1
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
3
|
Royer C, Sandham E, Slee E, Schneider F, Lagerholm CB, Godwin J, Veits N, Hathrell H, Zhou F, Leonavicius K, Garratt J, Narendra T, Vincent A, Jones C, Child T, Coward K, Graham C, Fritzsche M, Lu X, Srinivas S. ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis. Nat Commun 2022; 13:941. [PMID: 35177595 PMCID: PMC8854694 DOI: 10.1038/s41467-022-28590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress. The early embryo maintains its structure in the face of large mechanical stresses during morphogenesis. Here they show that ASPP2 acts to preserve epithelial integrity in regions of high apical tension during early development.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Elizabeth Sandham
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Christoffer B Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nisha Veits
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Holly Hathrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Jemma Garratt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tanaya Narendra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK.,Rosalind Franklin Institute, Didcot, OX11 0QS, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
4
|
Price CJ, Stavish D, Gokhale PJ, Stevenson BA, Sargeant S, Lacey J, Rodriguez TA, Barbaric I. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev Cell 2021; 56:2455-2470.e10. [PMID: 34407428 PMCID: PMC8443275 DOI: 10.1016/j.devcel.2021.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/09/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The appearance of genetic changes in human pluripotent stem cells (hPSCs) presents a concern for their use in research and regenerative medicine. Variant hPSCs that harbor recurrent culture-acquired aneuploidies display growth advantages over wild-type diploid cells, but the mechanisms that yield a drift from predominantly wild-type to variant cell populations remain poorly understood. Here, we show that the dominance of variant clones in mosaic cultures is enhanced through competitive interactions that result in the elimination of wild-type cells. This elimination occurs through corralling and mechanical compression by faster-growing variants, causing a redistribution of F-actin and sequestration of yes-associated protein (YAP) in the cytoplasm that induces apoptosis in wild-type cells. YAP overexpression or promotion of YAP nuclear localization in wild-type cells alleviates their "loser" phenotype. Our results demonstrate that hPSC fate is coupled to mechanical cues imposed by neighboring cells and reveal that hijacking this mechanism allows variants to achieve clonal dominance in cultures.
Collapse
Affiliation(s)
- Christopher J Price
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Dylan Stavish
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paul J Gokhale
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ben A Stevenson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Samantha Sargeant
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Joanne Lacey
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
5
|
Parker TM, Gupta K, Palma AM, Yekelchyk M, Fisher PB, Grossman SR, Won KJ, Madan E, Moreno E, Gogna R. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J 2021; 40:e107271. [PMID: 34368984 DOI: 10.15252/embj.2020107271] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less-fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.
Collapse
Affiliation(s)
- Taylor M Parker
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kartik Gupta
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Michail Yekelchyk
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Steven R Grossman
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen North, Denmark.,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen North, Denmark
| | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Rajan Gogna
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen North, Denmark.,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen North, Denmark
| |
Collapse
|
6
|
Yoshioka H, Yamada T, Hasegawa S, Miyachi K, Ishii Y, Hasebe Y, Inoue Y, Tanaka H, Iwata Y, Arima M, Sugiura K, Akamatsu H. Senescent cell removal via JAG1-NOTCH1 signalling in the epidermis. Exp Dermatol 2021; 30:1268-1278. [PMID: 33891780 DOI: 10.1111/exd.14361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence has pointed to the noxious effects of senescent cells in various tissues, and senescent cells in the epidermis are known to accumulate with age. We hypothesized that there is a mechanism by which senescent cells in the epidermis are preferentially removed and that the function of such removal mechanism declines as age increases. In this study, we investigated whether Notch signalling is involved in such senescent cell removal. We found that Notch1 receptor was expressed more highly in p16INK4a-positive senescent cells than in surrounding cells in human epidermis both in young and old subjects. On the other hand, the expression of its ligand JAG1 was decreased in the epidermis of aged subjects. When normal epidermal cells and UVB-irradiated senescent cells were mixed and three-dimensional reconstructed epidermis was developed in vitro, the senescent cells were preferentially removed from the basal layer and located in the upper layer. We also found that the depletion of senescent cells from the basal layer was suppressed by JAG1 knockdown in normal cells or using a Notch signalling inhibitor. From these results, Notch signalling may be involved in senescent cell removal in the epidermis and the age-related decrease of JAG1 expression in the basal layer may lead to accumulation of senescent cells owing to reduced activation of Notch signalling.
Collapse
Affiliation(s)
- Hisashi Yoshioka
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuma Miyachi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Yoshie Ishii
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuichi Hasebe
- Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Inoue
- Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Tanaka
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
7
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
8
|
Expression of α-Tubulin Acetyltransferase 1 and Tubulin Acetylation as Selective Forces in Cell Competition. Cells 2021; 10:cells10020390. [PMID: 33672816 PMCID: PMC7918103 DOI: 10.3390/cells10020390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
The wound healing response of fibroblasts critically depends on the primary cilium, a sensory organelle protruding into the environment and comprising a stable axonemal structure. A characteristic marker for primary cilia is acetylation of axonemal tubulin. Although formation of primary cilia is under cell cycle control, the environmental cues affecting ciliation are not fully understood. Our purpose was, therefore, to study the impact of culture conditions on cilia formation in NIH3T3 fibroblasts. We quantified ciliation in different NIH3T3 sub-cell lines and culture conditions by immunodetection of primary cilia and counting. Quantitative Western blotting, qRT-PCR, and proliferation assays completed our investigation. We observed large differences between NIH3T3 sub-cell lines in their ability to generate acetylated primary cilia that correlated with cytoplasmic tubulin acetylation. We found no increased activity of the major tubulin deacetylase, HDAC6, but instead reduced expression of the α-tubulin acetyltransferase 1 (Atat1) as being causative. Our observations demonstrate that cells with reduced expression of Atat1 and tubulin acetylation proliferate faster, eventually displacing all other cells in the population. Expression of Atat1 and tubulin acetylation are therefore selective forces in cell competition.
Collapse
|
9
|
Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, Fisher PB, Mi QS, Moreno E, Gogna R. Cell Competition Boosts Clonal Evolution and Hypoxic Selection in Cancer. Trends Cell Biol 2020; 30:967-978. [PMID: 33160818 DOI: 10.1016/j.tcb.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The comparison of fitness between cells leads to the elimination of less competent cells in the presence of more competent neighbors via cell competition (CC). This phenomenon has been linked with several cancer-related genes and thus may play an important role in cancer. Various processes are involved in the regulation of tumor initiation and growth, including tumor hypoxia, clonal stem cell selection, and immune cell response, all of which have been recently shown to have a potential connection with the mechanisms involved in CC. This review aims to unravel the relation between these processes and competitive cell interactions and how this affects disease progression.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Michail Yekelchyk
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
10
|
Neuroepithelial cell competition triggers loss of cellular juvenescence. Sci Rep 2020; 10:18044. [PMID: 33093561 PMCID: PMC7582913 DOI: 10.1038/s41598-020-74874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cell competition is a cell–cell interaction mechanism which maintains tissue homeostasis through selective elimination of unfit cells. During early brain development, cells are eliminated through apoptosis. How cells are selected to undergo elimination remains unclear. Here we aimed to identify a role for cell competition in the elimination of suboptimal cells using an in vitro neuroepithelial model. Cell competition was observed when neural progenitor HypoE-N1 cells expressing RASV12 were surrounded by normal cells in the co-culture. The elimination through apoptosis was observed by cellular changes of RASV12 cells with rounding/fragmented morphology, by SYTOX blue-positivity, and by expression of apoptotic markers active caspase-3 and cleaved PARP. In this model, expression of juvenility-associated genes Srsf7 and Ezh2 were suppressed under cell-competitive conditions. Srsf7 depletion led to loss of cellular juvenescence characterized by suppression of Ezh2, cell growth impairment and enhancement of senescence-associated proteins. The cell bodies of eliminated cells were engulfed by the surrounding cells through phagocytosis. Our data indicates that neuroepithelial cell competition may have an important role for maintaining homeostasis in the neuroepithelium by eliminating suboptimal cells through loss of cellular juvenescence.
Collapse
|
11
|
Parker TM, Henriques V, Beltran A, Nakshatri H, Gogna R. Cell competition and tumor heterogeneity. Semin Cancer Biol 2020; 63:1-10. [DOI: 10.1016/j.semcancer.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
|
12
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
13
|
Li Q, Sun Y, Jarugumilli GK, Liu S, Dang K, Cotton JL, Xiol J, Chan PY, DeRan M, Ma L, Li R, Zhu LJ, Li JH, Leiter AB, Ip YT, Camargo FD, Luo X, Johnson RL, Wu X, Mao J. Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell 2020; 26:675-692.e8. [PMID: 32259481 DOI: 10.1016/j.stem.2020.03.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.
Collapse
Affiliation(s)
- Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shun Liu
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jordi Xiol
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Pui Yee Chan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael DeRan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Ma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joyce H Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy L Johnson
- Division of Basic Science Research, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Osman I, He X, Liu J, Dong K, Wen T, Zhang F, Yu L, Hu G, Xin H, Zhang W, Zhou J. TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake. Circ Res 2020; 124:1309-1322. [PMID: 30801233 PMCID: PMC6493685 DOI: 10.1161/circresaha.118.314187] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. Rationale: TEAD (TEA domain transcription factor) 1—a major effector of the Hippo signaling pathway—acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear. Objective: To assess the role of TEAD1 in vascular injury–induced smooth muscle proliferation and delineate the mechanisms underlying its action. Methods and Results: We found that TEAD1 expression is enhanced in mouse femoral artery after wire injury and correlates with the activation of mTORC1 (mechanistic target of rapamycin complex 1) signaling in vivo. Using an inducible smooth muscle–specific Tead1 KO (knockout) mouse model, we found that specific deletion of Tead1 in adult VSMCs is sufficient to attenuate arterial injury–induced neointima formation due to inhibition of mTORC1 activation and VSMC proliferation. Furthermore, we found that TEAD1 plays a unique role in VSMCs, where it not only downregulates VSMC differentiation markers but also activates mTORC1 signaling, leading to enhanced VSMC proliferation. Using whole-transcriptome sequencing analysis, we identified Slc1a5 (solute carrier family 1 member 5)—a key glutamine transporter—as a novel TEAD1 target gene. SLC1A5 overexpression mimicked TEAD1 in promoting mTORC1 activation and VSMC proliferation. Moreover, depletion of SLC1A5 by silencing RNA or blocking SLC1A5-mediated glutamine uptake attenuated TEAD1-dependent mTORC1 activation and VSMC proliferation. Conclusions: Our study unravels a novel mechanism by which TEAD1 promotes VSMC proliferation via transcriptional induction of SLC1A5, thereby activating mTORC1 signaling and promoting neointima formation.
Collapse
Affiliation(s)
- Islam Osman
- From the Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (I.O., K.D., G.H., J.Z.)
| | - Xiangqin He
- Institute of Translational Medicine (X.H., H.X.), Nanchang University, China.,School of Life Sciences (X.H., H.X.), Nanchang University, China
| | - Jinhua Liu
- Department of Respiratory Medicine (J.L., W.Z.), The First Affiliated Hospital of Nanchang University, China
| | - Kunzhe Dong
- From the Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (I.O., K.D., G.H., J.Z.)
| | - Tong Wen
- Department of Cardiology (T.W.), The First Affiliated Hospital of Nanchang University, China
| | - Fanzhi Zhang
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, China (F.Z.)
| | - Luyi Yu
- From the Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (I.O., K.D., G.H., J.Z.)
| | - Guoqing Hu
- From the Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (I.O., K.D., G.H., J.Z.)
| | - Hongbo Xin
- Institute of Translational Medicine (X.H., H.X.), Nanchang University, China.,School of Life Sciences (X.H., H.X.), Nanchang University, China
| | - Wei Zhang
- Department of Respiratory Medicine (J.L., W.Z.), The First Affiliated Hospital of Nanchang University, China
| | - Jiliang Zhou
- From the Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (I.O., K.D., G.H., J.Z.)
| |
Collapse
|
15
|
Ishihara E, Nagaoka Y, Okuno T, Kofuji S, Ishigami-Yuasa M, Kagechika H, Kamimura K, Terai S, Yokomizo T, Sugimoto Y, Fujita Y, Suzuki A, Nishina H. Prostaglandin E 2 and its receptor EP2 trigger signaling that contributes to YAP-mediated cell competition. Genes Cells 2020; 25:197-214. [PMID: 31989743 PMCID: PMC7078805 DOI: 10.1111/gtc.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/28/2022]
Abstract
Cell competition is a biological process by which unfit cells are eliminated from “cell society.” We previously showed that cultured mammalian epithelial Madin‐Darby canine kidney (MDCK) cells expressing constitutively active YAP were eliminated by apical extrusion when surrounded by “normal” MDCK cells. However, the molecular mechanism underlying the elimination of active YAP‐expressing cells was unknown. Here, we used high‐throughput chemical compound screening to identify cyclooxygenase‐2 (COX‐2) as a key molecule triggering cell competition. Our work shows that COX‐2‐mediated PGE2 secretion engages its receptor EP2 on abnormal and nearby normal cells. This engagement of EP2 triggers downstream signaling via an adenylyl cyclase‐cyclic AMP‐PKA pathway that, in the presence of active YAP, induces E‐cadherin internalization leading to apical extrusion. Thus, COX‐2‐induced PGE2 appears a warning signal to both abnormal and surrounding normal cells to drive cell competition.
Collapse
Affiliation(s)
- Erika Ishihara
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuya Nagaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kofuji
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation. Nat Commun 2020; 11:74. [PMID: 31900393 PMCID: PMC6941996 DOI: 10.1038/s41467-019-13771-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the promising clinical efficacy of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in patients with ALK-rearranged lung cancer, some tumor cells survive and eventually relapse, which may be an obstacle to achieving a cure. Limited information is currently available on the mechanisms underlying the initial survival of tumor cells against alectinib. Using patient-derived cell line models, we herein demonstrate that cancer cells survive a treatment with alectinib by activating Yes-associated protein 1 (YAP1), which mediates the expression of the anti-apoptosis factors Mcl-1 and Bcl-xL, and combinatorial inhibition against both YAP1 and ALK provides a longer tumor remission in ALK-rearranged xenografts when compared with alectinib monotherapy. These results suggest that the inhibition of YAP1 is a candidate for combinatorial therapy with ALK inhibitors to achieve complete remission in patients with ALK-rearranged lung cancer.
Collapse
|
17
|
Okino R, Usui A, Yoneyama Y, Takahashi SI, Hakuno F. Myoblasts With Higher IRS-1 Levels Are Eliminated From the Normal Cell Layer During Differentiation. Front Endocrinol (Lausanne) 2020; 11:96. [PMID: 32180762 PMCID: PMC7059307 DOI: 10.3389/fendo.2020.00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin receptor substrate (IRS)-1 is a major substrate of insulin-like growth factor (IGF)-I receptors. It is well-known that IGF-I and II play essential roles in myogenesis progression. Herein, we report an unexpected phenomenon that IRS-1-overexpressing L6 myoblasts are eliminated from normal cell layers at the beginning of differentiation. Initially, the IRS protein level and apoptosis were examined during myogenic differentiation in L6 myoblasts. We found that the IRS-1 protein level decreased, whereas active caspase 3 increased around 1 day after induction of differentiation. The addition of a pan-caspase inhibitor, Z-VAD-FMK, inhibited differentiation-induced suppression of the IRS-1 protein level. Apoptosis was not enhanced in L6 myoblasts stably expressing high levels of IRS-1 (L6-IRS-1). However, when L6-IRS-1 was cultured with control cells (L6-mock), we observed that L6-IRS-1 was eliminated from the cell layer. We have recently reported that, in L6-IRS-1, internalization of the IGF-I receptor was delayed and IGF signal activation was sustained for a longer period than in L6-mock. When cells stably expressing IRS-1 3YA mutant, which could not maintain the IGF signals, were cultured with normal cells, elimination from the cell layer was not detected. These data suggested that the high level of IRS-1 in myoblasts induces elimination from the cell layer due to abnormal sustainment of IGF-I receptor activation.
Collapse
Affiliation(s)
- Ryosuke Okino
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ami Usui
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Fumihiko Hakuno
| |
Collapse
|
18
|
Pelham CJ, Nagane M, Madan E. Cell competition in tumor evolution and heterogeneity: Merging past and present. Semin Cancer Biol 2019; 63:11-18. [PMID: 31323289 DOI: 10.1016/j.semcancer.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
In many cases, cancers are difficult to eliminate because they develop resistance to a primary chemotherapy or targeted therapy. Tumors grow into diverse cell subpopulations, increasing the ability to resist elimination. The phenomenon of 'cell competition' describes our body's natural surveillance system to optimize tissue fitness by forcing viable but aberrant cells to undergo cell death. Cell competition is not simply comparison of cell division potential. Competition factors signal for 'loser' cell elimination and 'winner' cell dominance. New evidence demonstrates it is possible to restrict cancer growth by strengthening the cell fitness of surrounding healthy tissue via anti-apoptotic pathways. Hence, cell competition provides strong conceptual explanation for oncogenesis, tumor growth and suppression. Tumor heterogeneity is a hallmark of many cancers and establishes gradients in which competitive interactions are able to occur among tumor cell subpopulations as well as neighboring stromal tissue. Here we review cellular/molecular competition pathways in the context of tumor evolution, heterogeneity and response to interventions. We propose strategies to exploit these mediators and design novel broad-spectrum therapeutic approaches that eliminate cancer and enhance fitness of neighboring tissue to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
19
|
Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8:E600. [PMID: 31212916 PMCID: PMC6628201 DOI: 10.3390/cells8060600] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
20
|
Hashimoto M, Sasaki H. Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells. Dev Cell 2019; 50:139-154.e5. [PMID: 31204175 DOI: 10.1016/j.devcel.2019.05.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/15/2023]
Abstract
The epiblast is a pluripotent cell population first formed in preimplantation embryos, and its quality is important for proper development. Here, we examined the mechanisms of epiblast formation and found that the Hippo pathway transcription factor TEAD and its coactivator YAP regulate expression of pluripotency factors. After specification of the inner cell mass, YAP accumulates in the nuclei and activates TEAD. TEAD activity is required for strong expression of pluripotency factors and is variable in the forming epiblast. Cells showing low TEAD activity are eliminated from the epiblast through cell competition. Pluripotency factor expression and MYC control cell competition downstream of TEAD activity. Cell competition eliminates unspecified cells and is required for proper organization of the epiblast. These results suggest that induction of pluripotency factors by TEAD activity and elimination of unspecified cells via cell competition ensure the production of an epiblast with naive pluripotency.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Gutiérrez-Martínez A, Sew WQG, Molano-Fernández M, Carretero-Junquera M, Herranz H. Mechanisms of oncogenic cell competition-Paths of victory. Semin Cancer Biol 2019; 63:27-35. [PMID: 31128299 DOI: 10.1016/j.semcancer.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer is a multistep process. In the early phases of this disease, mutations in oncogenes and tumor suppressors are thought to promote clonal expansion. These mutations can increase cell competitiveness, allowing tumor cells to grow within the tissue by eliminating wild type host cells. Recent studies have shown that cell competition can also function in later phases of cancer. Here, we examine the existing evidence linking cell competition and tumorigenesis. We focus on the mechanisms underlying cell competition and their contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Martínez
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Wei Qi Guinevere Sew
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Carretero-Junquera
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
22
|
Transcriptional versus metabolic control of cell fitness during cell competition. Semin Cancer Biol 2019; 63:36-43. [PMID: 31102668 PMCID: PMC7221347 DOI: 10.1016/j.semcancer.2019.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The maintenance of tissue homeostasis and health relies on the efficient removal of damaged or otherwise suboptimal cells. One way this is achieved is through cell competition, a fitness quality control mechanism that eliminates cells that are less fit than their neighbours. Through this process, cell competition has been shown to play diverse roles in development and in the adult, including in homeostasis and tumour suppression. However, over the last few years it has also become apparent that certain oncogenic mutations can provide cells with a competitive advantage that promotes their expansion via the elimination of surrounding wild-type cells. Thus, understanding how this process is initiated and regulated will provide important insights with relevance to a number of different research areas. A key question in cell competition is what determines the competitive fitness of a cell. Here, we will review what is known about this question by focussing on two non-mutually exclusive possibilities; first, that the activity of a subset of transcription factors determines competitive fitness, and second, that the outcome of cell competition is determined by the relative cellular metabolic status.
Collapse
|
23
|
Paglia S, Sollazzo M, Di Giacomo S, Strocchi S, Grifoni D. Exploring MYC relevance to cancer biology from the perspective of cell competition. Semin Cancer Biol 2019; 63:49-59. [PMID: 31102666 DOI: 10.1016/j.semcancer.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Cancer has long been regarded and treated as a foreign body appearing by mistake inside a living organism. However, now we know that cancer cells communicate with neighbours, thereby creating modified environments able to support their unusual need for nutrients and space. Understanding the molecular basis of these bi-directional interactions is thus mandatory to approach the complex nature of cancer. Since their discovery, MYC proteins have been showing to regulate a steadily increasing number of processes impacting cell fitness, and are consistently found upregulated in almost all human tumours. Of interest, MYC takes part in cell competition, an evolutionarily conserved fitness comparison strategy aimed at detecting weakened cells, which are then committed to death, removed from the tissue and replaced by fitter neighbours. During physiological development, MYC-mediated cell competition is engaged to eliminate cells with suboptimal MYC levels, so as to guarantee selective growth of the fittest and proper homeostasis, while transformed cells expressing high levels of MYC coopt cell competition to subvert tissue constraints, ultimately disrupting homeostasis. Therefore, the interplay between cells with different MYC levels may result in opposite functional outcomes, depending on the nature of the players. In the present review, we describe the most recent findings on the role of MYC-mediated cell competition in different contexts, with a special emphasis on its impact on cancer initiation and progression. We also discuss the relevance of competition-associated cell death to cancer disease.
Collapse
Affiliation(s)
- Simona Paglia
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Manuela Sollazzo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Simone Di Giacomo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Silvia Strocchi
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Daniela Grifoni
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
24
|
Guo P, Lee CH, Lei H, Zheng Y, Pulgar Prieto KD, Pan D. Nerfin-1 represses transcriptional output of Hippo signaling in cell competition. eLife 2019; 8:38843. [PMID: 30901309 PMCID: PMC6430605 DOI: 10.7554/elife.38843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
The Hippo tumor suppressor pathway regulates tissue growth in Drosophila by restricting the activity of the transcriptional coactivator Yorkie (Yki), which normally complexes with the TEF/TEAD family DNA-binding transcription factor Scalloped (Sd) to drive the expression of growth-promoting genes. Given its pivotal role as a central hub in mediating the transcriptional output of Hippo signaling, there is great interest in understanding the molecular regulation of the Sd-Yki complex. In this study, we identify Nerfin-1 as a transcriptional repressor that antagonizes the activity of the Sd-Yki complex by binding to the TEA DNA-binding domain of Sd. Consistent with its biochemical function, ectopic expression of Nerfin-1 results in tissue undergrowth in an Sd-dependent manner. Conversely, loss of Nerfin-1 enhances the ability of winner cells to eliminate loser cells in multiple scenarios of cell competition. We further show that INSM1, the mammalian ortholog of Nerfin-1, plays a conserved role in repressing the activity of the TEAD-YAP complex. These findings reveal a novel regulatory mode converging on the transcriptional output of the Hippo pathway that may be exploited for modulating the YAP oncoprotein in cancer and regenerative medicine. Animals uses a range of mechanisms to stop their organs from growing once they have reached the right shape and size. One of these processes, a set of chemical messages called the Hippo pathway, controls the balance of cell death and cell division. In fruit flies, Hippo works by repressing a complex formed of two proteins, Yorkie and Scalloped, which normally switch genes on to encourage cells to grow. Yorkie is also involved in cell competition, a process in which cells in a tissue compare themselves to each other. Healthier ‘winner’ cells then kill neighboring ‘loser’ cells that are weaker or damaged. This ensures that the tissue keeps working properly. Despite Yorkie and Scalloped being key to control the growth and health of tissues, how the activity of these proteins is regulated was not well understood. To investigate, Guo et al. conducted a series experiments on fruit flies and found that a protein called Nerfin-1 can bind onto Scalloped to stop the Scalloped-Yorkie complex from switching on genes. As a result, flies with too much Nerfin-1 had stunted tissue growth. In addition, Guo et al. confirmed that the Nerfin-1 equivalent in mammals acts in the same way. Further work revealed that Nerfin-1 also plays a role in cell competition: without this protein, ‘winner’ cells became 'super winners', eliminating even more of the loser cells. Besides regulating the size of organs, the Hippo pathway is also involved in stopping cells from dividing uncontrollably and becoming cancerous. Further research may therefore focus on Nerfin-1 and its equivalent in mammals to understand how this protein could contribute to the emergence of cancer.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chang-Hyun Lee
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Katiuska Daniela Pulgar Prieto
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
25
|
Nishio M, Miyachi Y, Otani J, Tane S, Omori H, Ueda F, Togashi H, Sasaki T, Mak TW, Nakao K, Fujita Y, Nishina H, Maehama T, Suzuki A. Hippo pathway controls cell adhesion and context‐dependent cell competition to influence skin engraftment efficiency. FASEB J 2019; 33:5548-5560. [DOI: 10.1096/fj.201802005r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| | - Yousuke Miyachi
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| | - Junji Otani
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Shoji Tane
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| | - Hirofumi Omori
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Fumihito Ueda
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Hideru Togashi
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Takehiko Sasaki
- Department of Lipid BiologyTokyo Medical and Dental University Tokyo Japan
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer ResearchPrincess Margaret Cancer Centre Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of TorontoUniversity Health Network Toronto Ontario Canada
| | - Kazuwa Nakao
- Medical Innovation CenterGraduate School of MedicineKyoto University Kyoto Japan
| | - Yasuyuki Fujita
- Division of Molecular OncologyInstitute for Genetic MedicineGraduate School of Chemical Sciences and EngineeringHokkaido University Sapporo Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative BiologyMedical Research InstituteTokyo Medical and Dental University Tokyo Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Akira Suzuki
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| |
Collapse
|
26
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Madan E, Gogna R, Moreno E. Cell competition in development: information from flies and vertebrates. Curr Opin Cell Biol 2018; 55:150-157. [DOI: 10.1016/j.ceb.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
28
|
Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Dev Growth Differ 2018; 60:522-530. [DOI: 10.1111/dgd.12575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Nagata
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| | - Tatsushi Igaki
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| |
Collapse
|
29
|
Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget 2018; 7:52631-52642. [PMID: 27437768 PMCID: PMC5288137 DOI: 10.18632/oncotarget.10616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/02/2016] [Indexed: 12/31/2022] Open
Abstract
Human tumors of various tissue origins show an intriguing over-expression of genes not considered oncogenes, such as that encoding Troponin-I (TnI), a well-known muscle protein. Out of the three TnI genes known in humans, the slow form, TNNI1, is affected the most. Drosophila has only one TnI gene, wupA. Here, we studied excess- and loss-of function of wupA in Drosophila, and assayed TNNI1 down regulation in human tumors growing in mice. Drosophila TnI excess-of-function increases proliferation and potentiates oncogenic mutations in Ras, Notch and Lgl genes. By contrast, TnI loss-of-function reduces proliferation and antagonizes the overgrowth due to these oncogenic mutations. Troponin-I defective cells undergo Flower- and Sparc-dependent cell competition. TnI can localize to the nucleus and its excess elicits transcriptional up-regulation of InR, Rap1 and Dilp8, which is consistent with the increased cell proliferation. Human tumor cell lines treated with a human Troponin-I peptide arrest in G0/G1. In addition, proliferation of non-small-cell lung carcinoma xenografts in mice is restrained by TNNI1 down-regulation. Thus, Troponin-I reveals a novel function in cell proliferation that may be of therapeutic interest in certain types of cancer.
Collapse
|
30
|
Di Giacomo S, Sollazzo M, de Biase D, Ragazzi M, Bellosta P, Pession A, Grifoni D. Human Cancer Cells Signal Their Competitive Fitness Through MYC Activity. Sci Rep 2017; 7:12568. [PMID: 28974715 PMCID: PMC5626713 DOI: 10.1038/s41598-017-13002-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
MYC-mediated cell competition is a cell-cell interaction mechanism known to play an evolutionary role during development from Drosophila to mammals. Cells expressing low levels of MYC, called losers, are committed to die by nearby cells with high MYC activity, called winners, that overproliferate to compensate for cell loss, so that the fittest cells be selected for organ formation. Given MYC's consolidated role in oncogenesis, cell competition is supposed to be relevant to cancer, but its significance in human malignant contexts is largely uncharacterised. Here we show stereotypical patterns of MYC-mediated cell competition in human cancers: MYC-upregulating cells and apoptotic cells were indeed repeatedly found at the tumour-stroma interface and within the tumour parenchyma. Cell death amount in the stromal compartment and MYC protein level in the tumour were highly correlated regardless of tumour type and stage. Moreover, we show that MYC modulation in heterotypic co-cultures of human cancer cells is sufficient as to subvert their competitive state, regardless of genetic heterogeneity. Altogether, our findings suggest that the innate role of MYC-mediated cell competition in development is conserved in human cancer, with malignant cells using MYC activity to colonise the organ at the expense of less performant neighbours.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Moira Ragazzi
- Pathology Unit, IRCCS Arcispedale Santa Maria Nuova, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paola Bellosta
- Center for Integrate Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, (TN), 38123, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| |
Collapse
|
31
|
Maruyama T, Fujita Y. Cell competition in mammals - novel homeostatic machinery for embryonic development and cancer prevention. Curr Opin Cell Biol 2017; 48:106-112. [PMID: 28719866 DOI: 10.1016/j.ceb.2017.06.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 01/28/2023]
Abstract
In the multi-cellular community, cells with different properties often compete with each other for survival and space. This process is named cell competition and was originally discovered in Drosophila. Recent studies have revealed that comparable phenomena also occur in mammals under various physiological and pathological conditions. Within the epithelium, normal cells often recognize the presence of the neighboring transformed cells and actively eliminate them from the epithelium; a process termed EDAC (Epithelial Defense Against Cancer). Furthermore, physical force can play a crucial role in the intercellular recognition and elimination of loser cells during cell competition. Further studies are expected to reveal a variety of roles of cell competition in embryonic development and human diseases.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
32
|
Varadkar P, Abbasi F, Takeda K, Dyson JJ, McCright B. PP2A-B56γ is required for an efficient spindle assembly checkpoint. Cell Cycle 2017; 16:1210-1219. [PMID: 28562161 DOI: 10.1080/15384101.2017.1325042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The Spindle Assembly Checkpoint (SAC) is part of a complex feedback system designed to ensure that cells do not proceed through mitosis unless all chromosomal kinetochores have attached to spindle microtubules. The formation of the kinetochore complex and the implementation of the SAC are regulated by multiple kinases and phosphatases. BubR1 is a phosphoprotein that is part of the Cdc20 containing mitotic checkpoint complex that inhibits the APC/C so that Cyclin B1 and Securin are not degraded, thus preventing cells going into anaphase. In this study, we found that PP2A in association with its B56γ regulatory subunit, are needed for the stability of BubR1 during nocodazole induced cell cycle arrest. In primary cells that lack B56γ, BubR1 is prematurely degraded and the cells proceed through mitosis. The reduced SAC efficiency results in cells with abnormal chromosomal segregation, a hallmark of transformed cells. Previous studies on PP2A's role in the SAC and kinetochore formation were done using siRNAs to all 5 of the B56 family members. In our study we show that inactivation of only the PP2A-B56γ subunit can affect the efficiency of the SAC. We also provide data that show the intracellular locations of the B56 subunits varies between family members, which is consistent with the hypothesis that they are not completely functionally redundant.
Collapse
Affiliation(s)
- Prajakta Varadkar
- a Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , US Food and Drug Administration , Silver Spring , MD
| | - Fatima Abbasi
- a Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , US Food and Drug Administration , Silver Spring , MD
| | - Kazuyo Takeda
- a Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , US Food and Drug Administration , Silver Spring , MD
| | - Jade J Dyson
- a Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , US Food and Drug Administration , Silver Spring , MD
| | - Brent McCright
- a Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , US Food and Drug Administration , Silver Spring , MD
| |
Collapse
|
33
|
Affiliation(s)
- Cristina Clavería
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain;
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain;
| |
Collapse
|
34
|
Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer. Dev Cell 2016; 38:621-34. [DOI: 10.1016/j.devcel.2016.08.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/26/2022]
|
35
|
Abstract
The tumour-host microenvironment plays key roles in cancer, but the mechanisms involved are not fully understood. Two new studies provide insight into this problem by showing that through cell competition, a fitness-sensing process that usually eliminates defective cells, pre-cancerous lesions signal the death of surrounding tissue that in turn promotes their neoplastic transformation.
Collapse
Affiliation(s)
- Jesus Gil
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan Rodriguez
- BHF Centre for Research excellence, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
36
|
Chiba T, Ishihara E, Miyamura N, Narumi R, Kajita M, Fujita Y, Suzuki A, Ogawa Y, Nishina H. MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status. Sci Rep 2016; 6:28383. [PMID: 27324860 PMCID: PMC4914932 DOI: 10.1038/srep28383] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
Cell competition is a cell-cell interaction by which a cell compares its fitness to that of neighboring cells. The cell with the relatively lower fitness level is the "loser" and actively eliminated, while the cell with the relatively higher fitness level is the "winner" and survives. Recent studies have shown that cells with high Yes-associated protein (YAP) activity win cell competitions but the mechanism is unknown. Here, we report the unexpected finding that cells overexpressing constitutively active YAP undergo apical extrusion and are losers, rather than winners, in competitions with normal mammalian epithelial cells. Inhibitors of metabolism-related proteins such as phosphoinositide-3-kinase (PI3K), mammalian target of rapamycin (mTOR), or p70S6 kinase (p70S6K) suppressed this apical extrusion, as did knockdown of vimentin or filamin in neighboring cells. Interestingly, YAP-overexpressing cells switched from losers to winners when co-cultured with cells expressing K-Ras (G12V) or v-Src. Thus, the role of YAP in deciding cell competitions depends on metabolic factors and the status of neighboring cells.
Collapse
Affiliation(s)
- Takanori Chiba
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Erika Ishihara
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Rika Narumi
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Kito M, Maeda D, Kudo-Asabe Y, Sato N, Shih IM, Wang TL, Tanaka M, Terada Y, Goto A. Expression of Cell Competition Markers at the Interface between p53 Signature and Normal Epithelium in the Human Fallopian Tube. PLoS One 2016; 11:e0156069. [PMID: 27258067 PMCID: PMC4892575 DOI: 10.1371/journal.pone.0156069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
There is a growing body of evidence regarding cell competition between normal and mutant mammalian cells, which suggest that it may play a defensive role in the early phase of carcinogenesis. In vitro study in the past has shown that overexpression of vimentin in normal epithelial cells at the contact surface with transformed cells is essential for the cell competition involved in epithelial defense against cancer. In this study, we attempted to examine cell competition in human tissue in vivo by investigating surgically resected human fallopian tubes that contain p53 signatures and serous tubal intraepithelial lesions (STILs), a linear expansion of p53-immunopositive/TP53 mutant tubal epithelial cells that are considered as precursors of pelvic high grade serous carcinoma. Immunofluorescence double staining for p53 and the cell competition marker vimentin was performed in 21 sections of human fallopian tube tissue containing 17 p53 signatures and 4 STILs. The intensities of vimentin expression at the interface between p53-positive cells at the end of the p53 signature/STIL and adjacent p53-negative normal tubal epithelial cells were compared with the background tubal epithelium. As a result, the average vimentin intensity at the interfaces relative to the background intensity was 1.076 (95% CI, 0.9412 – 1.211 for p53 signature and 0.9790 (95% CI, 0.7206 – 1.237) for STIL. Thus, it can be concluded that overexpression of the cell competition marker vimentin are not observed in human tissue with TP53 alterations.
Collapse
Affiliation(s)
- Masahiko Kito
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
- * E-mail:
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoki Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Ie-Ming Shih
- Department of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, United States of America
| | - Tian-Li Wang
- Department of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, United States of America
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
38
|
Abstract
In this review, Meng et al. focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in Hippo pathway regulation and function. The Hippo pathway was initially identified in Drosophila melanogaster screens for tissue growth two decades ago and has been a subject extensively studied in both Drosophila and mammals in the last several years. The core of the Hippo pathway consists of a kinase cascade, transcription coactivators, and DNA-binding partners. Recent studies have expanded the Hippo pathway as a complex signaling network with >30 components. This pathway is regulated by intrinsic cell machineries, such as cell–cell contact, cell polarity, and actin cytoskeleton, as well as a wide range of signals, including cellular energy status, mechanical cues, and hormonal signals that act through G-protein-coupled receptors. The major functions of the Hippo pathway have been defined to restrict tissue growth in adults and modulate cell proliferation, differentiation, and migration in developing organs. Furthermore, dysregulation of the Hippo pathway leads to aberrant cell growth and neoplasia. In this review, we focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in the regulation and function of the Hippo pathway.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
39
|
Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun 2016; 7:11373. [PMID: 27109213 PMCID: PMC4848481 DOI: 10.1038/ncomms11373] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. Cell competition is a quality control mechanism to eliminate unfit cells. Here the authors show that physical compaction of less fit cells surrounded by healthy neighbours leads to increased expression of tumour suppressor p53 in the compacted cells, causing cell death.
Collapse
|
40
|
Zhou Y, Huang T, Cheng ASL, Yu J, Kang W, To KF. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010138. [PMID: 26805820 PMCID: PMC4730377 DOI: 10.3390/ijms17010138] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
The TEAD family of transcription factors is necessary for developmental processes. The family members contain a TEA domain for the binding with DNA elements and a transactivation domain for the interaction with transcription coactivators. TEAD proteins are required for the participation of coactivators to transmit the signal of pathways for the downstream signaling processes. TEADs also play an important role in tumor initiation and facilitate cancer progression via activating a series of progression-inducing genes, such as CTGF, Cyr61, Myc and Gli2. Recent studies have highlighted that TEADs, together with their coactivators, promote or even act as the crucial parts in the development of various malignancies, such as liver, ovarian, breast and prostate cancers. Furthermore, TEADs are proposed to be useful prognostic biomarkers due to the ideal correlation between high expression and clinicopathological parameters in gastric, breast, ovarian and prostate cancers. In this review, we summarize the functional role of TEAD proteins in tumorigenesis and discuss the key role of TEAD transcription factors in the linking of signal cascade transductions. Improved knowledge of the TEAD proteins will be helpful for deep understanding of the molecular mechanisms of tumorigenesis and identifying ideal predictive or prognostic biomarkers, even providing clinical translation for anticancer therapy in human cancers.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| |
Collapse
|
41
|
Mamada H, Sato T, Ota M, Sasaki H. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc. Development 2015. [DOI: 10.1242/dev.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|