenicity of Leishmania parasites. Further investigations are required to confirm our identified immunoreactive proteins as a biomarker for CVL.
Collapse
Affiliation(s)
- Sajad Rashidi
- a Department of Parasitology and Mycology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Mojtahedi
- b Institute for Cancer Research, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bahador Shahriari
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kurosh Kalantar
- d Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ghasem Ghalamfarsa
- e Medicinal Plants Research Center, Faculty of Medicine , Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mehdi Mohebali
- f Department of Medical Parasitology and Mycology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Hatam
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
28
|
Zirpel H, Clos J. Gene Replacement by Homologous Recombination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1971:169-188. [PMID: 30980303 DOI: 10.1007/978-1-4939-9210-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
While homologous recombination-based gene replacement is about to be supplanted by more modern approaches, it is still retaining usefulness for genes that prove to be poor targets for CRISPR/cas-based approaches. Homologous recombination has proven to be relatively robust to minor sequence mismatches between GOI-flanking sequences and the gene replacement constructs, and the faithfulness of recombination events is easily verified by whole-genome sequencing. Moreover, the availability of custom synthetic gene production by numerous service providers should allow for a relatively quick generation of null mutants without the need to introduce additional protein-coding genes beyond the selection markers.
Collapse
Affiliation(s)
- Henner Zirpel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
29
|
Kariyawasam R, Mukkala AN, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Virulence factor RNA transcript expression in the Leishmania Viannia subgenus: influence of species, isolate source, and Leishmania RNA virus-1. Trop Med Health 2019; 47:25. [PMID: 31007536 PMCID: PMC6458769 DOI: 10.1186/s41182-019-0153-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leishmania RNA virus-1 (LRV1) is a double-stranded RNA virus identified in 20-25% of Viannia-species endemic to Latin America, and is believed to accelerate cutaneous to mucosal leishmaniasis over time. Our objective was to quantify known virulence factor (VF) RNA transcript expression according to LRV1 status, causative species, and isolate source. METHODS Eight cultured isolates of Leishmania were used, four of which were LRV1-positive (Leishmania Viannia braziliensis [n = 1], L. (V.) guyanensis [n = 1], L. (V.) panamensis [n = 2]), and four were LRV1-negative (L. (V.) panamensis [n = 3], L. (V.) braziliensis [n = 1]). Promastigotes were inoculated into macrophage cultures, and harvested at 24 and 48 h. RNA transcript expression of hsp23, hsp70, hsp90, hsp100, mpi, cpb, and gp63 were quantified by qPCR. RESULTS RNA transcript expression of hsp100 (p = 0.012), cpb (p = 0.016), and mpi (p = 0.022) showed significant increases from baseline pure culture expression to 24- and 48-h post-macrophage infection, whereas hsp70 (p = 0.004) was significantly decreased. A trend toward increased transcript expression of hsp100 at baseline in isolates of L. (V.) panamensis was noted. Pooled VF RNA transcript expression by L. (V.) panamensis isolates was lower than that of L. (V.) braziliensis and L. (V.) guyananesis at 24 h (p = 0.03). VF RNA transcript expression did not differ by LRV1 status, or source of cultured isolate at baseline, 24, or 48 h; however, a trend toward increased VF RNA transcript expression of 2.71- and 1.93-fold change of mpi (p = 0.11) and hsp90 (p = 0.11), respectively, in LRV1 negative isolates was noted. Similarly, a trend toward lower levels of overall VF RNA transcript expression in clinical isolates (1.15-fold change) compared to ATCC® strains at 24 h was noted (p = 0.07). CONCLUSIONS Our findings suggest that known VF RNA transcript expression may be affected by the process of macrophage infection. We were unable to demonstrate definitively that LRV-1 presence affected VF RNA transcript expression in the species and isolates studied. L. (V.) guyanensis and L. (V.) braziliensis demonstrated higher pooled VF RNA transcript expression than L. (V.) panamensis; however, further analyses of protein expression to corroborate this finding are warranted.
Collapse
Affiliation(s)
| | - Avinash N. Mukkala
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Toronto, ON Canada
| | - Braulio M. Valencia
- Instituto de Medicina Tropical “Alejandro von Humboldt”, Lima, Peru
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Sydney, Australia
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical “Alejandro von Humboldt”, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea K. Boggild
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Public Health Ontario Laboratory, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
| |
Collapse
|
30
|
Hombach-Barrigah A, Bartsch K, Smirlis D, Rosenqvist H, MacDonald A, Dingli F, Loew D, Späth GF, Rachidi N, Wiese M, Clos J. Leishmania donovani 90 kD Heat Shock Protein - Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Sci Rep 2019; 9:5074. [PMID: 30911045 PMCID: PMC6434042 DOI: 10.1038/s41598-019-41640-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmania parasites are thought to control protein activity at the post-translational level, e.g. by protein phosphorylation. In the pathogenic amastigote, the mammalian stage of Leishmania parasites, heat shock proteins show increased phosphorylation, indicating a role in stage-specific signal transduction. Here we investigate the impact of phosphosites in the L. donovani heat shock protein 90. Using a chemical knock-down/genetic complementation approach, we mutated 11 confirmed or presumed phosphorylation sites and assessed the impact on overall fitness, morphology and in vitro infectivity. Most phosphosite mutations affected the growth and morphology of promastigotes in vitro, but with one exception, none of the phosphorylation site mutants had a selective impact on the in vitro infection of macrophages. Surprisingly, aspartate replacements mimicking the negative charge of phosphorylated serines or threonines had mostly negative impacts on viability and infectivity. HSP90 is a substrate for casein kinase 1.2-catalysed phosphorylation in vitro. While several putative phosphosite mutations abrogated casein kinase 1.2 activity on HSP90, only Ser289 could be identified as casein kinase target by mass spectrometry. In summary, our data show HSP90 as a downstream client of phosphorylation-mediated signalling in an organism that depends on post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | | | - Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- Hellenic Pasteur Institute, Athens, Greece
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
- Novo Nordisk A/S, Gentofte, Denmark
| | - Andrea MacDonald
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
31
|
Bhandari S, Biswas S, Chaudhary A, Dutta S, Suguna K. Dodecameric structure of a small heat shock protein from Mycobacterium marinum M. Proteins 2019; 87:365-379. [PMID: 30632633 DOI: 10.1002/prot.25657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones present ubiquitously in all kingdoms of life. Their low molecular weight subunits associate to form higher order structures. Under conditions of stress, sHSPs prevent aggregation of substrate proteins by undergoing rapid changes in their conformation or stoichiometry. Polydispersity and dynamic nature of these proteins have made structural investigations through crystallography a daunting task. In pathogens like Mycobacteria, sHSPs are immuno-dominant antigens, enabling survival of the pathogen within the host and contributing to disease persistence. We characterized sHSPs from Mycobacterium marinum M and determined the crystal structure of one of these. The protein crystallized in three different conditions as dodecamers, with dimers arranged in a tetrahedral fashion to form a closed cage-like architecture. Interestingly, we found a pentapeptide bound to the dodecamers revealing one of the modes of sHSP-substrate interaction. Further, we have observed that ATP inhibits the chaperoning activity of the protein.
Collapse
Affiliation(s)
- Spraha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sreeparna Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Anuradha Chaudhary
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
32
|
A new level of complexity in parasite-host interaction: The role of extracellular vesicles. ADVANCES IN PARASITOLOGY 2019; 104:39-112. [PMID: 31030771 DOI: 10.1016/bs.apar.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans and animals have co-existed with parasites in a battle of constant adaptation to one another. It is becoming increasingly clear that extracellular vesicles (EVs) play important roles in this co-existence and pathology. This chapter reviews the current research on EVs released by protozoa, nematodes, trematodes, and cestodes with a special focus on EVs in parasite life cycles. The environmental changes experienced by the parasite during its life cycle is associated with distinct changes in EV release and content. The function of these EV seems to have a significant influence on parasite pathology and survival in the host by concomitantly modulating host immune responses and triggering parasite differentiation. The role of EVs in communication between the parasites and the host adds a new level of complexity in our understanding of parasite biology, which may be a key to further understand the complexity behind host-parasite interactions and communication. This increased understanding can, in turn, open up new avenues for vaccine, diagnostic, and therapeutic development for a wide variety of diseases such as parasite infection, cancers, and immunological disorders.
Collapse
|
33
|
Ribosome Profiling Reveals HSP90 Inhibitor Effects on Stage-Specific Protein Synthesis in Leishmania donovani. mSystems 2018; 3:mSystems00214-18. [PMID: 30505948 PMCID: PMC6247020 DOI: 10.1128/msystems.00214-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen. The 90-kDa heat shock protein (HSP90) of eukaryotes is a highly abundant and essential chaperone required for the maturation of regulatory and signal proteins. In the protozoan parasite Leishmania donovani, causative agent of the fatal visceral leishmaniasis, HSP90 activity is essential for cell proliferation and survival. Even more importantly, its inhibition causes life cycle progression from the insect stage to the pathogenic, mammalian stage. To unravel the molecular impact of HSP90 activity on the parasites’ gene expression, we performed a ribosome profiling analysis of L. donovani, comparing genome-wide protein synthesis patterns in the presence and absence of the HSP90-specific inhibitor radicicol and an ectopically expressed radicicol-resistant HSP90 variant. We find that ribosome-protected RNA faithfully maps open reading frames and represents 97% of the annotated protein-coding genes of L. donovani. Protein synthesis was found to correlate poorly with RNA steady-state levels, indicating a regulated translation as primary mechanism for HSP90-dependent gene expression. The results confirm inhibitory effects of HSP90 on the synthesis of Leishmania proteins that are associated with the pathogenic, intracellular stage of the parasite. Those include heat shock proteins, redox enzymes, virulence-enhancing surface proteins, proteolytic pathways, and a complete set of histones. Conversely, HSP90 promotes fatty acid synthesis enzymes. Complementing radicicol treatment with the radicicol-resistant HSP90rr variant revealed important off-target radicicol effects that control a large number of the above-listed proteins. Leishmania lacks gene-specific transcription regulation and relies on regulated translation instead. Our ribosome footprinting analysis demonstrates a controlling function of HSP90 in stage-specific protein synthesis but also significant, HSP90-independent effects of the inhibitor radicicol. IMPORTANCELeishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen.
Collapse
|
34
|
Aoki JI, Muxel SM, Zampieri RA, Acuña SM, Fernandes JCR, Vanderlinde RH, Sales MCODP, Floeter-Winter LM. L-arginine availability and arginase activity: Characterization of amino acid permease 3 in Leishmania amazonensis. PLoS Negl Trop Dis 2017; 11:e0006025. [PMID: 29073150 PMCID: PMC5693463 DOI: 10.1371/journal.pntd.0006025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/17/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leishmania uses the amino acid L-arginine as a substrate for arginase, enzyme that produces urea and ornithine, last precursor of polyamine pathway. This pathway is used by the parasite to replicate and it is essential to establish the infection in the mammalian host. L-arginine is not synthesized by the parasite, so its uptake occurs through the amino acid permease 3 (AAP3). AAP3 is codified by two copies genes (5.1 and 4.7 copies), organized in tandem in the parasite genome. One copy presents the expression regulated by L-arginine availability. METHODOLOGY/PRINCIPAL FINDINGS RNA-seq data revealed 14 amino acid transporters differentially expressed in the comparison of La-WT vs. La-arg- promastigotes and axenic amastigotes. The 5.1 and 4.7 aap3 transcripts were down-regulated in La-WT promastigotes vs. axenic amastigotes, and in La-WT vs. La-arg- promastigotes. In contrast, transcripts of other transporters were up-regulated in the same comparisons. The amount of 5.1 and 4.7 aap3 mRNA of intracellular amastigotes was also determined in sample preparations from macrophages, obtained from BALB/c and C57BL/6 mice and the human THP-1 lineage infected with La-WT or La-arg-, revealing that the genetic host background is also important. We also determined the aap3 mRNA and AAP3 protein amounts of promastigotes and axenic amastigotes in different environmental growth conditions, varying pH, temperature and L-arginine availability. Interestingly, the increase of temperature increased the AAP3 level in plasma membrane and consequently the L-arginine uptake, independently of pH and L-arginine availability. In addition, we demonstrated that besides the plasma membrane localization, AAP3 was also localized in the glycosome of L. amazonensis promastigotes and axenic amastigotes. CONCLUSIONS/SIGNIFICANCE In this report, we described the differential transcriptional profiling of amino acids transporters from La-WT and La-arg- promastigotes and axenic amastigotes. We also showed the increased AAP3 levels under amino acid starvation or its decrease in L-arginine supplementation. The differential AAP3 expression was determined in the differentiation of promastigotes to amastigotes conditions, as well as the detection of AAP3 in the plasma membrane reflecting in the L-arginine uptake. Our data suggest that depending on the amino acid pool and arginase activity, Leishmania senses and could use an alternative route for the amino acid transport in response to stress signaling.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| | - Sandra Marcia Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Andrade Zampieri
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stephanie Maia Acuña
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Lucile Maria Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| |
Collapse
|
35
|
Han H, Yan Y, Dong H, Zhu S, Zhao Q, Zhai Q, Huang B. Characterization and expression analysis of a new small heat shock protein Hsp20.4 from Eimeria tenella. Exp Parasitol 2017; 183:13-22. [PMID: 29054823 DOI: 10.1016/j.exppara.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Small heat shock proteins (sHsps) are ubiquitous and diverse molecular chaperones. Found in almost all organisms, they regulate protein refolding and protect cells from stress. Until now, no sHsp has been characterized in Eimeria tenella. In this study, the novel EtsHsp20.4 gene was cloned from E. tenella by rapid amplification of cDNA ends based on a previously identified expressed sequence tag. The full-length cDNA was 1019bp in length and contained an open reading frame of 558bp that encoded a 185-amino acid polypeptide with a calculated molecular weight of 20.4 kDa. The EtsHsp20.4 protein contained a distinct HSP20/alpha-crystallin domain that is the key determinant of their function as molecular chaperones and belongs to the HSP20 protein family. EtsHsp20.4 mRNA levels were higher in sporulated oocysts than in sporozoites or second-generation merozoites by real-time quantitative PCR, the transcription of EtsHsp20.4 was barely detectable in unsporulated oocysts. Immunolocalization with EtsHsp20.4 antibody showed that EtsHsp20.4 was mainly located on the surface of sporozoites, first-generation merozoites and second-generation merozoites. Following the development of parasites in DF-1 cells, EtsHsp20.4 protein was uniformly dispersed in trophozoites, immature schizonts, and mature schizonts. Malate dehydrogenase thermal aggregation assays indicated that recombinant EtsHsp20.4 had molecular chaperone activity in vitro. These results suggested that EtsHsp20.4 might be involved in sporulation in external environments and intracellular growth of the parasite in the host.
Collapse
Affiliation(s)
- Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Yan Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qi Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
36
|
Patki JM, Shah P. Screening of Neem extracts for microbial anti-chaperone activity by employing in vitro enzyme refolding assay. 3 Biotech 2017; 7:277. [PMID: 28794932 DOI: 10.1007/s13205-017-0911-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
Microbial heat shock proteins (Hsps) play an important role in pathogenesis and development of resistance to existing drugs. New compounds that target microbial molecular chaperones have the potential of combating the challenge of anti-microbial resistance. The present study was aimed at assessing the employment of in vitro enzyme refolding assay to detect anti-chaperone activity of Neem (Azadirachta indica) extracts. Protein extracts of thermotolerant Escherichia coli cells were used as a source of Hsps or chaperones. Thermotolerance was found to be induced by pre-treating E. coli cells at 47 °C before subjecting them to a lethal temperature of 55 °C. This thermotolerance correlated with over-expression of specific proteins and reduced aggregation as evident from the SDS-PAGE profiles. Refolding assays of denatured enzymes exhibited 45% activity regain in presence of cell protein extracts containing chaperones compared to less than 5% regain in BSA negative controls. The chaperone activity was found to be ATP dependent. Addition of Neem extracts to refolding reaction mixtures distinctly reduced the activity regain (20%) in a dose dependent manner (500 and 1000 ppm). The negative influence of plant extract on refolding of the enzyme in the presence of chaperones gives evidence to its anti-chaperone activity. We propose that the employment of in vitro enzyme refolding assays will help not only to analyze the activity of known and putative chaperones but also to screen natural compounds for anti-microbial-Hsp activity.
Collapse
|
37
|
Cao S, Du N, Chen H, Pang Y, Zhang Z, Zheng J, Jia H. Toxoplasma gondii Clp family protein: TgClpB1 plays a crucial role in thermotolerance. Oncotarget 2017; 8:86117-86129. [PMID: 29156781 PMCID: PMC5689671 DOI: 10.18632/oncotarget.20989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/27/2017] [Indexed: 01/27/2023] Open
Abstract
Caseinolytic peptidase B (ClpB) plays a pivotal role in suppressing and reversing protein aggregation. Toxoplasma gondii is an intracellular parasitic protozoan that infects a wide variety of mammals and birds and therefore is exposed to a broad range of living condition. We screened ToxoDB (http://ToxoDB.org) and identified 10 putative T. gondii genes encoding members of the Clp superfamily of caseinolytic proteases and chaperones. Of these, we focused on characterizing the Class I ATP-dependent molecular chaperones TgClpB1, TgClpB2, and TgClpB3. We found that TgClpB1, the most divergent of the five T. gondii Class I Clp ATPases, is cytoplasmic, TgClpB2 is found in the mitochondria of the parasites, and TgClpB3 is a ClpB with novel apicoplast localization. Knockout strains of TgClpB1 and TgClpB2 were established by CRISPR/Cas9 mutagenesis, and their complementing strains were constructed with FLAG-tag. Although knockout of TgClpB1 or TgClpB2 did not affect growth under normal circumstances, TgClpB1 was required for T. gondii thermotolerance. The growth, replication, and invasion capabilities of TgClpB1-deficient mutants were significantly inhibited after extracellular parasites were pretreated at 45°C. Moreover, TgClpB1 were observed at the poles of the ΔTgClpB1 FLAG-tagged strain treated at 42°C.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nali Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
38
|
Bartsch K, Hombach-Barrigah A, Clos J. Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 2017; 22:729-742. [PMID: 28455612 PMCID: PMC5573691 DOI: 10.1007/s12192-017-0800-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023] Open
Abstract
Hsp90 and its co-chaperones are essential for the medically important parasite Leishmania donovani, facilitating life cycle control and intracellular survival. Activity of Hsp90 is regulated by co-chaperones of the Aha1 and P23 families. In this paper, we studied the expression of L. donovani Aha1 in two life cycle stages, its interaction with Hsp90 and the phenotype of Aha1 null mutants during the insect stage and inside infected macrophages. This study provides a detailed in vitro analysis of the function of Aha1 in Leishmania parasites and the first instance of a reverse genetic analysis of Aha1 in a protozoan parasite. While Aha1 is non-essential under standard growth conditions and at elevated temperature, Aha1 protects against ethanol stress. However, both overexpression and lack of Aha1 affected parasite growth in the presence of the Hsp90 inhibitors radicicol (RAD) and geldanamycin (GA). Under RAD pressure, P23 and Aha1 act in an antagonistic way. By contrast, expression levels of both co-chaperones have similar effects under GA treatment, indicating different inhibition mechanisms by the two compounds. Aha1 is also secreted in virulence-enhancing exosomes. This may explain why the loss of Aha1 reduces the infectivity of L. donovani in ex vivo mouse macrophages, indicating a role during the intracellular mammalian stage.
Collapse
Affiliation(s)
- Katharina Bartsch
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany
| | - Antje Hombach-Barrigah
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany.
| |
Collapse
|
39
|
Roy S, Dutta D, Satyavarapu EM, Yadav PK, Mandal C, Kar S, Mandal C. Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Sci Rep 2017; 7:4141. [PMID: 28646156 PMCID: PMC5482887 DOI: 10.1038/s41598-017-03943-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host's immune response which could be developed as an inexpensive and nontoxic therapeutics either alone or in combination.
Collapse
Affiliation(s)
- Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Devawati Dutta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Eswara M Satyavarapu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Pawan K Yadav
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Chhabinath Mandal
- National Institute of Pharmaceutical Education and Research, Kolkata, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Susanta Kar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
40
|
Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Med Microbiol Immunol 2017; 206:235-257. [PMID: 28283754 DOI: 10.1007/s00430-017-0500-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.
Collapse
|
41
|
A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum. Antimicrob Agents Chemother 2016; 60:5262-75. [PMID: 27324767 DOI: 10.1128/aac.00544-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/11/2016] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu(2+) challenge but not under sodium arsenite, Cd(2+), or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance.
Collapse
|
42
|
Pérez-Morales D, Espinoza B. The role of small heat shock proteins in parasites. Cell Stress Chaperones 2015; 20:767-80. [PMID: 26045203 PMCID: PMC4529861 DOI: 10.1007/s12192-015-0607-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022] Open
Abstract
The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510 México, D.F. México
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510 México, D.F. México
| |
Collapse
|
43
|
Hombach A, Ommen G, Sattler V, Clos J. Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest. Cell Stress Chaperones 2015; 20:673-85. [PMID: 25948161 PMCID: PMC4463916 DOI: 10.1007/s12192-015-0595-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
In Leishmania donovani, the HSP90 chaperone complex plays an essential role in the control of the parasite's life cycle, general viability and infectivity. Several of the associated co-chaperones were also shown to be essential for viability and/or infectivity to mammalian cells. Here, we identify and describe the co-chaperone P23 and distinguish its function from that of the structurally related small heat shock protein HSP23. P23 is expressed constitutively and associates itself with members of the HSP90 complex, i.e. HSP90 and Sti1. Viable P23 gene replacement mutants could be raised and confirmed as null mutants without deleterious effects on viability under a variety of physiological growth conditions. The null mutant also displays near-wild-type infectivity, arguing against a decisive role played by P23 in laboratory settings. However, the P23 null mutant displays a marked hypersensitivity against HSP90 inhibitors geldanamycin and radicicol. P23 also appears to affect the radicicol resistance of a HSP90 Leu33-Ile mutant described previously. Therefore, the annotation of L. donovani P23 as HSP90-interacting co-chaperone is confirmed.
Collapse
Affiliation(s)
- Antje Hombach
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
| | - Gabi Ommen
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
- />Euroimmun AG, Seekamp 31, 23560 Lübeck, Germany
| | - Victoria Sattler
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
| | - Joachim Clos
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
| |
Collapse
|
44
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|
45
|
Abstract
The ability of Leishmania parasites to infect and persist in the antigen-presenting cell population of their mammalian hosts is dependent on their ability to gain entry to their host and host cells, to survive the mammalian cell environment, and to suppress or evade the protective immune response mechanisms of their hosts. A multitude of genes and their products have been implicated in each of these virulence-enhancing strategies to date, and we present an overview of the nature and known function of such virulence genes.
Collapse
|
46
|
Späth GF, Drini S, Rachidi N. A touch of Zen: post-translational regulation of the Leishmania stress response. Cell Microbiol 2015; 17:632-8. [PMID: 25801803 DOI: 10.1111/cmi.12440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
Across bacterial, archaeal and eukaryotic kingdoms, heat shock proteins (HSPs) are defined as a class of highly conserved chaperone proteins that are rapidly induced in response to temperature increase through dedicated heat shock transcription factors. While this transcriptional response governs cellular adaptation of fungal, plant and animal cells to thermic shock and other forms of stress, early-branching eukaryotes of the kinetoplastid order, including trypanosomatid parasites, lack classical mechanisms of transcriptional regulation and show largely constitutive expression of HSPs, thus raising important questions on the function of HSPs in the absence of stress and the regulation of their chaperone activity in response to environmental adversity. Understanding parasite-specific mechanisms of stress-response regulation is especially relevant for protozoan parasites of the genus Leishmania that are adapted for survival inside highly toxic phagolysosomes of host macrophages causing the various immuno-pathologies of leishmaniasis. Here we review recent advances on the function and regulation of chaperone activities in these kinetoplastid pathogens and propose a new model for stress-response regulation through a reciprocal regulatory relationship between stress kinases and chaperones that may be relevant for parasite-adaptive differentiation and infectivity.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur and Institut National de la Santé et de la Recherche Médicale U1210, Unité de Parasitologie Moléculaire et Signalisation, 25 rue du Dr Roux, Paris, 75015, France
| | | | | |
Collapse
|
47
|
Bifeld E, Chrobak M, Zander D, Schleicher U, Schönian G, Clos J. Geographical sequence variation in the Leishmania major virulence factor P46. INFECTION GENETICS AND EVOLUTION 2015; 30:195-205. [DOI: 10.1016/j.meegid.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
|