1
|
Spooner HC, Costa AD, González AH, Ibrahimkhail H, Yarov-Yarovoy V, Horne M, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V 1.2 and nucleates isoproterenol-triggered channel super-clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607987. [PMID: 39229175 PMCID: PMC11370440 DOI: 10.1101/2024.08.16.607987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The L-type Ca 2+ channel (Ca V 1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca 2+ flux that drives Ca 2+ -induced-Ca 2+ -release, Ca V 1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune Ca V 1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca 2+ channel trafficking in non-myocytes, however whether 14-3-3 has similar effects on Ca V 1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including Na V 1.5 and hERG. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner and regulates cardiac Ca V 1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, super-resolution imaging, and co-immunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with Ca V 1.2. The degree of 14-3-3/Ca V 1.2 colocalization increased upon stimulation of β -adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated Ca V 1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs Ca V 1.2 super-clustering. 14-3-3 overexpression increased basal Ca V 1.2 cluster size and Ca 2+ currents in ventricular myocytes, with maintained channel responsivity to isoproterenol. In contrast, isoproterenol-stimulated augmentation of sarcolemmal Ca V 1.2 expression and currents in ventricular myocytes were abrogated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β -adrenergic stimulation. Significance Statement The L-type Ca 2+ channel, Ca V 1.2, plays an essential role in excitation-contraction coupling in the heart and in part regulates the overall strength of contraction during basal and fight- or-flight β -adrenergic signaling conditions. Proteins that modulate the trafficking and/or activity of Ca V 1.2 are interesting both from a physiological and pathological perspective, since alterations in Ca V 1.2 can impact action potential duration and cause arrythmias. A small protein called 14-3-3 regulates other ion channels in the heart and other Ca 2+ channels, but how it may interact with Ca V 1.2 in the heart has never been studied. Examining factors that affect Ca V 1.2 at rest and during β -adrenergic stimulation is crucial for our ability to understand and treat disease and aging conditions where these pathways are altered.
Collapse
|
2
|
van Veldhuisen TW, Verwiel MAM, Novosedlik S, Brunsveld L, van Hest JCM. Competitive protein recruitment in artificial cells. Commun Chem 2024; 7:148. [PMID: 38942913 PMCID: PMC11213860 DOI: 10.1038/s42004-024-01229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Living cells can modulate their response to environmental cues by changing their sensitivities for molecular signals. Artificial cells are promising model platforms to study intercellular communication, but populations with such differentiated behavior remain underexplored. Here, we show the affinity-regulated exchange of proteins in distinct populations of coacervate-based artificial cells via protein-protein interactions (PPI) of the hub protein 14-3-3. By loading different coacervates with different isoforms of 14-3-3, featuring varying PPI affinities, a client peptide is directed to the more strongly recruiting coacervates. By switching affinity of client proteins through phosphorylation, weaker binding partners can be outcompeted for their 14-3-3 binding, inducing their release from artificial cells. Combined, a communication system between coacervates is constructed, which leads to the transport of client proteins from strongly recruiting coacervates to weakly recruiting ones. The results demonstrate that affinity engineering and competitive binding can provide directed protein uptake and exchange between artificial cells.
Collapse
Affiliation(s)
- Thijs W van Veldhuisen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Madelief A M Verwiel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sebastian Novosedlik
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Winter DL, Wairara AR, Bennett JL, Donald WA, Glover DJ. Protein Interaction Kinetics Delimit the Performance of Phosphorylation-Driven Protein Switches. ACS Synth Biol 2024; 13:1781-1797. [PMID: 38830815 DOI: 10.1021/acssynbio.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Post-translational modifications (PTMs) such as phosphorylation and dephosphorylation can rapidly alter protein surface chemistry and structural conformation, which can switch protein-protein interactions (PPIs) within signaling networks. Recently, de novo-designed phosphorylation-responsive protein switches have been created that harness kinase- and phosphatase-mediated phosphorylation to modulate PPIs. PTM-driven protein switches are promising tools for investigating PTM dynamics in living cells, developing biocompatible nanodevices, and engineering signaling pathways to program cell behavior. However, little is known about the physical and kinetic constraints of PTM-driven protein switches, which limits their practical application. In this study, we present a framework to evaluate two-component PTM-driven protein switches based on four performance metrics: effective concentration, dynamic range, response time, and reversibility. Our computational models reveal an intricate relationship between the binding kinetics, phosphorylation kinetics, and switch concentration that governs the sensitivity and reversibility of PTM-driven protein switches. Building upon the insights of the interaction modeling, we built and evaluated novel phosphorylation-driven protein switches consisting of phosphorylation-sensitive coiled coils as sensor domains fused to fluorescent proteins as actuator domains. By modulating the phosphorylation state of the switches with a specific protein kinase and phosphatase, we demonstrate fast, reversible transitions between "on" and "off" states. The response of the switches linearly correlated to the kinase concentration, demonstrating its potential as a biosensor for kinase measurements in real time. As intended, the switches responded to specific kinase activity with an increase in the fluorescence signal and our model could be used to distinguish between two mechanisms of switch activation: dimerization or a structural rearrangement. The protein switch kinetics model developed here should enable PTM-driven switches to be designed with ideal performance for specific applications.
Collapse
Affiliation(s)
- Daniel L Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Adelgisa R Wairara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Fragment-based exploration of the 14-3-3/Amot-p130 interface. Curr Res Struct Biol 2022; 4:21-28. [PMID: 35036934 PMCID: PMC8743172 DOI: 10.1016/j.crstbi.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
The modulation of protein-protein interactions (PPIs) has developed into a well-established field of drug discovery. Despite the advances achieved in the field, many PPIs are still deemed as ‘undruggable’ targets and the design of PPIs stabilizers remains a significant challenge. The application of fragment-based methods for the identification of drug leads and to evaluate the ‘tractability’ of the desired protein target has seen a remarkable development in recent years. In this study, we explore the molecular characteristics of the 14-3-3/Amot-p130 PPI and the conceptual possibility of targeting this interface using X-ray crystallography fragment-based screening. We report the first structural elucidation of the 14-3-3 binding motif of Amot-p130 and the characterization of the binding mode and affinities involved. We made use of fragments to probe the ‘ligandability’ of the 14-3-3/Amot-p130 composite binding pocket. Here we disclose initial hits with promising stabilizing activity and an early-stage selectivity toward the Amot-p130 motifs over other representatives 14-3-3 partners. Our findings highlight the potential of using fragments to characterize and explore proteins' surfaces and might provide a starting point toward the development of small molecules capable of acting as molecular glues. Phosphorylation of Ser 175 mediates binding of Amot-p130 to 14-3-3. The crystal structure of the 14-3-3σΔC/Amot-p130 peptide complex describes the interface. A fragment-based exploration of the interface assesses ‘ligandability’. Fragments binding at the 14-3-3/Amot-p130 interface display an initial stabilizing activity.
Collapse
Key Words
- 14-3-3 /protein-protein interactions stabilizers
- AIP4, Atrophin-1 interacting protein 4
- Amot, Angiomotin
- Amot-p130
- AmotL1/2, Angiomotin-like 1/2
- FBDD, Fragment-based drug discovery
- FP, Fluorescence polarization
- Fragment-based drug discovery
- Lats 1/2, Large tumor suppressor 1/2
- Ligandability
- MST, Microscale thermophoresis
- PPI, Protein-protein interaction
- PTMs, post-translational modifications
- X-ray crystallography
- YAP1, Yes-associated protein 1
Collapse
|
5
|
Hautbergue T, Antigny F, Boët A, Haddad F, Masson B, Lambert M, Delaporte A, Menager JB, Savale L, Pavec JL, Fadel E, Humbert M, Junot C, Fenaille F, Colsch B, Mercier O. Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells 2021; 10:1559. [PMID: 34205639 PMCID: PMC8235667 DOI: 10.3390/cells10061559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Angèle Boët
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Réanimation des Cardiopathies Congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - François Haddad
- Cardiovascular Medicine, Stanford Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Amélie Delaporte
- Service d’Anesthésie, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France;
| | - Jean-Baptiste Menager
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Le Pavec
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| |
Collapse
|
6
|
Gogl G, Tugaeva KV, Eberling P, Kostmann C, Trave G, Sluchanko NN. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat Commun 2021; 12:1677. [PMID: 33723253 PMCID: PMC7961048 DOI: 10.1038/s41467-021-21908-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The seven 14-3-3 isoforms are highly abundant human proteins encoded by similar yet distinct genes. 14-3-3 proteins recognize phosphorylated motifs within numerous human and viral proteins. Here, we analyze by X-ray crystallography, fluorescence polarization, mutagenesis and fusicoccin-mediated modulation the structural basis and druggability of 14-3-3 binding to four E6 oncoproteins of tumorigenic human papillomaviruses. 14-3-3 isoforms bind variant and mutated phospho-motifs of E6 and unrelated protein RSK1 with different affinities, albeit following an ordered affinity ranking with conserved relative KD ratios. Remarkably, 14-3-3 isoforms obey the same hierarchy when binding to most of their established targets, as supported by literature and a recent human complexome map. This knowledge allows predicting proportions of 14-3-3 isoforms engaged with phosphoproteins in various tissues. Notwithstanding their individual functions, cellular concentrations of 14-3-3 may be collectively adjusted to buffer the strongest phosphorylation outbursts, explaining their expression variations in different tissues and tumors.
Collapse
Affiliation(s)
- Gergo Gogl
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France.
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Pascal Eberling
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Camille Kostmann
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Khoubza L, Chatelain FC, Feliciangeli S, Lesage F, Bichet D. Physiological roles of heteromerization: focus on the two-pore domain potassium channels. J Physiol 2021; 599:1041-1055. [PMID: 33347640 DOI: 10.1113/jp279870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Potassium channels form the largest family of ion channels with more than 80 members involved in cell excitability and signalling. Most of them exist as homomeric channels, whereas specific conditions are required to obtain heteromeric channels. It is well established that heteromerization of voltage-gated and inward rectifier potassium channels affects their function, increasing the diversity of the native potassium currents. For potassium channels with two pore domains (K2P ), homomerization has long been considered the rule, their polymodal regulation by a wide diversity of physical and chemical stimuli being responsible for the adaptation of the leak potassium currents to cellular needs. This view has recently evolved with the accumulation of evidence of heteromerization between different K2P subunits. Several functional intragroup and intergroup heteromers have recently been identified, which contribute to the functional heterogeneity of this family. K2P heteromerization is involved in the modulation of channel expression and trafficking, promoting functional and signalling diversity. As illustrated in the Abstract Figure, heteromerization of TREK1 and TRAAK provides the cell with more possibilities of regulation. It is becoming increasingly evident that K2P heteromers contribute to important physiological functions including neuronal and cardiac excitability. Since heteromerization also affects the pharmacology of K2P channels, this understanding helps to establish K2P heteromers as new therapeutic targets for physiopathological conditions.
Collapse
Affiliation(s)
- Lamyaa Khoubza
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Franck C Chatelain
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Sylvain Feliciangeli
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Florian Lesage
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Delphine Bichet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| |
Collapse
|
8
|
Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite. Biochem J 2020; 477:2153-2177. [PMID: 32484216 DOI: 10.1042/bcj20200145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.
Collapse
|
9
|
Menzel J, Kownatzki-Danger D, Tokar S, Ballone A, Unthan-Fechner K, Kilisch M, Lenz C, Urlaub H, Mori M, Ottmann C, Shattock MJ, Lehnart SE, Schwappach B. 14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban. Sci Signal 2020; 13:13/647/eaaz1436. [DOI: 10.1126/scisignal.aaz1436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cardiac membrane protein phospholamban (PLN) is targeted by protein kinase A (PKA) at Ser16and by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr17. β-Adrenergic stimulation and PKA-dependent phosphorylation of Ser16acutely stimulate the sarcoplasmic reticulum calcium pump (SERCA) by relieving its inhibition by PLN. CaMKII-dependent phosphorylation may lead to longer-lasting SERCA stimulation and may sustain maladaptive Ca2+handling. Here, we demonstrated that phosphorylation at either Ser16or Thr17converted PLN into a target for the phosphoadaptor protein 14-3-3 with different affinities. 14-3-3 proteins were localized within nanometers of PLN and endogenous 14-3-3 coimmunoprecipitated with pentameric PLN from cardiac membranes. Molecular dynamics simulations predicted different molecular contacts for peptides phosphorylated at Ser16or Thr17with the binding groove of 14-3-3, resulting in varied binding affinities. 14-3-3 binding protected either PLN phosphosite from dephosphorylation. β-Adrenergic stimulation of isolated adult cardiomyocytes resulted in the membrane recruitment of endogenous 14-3-3. The exogenous addition of 14-3-3 to β-adrenergic–stimulated cardiomyocytes led to prolonged SERCA activation, presumably because 14-3-3 protected PLN pentamers from dephosphorylation. Phosphorylation of Ser16was disrupted by the cardiomyopathy-associated ∆Arg14mutation, implying that phosphorylation of Thr17by CaMKII may become crucial for 14-3-3 recruitment to ∆Arg14PLN. Consistent with PLN acting as a dynamic hub in the control of Ca2+handling, our results identify 14-3-3 binding to PLN as a contractility-augmenting mechanism.
Collapse
Affiliation(s)
- Julia Menzel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, Universitätsmedizin Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Sergiy Tokar
- School of Cardiovascular Medicine and Sciences, King’s College London, Westminster Bridge Road, London SE17H, UK
| | - Alice Ballone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, Netherlands
| | - Kirsten Unthan-Fechner
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus Kilisch
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, Netherlands
| | - Michael J. Shattock
- School of Cardiovascular Medicine and Sciences, King’s College London, Westminster Bridge Road, London SE17H, UK
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, Universitätsmedizin Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
10
|
Winter DL, Iranmanesh H, Clark DS, Glover DJ. Design of Tunable Protein Interfaces Controlled by Post-Translational Modifications. ACS Synth Biol 2020; 9:2132-2143. [PMID: 32702241 DOI: 10.1021/acssynbio.0c00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of protein interaction interfaces is a cornerstone of synthetic biology, where they can be used to promote the association of protein subunits into active molecular complexes or into protein nanostructures. In nature, protein interactions can be modulated by post-translational modifications (PTMs) that modify the protein interfaces with the addition and removal of various chemical groups. PTMs thus represent a means to gain control over protein interactions, yet they have seldom been considered in the design of synthetic proteins. Here, we explore the potential of a reversible PTM, serine phosphorylation, to modulate the interactions between peptides. We designed a series of interacting peptide pairs, including heterodimeric coiled coils, that contained one or more protein kinase A (PKA) recognition motifs. Our set of peptide pairs comprised interactions ranging from nanomolar to micromolar affinities. Mass spectrometry analyses showed that all peptides were excellent phosphorylation substrates of PKA, and subsequent phosphate removal could be catalyzed by lambda protein phosphatase. Binding kinetics measurements performed before and after treatment of the peptides with PKA revealed that phosphorylation of the target serines affected both the association and dissociation rates of the interacting peptides. We observed both the strengthening of interactions (up to an 11-fold decrease in Kd) and the weakening of interactions (up to a 180-fold increase in Kd). De novo-designed PTM-modulated interfaces will be useful to control the association of proteins in biological systems using protein-modifying enzymes, expanding the paradigm of self-assembly to encompass controlled assembly of engineerable protein complexes.
Collapse
Affiliation(s)
- Daniel L. Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Hasti Iranmanesh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dominic J. Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Manschwetus JT, Wallbott M, Fachinger A, Obergruber C, Pautz S, Bertinetti D, Schmidt SH, Herberg FW. Binding of the Human 14-3-3 Isoforms to Distinct Sites in the Leucine-Rich Repeat Kinase 2. Front Neurosci 2020; 14:302. [PMID: 32317922 PMCID: PMC7155755 DOI: 10.3389/fnins.2020.00302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Proteins of the 14-3-3 family are well known modulators of the leucine-rich repeat kinase 2 (LRRK2) regulating kinase activity, cellular localization, and ubiquitylation. Although binding between those proteins has been investigated, a comparative study of all human 14-3-3 isoforms interacting with LRRK2 is lacking so far. In a comprehensive approach, we quantitatively analyzed the interaction between the seven human 14-3-3 isoforms and LRRK2-derived peptides covering both, reported and putative 14-3-3 binding sites. We observed that phosphorylation is an absolute prerequisite for 14-3-3 binding and generated binding patterns of 14-3-3 isoforms to interact with peptides derived from the N-terminal phosphorylation cluster (S910 and S935), the Roc domain (S1444) and the C-terminus. The tested 14-3-3 binding sites in LRRK2 preferentially were recognized by the isoforms γ and η, whereas the isoforms ϵ and especially σ showed the weakest or no binding. Interestingly, the possible pathogenic mutation Q930R in LRRK2 drastically increases binding affinity to a peptide encompassing pS935. We then identified the autophosphorylation site T2524 as a so far not described 14-3-3 binding site at the very C-terminus of LRRK2. Binding affinities of all seven 14-3-3 isoforms were quantified for all three binding regions with pS1444 displaying the highest affinity of all measured singly phosphorylated peptides. The strongest binding was detected for the combined phosphosites S910 and S935, suggesting that avidity effects are important for high affinity interaction between 14-3-3 proteins and LRRK2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Friedrich W. Herberg
- Department of Biochemistry, Institute for Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
12
|
Han L, Song N, Hu X, Zhu A, Wei X, Liu J, Yuan S, Mao W, Chen X. Inhibition of RELM-β prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci 2020; 246:117419. [PMID: 32045592 DOI: 10.1016/j.lfs.2020.117419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
AIMS Although resistin-like molecule β (RELM-β) is involved in the pathological processes of various lung diseases, such as pulmonary inflammation, asthma and fibrosis, its potential roles in hypoxic pulmonary arterial hypertension (PAH) remain largely unknown. The study aims to investigate whether RELM-β contributes to hypoxia-induced excessive proliferation of human pulmonary artery smooth muscle cells (PASMCs) and to explore the potential mechanisms of this process. MAIN METHODS Human PASMCs were exposed to normoxia or hypoxia (1% O2) for 24 h. siRNA targeting RELM-β was transfected into cells. Protein levels of KCNK3, RELM-β, pSTAT3 and STAT3 were determined by immunoblotting. The translocation of NFATc2 and expression of KCNK3 were visualized by immunofluorescence. 5-ethynyl-2'-deoxyuridine assays and cell counting kit-8 assays were performed to assess the proliferation of PASMCs. KEY FINDINGS (1) Chronic hypoxia significantly decreased KCNK3 protein levels while upregulating RELM-β protein levels in human PASMCs, which was accompanied by excessive proliferation of cells. (2) RELM-β could promote human PASMCs proliferation and activate the STAT3/NFAT axis by downregulating KCNK3 protein under normoxia. (3) Inhibition of RELM-β expression effectively prevented KCNK3-mediated cell proliferation under hypoxia. (4) Phospholipase C (PLC) inhibitor U-73122 could not only prevent the hypoxia/RELM-β-induced decrease in KCNK3 protein, but also inhibit the enhanced cell viability caused by hypoxia/RELM-β. (5) Both hypoxia and RELM-β could downregulate membrane KCNK3 protein levels by enhancing endocytosis. SIGNIFICANCE RELM-β activation is responsible for hypoxia-induced excessive proliferation of human PASMCs. Interfering with RELM-β may alleviate the progression of hypoxic PAH by upregulating PLC-dependent KCNK3 expression.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nannan Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomin Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS&PUMC, Beijing, China
| | - Xin Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmin Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
14
|
Valeur E, Narjes F, Ottmann C, Plowright AT. Emerging modes-of-action in drug discovery. MEDCHEMCOMM 2019; 10:1550-1568. [PMID: 31673315 PMCID: PMC6786009 DOI: 10.1039/c9md00263d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
An increasing focus on complex biology to cure diseases rather than merely treat symptoms has transformed how drug discovery can be approached. Instead of activating or blocking protein function, a growing repertoire of drug modalities can be leveraged or engineered to hijack cellular processes, such as translational regulation or degradation mechanisms. Drug hunters can therefore access a wider arsenal of modes-of-action to modulate biological processes and this review summarises these emerging strategies by highlighting the most representative examples of these approaches.
Collapse
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry , Research and Early Development, Cardiovascular, Renal & Metabolism , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden .
| | - Frank Narjes
- Medicinal Chemistry , Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA) , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 , AZ , Eindhoven , the Netherlands
- Department of Chemistry , University of Duisburg-Essen , Universitätsstraße 7 , 45117 , Essen , Germany
| | - Alleyn T Plowright
- Integrated Drug Discovery , Sanofi-Aventis Deutschland GmbH , Industriepark Höchst , D-65926 Frankfurt am Main , Germany
| |
Collapse
|
15
|
14-3-3 signal adaptor and scaffold proteins mediate GPCR trafficking. Sci Rep 2019; 9:11156. [PMID: 31371790 PMCID: PMC6673703 DOI: 10.1038/s41598-019-47478-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Receptor trafficking is pivotal for the temporal and spatial control of GPCR signaling and is regulated by multiple cellular proteins. We provide evidence that GPCRs interact with 14-3-3 signal adaptor/scaffold proteins and that this interaction regulates receptor trafficking in two ways. We found GPCR/14-3-3 interaction signals can be agonist-induced or agonist-inhibited. Some GPCRs associate with 14-3-3 proteins at the cell membrane and agonist treatments result in disrupted GPCR/14-3-3 interaction signals. The diminished GPCR/14-3-3 interaction signals are temporally correlated with increased GPCR/β-arrestin interaction signals in response to agonist treatment. Other GPCRs showed agonist-induced GPCR/14-3-3 interaction signal increases that occur later than agonist-induced GPCR/β-arrestin interaction signals, indicating that GPCR/14-3-3 interaction occurred after receptor endocytosis. These two types of GPCR/14-3-3 interaction patterns correlate with different receptor trafficking patterns. In addition, the bioinformatic analysis predicts that approximately 90% of GPCRs contain at least one putative 14-3-3 binding motif, suggesting GPCR/14-3-3 association could be a general phenomenon. Based on these results and collective evidence, we propose a working model whereby 14-3-3 serves as a sorting factor to regulate receptor trafficking.
Collapse
|
16
|
Amaya E, Alarcón L, Martín-Tapia D, Cuellar-Pérez F, Cano-Cortina M, Ortega-Olvera JM, Cisneros B, Rodriguez AJ, Gamba G, González-Mariscal L. Activation of the Ca 2+ sensing receptor and the PKC/WNK4 downstream signaling cascade induces incorporation of ZO-2 to tight junctions and its separation from 14-3-3. Mol Biol Cell 2019; 30:2377-2398. [PMID: 31318316 PMCID: PMC6741067 DOI: 10.1091/mbc.e18-09-0591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zonula occludens-2 (ZO-2) is a tight junction (TJ) cytoplasmic protein, whose localization varies according to cell density and Ca2+ in the media. In cells cultured in low calcium (LC), ZO-2 displays a diffuse cytoplasmic distribution, but activation of the Ca2+ sensing receptor (CaSR) with Gd3+ triggers the appearance of ZO-2 at the cell borders. CaSR downstream signaling involves activation of protein kinase C, which phosphorylates and activates with no lysine kinase-4 that phosphorylates ZO-2 inducing its concentration at TJs. In LC, ZO-2 is protected from degradation by association to 14-3-3 proteins. When monolayers are transferred to normal calcium, the complexes ZO-2/14-3-3ζ and ZO-2/14-3-3σ move to the cell borders and dissociate. The 14-3-3 proteins are then degraded in proteosomes, whereas ZO-2 integrates to TJs. From the plasma membrane residual ZO-2 is endocyted and degradaded in lysosomes. The unique region 2 of ZO-2, and S261 located within a nuclear localization signal, are critical for the interaction with 14-3-3 ζ and σ and for the efficient nuclear importation of ZO-2. These results explain the molecular mechanism through which extracellular Ca2+ triggers the appearance of ZO-2 at TJs in epithelial cells and reveal the novel interaction between ZO-2 and 14-3-3 proteins, which is critical for ZO-2 protection and intracellular traffic.
Collapse
Affiliation(s)
- Elida Amaya
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Francisco Cuellar-Pérez
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Misael Cano-Cortina
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Jose Mario Ortega-Olvera
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Mexico City 07360, Mexico
| | - Alexis J Rodriguez
- Department of Biological Science, Rutgers, The State University of New Jersey, Newark, NJ 07102
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, México.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710 Monterrey, Nuevo Leon, México
| | - Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| |
Collapse
|
17
|
Goutierre M, Al Awabdh S, Donneger F, François E, Gomez-Dominguez D, Irinopoulou T, Menendez de la Prida L, Poncer JC. KCC2 Regulates Neuronal Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep 2019; 28:91-103.e7. [PMID: 31269453 DOI: 10.1016/j.celrep.2019.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022] Open
Abstract
KCC2 regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in numerous neurological and psychiatric disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents is depolarized in KCC2 knockdown neurons, this shift is compensated by depolarization of the resting membrane potential. This reflects downregulation of leak potassium currents. We show KCC2 interacts with Task-3 (KCNK9) channels and is required for their membrane expression. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis, which could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling that perturb network activity thus offering additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Emeline François
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Daniel Gomez-Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain
| | - Theano Irinopoulou
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | | | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
18
|
Zavala WD, Foscolo MR, Kunda PE, Cavicchia JC, Acosta CG. Changes in the expression of the potassium channels TASK1, TASK3 and TRESK in a rat model of oral squamous cell carcinoma and their relation to malignancy. Arch Oral Biol 2019; 100:75-85. [PMID: 30818127 DOI: 10.1016/j.archoralbio.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Potassium channels have been proposed to promote cancer cell proliferation and metastases. Thus, we investigated the expression pattern of three 2-pore domain potassium channels (K2Ps) TASK1, TASK3 and TRESK in advanced oral squamous cell carcinoma (OSCC), the commonest oral malignancy. DESIGN We used 4-nitroquinoline-1-oxide (4-NQO) to induce high grade OSCC in male adult rats. We then used immunohistochemistry and Western blotting to study the distribution and expression pattern of TASK1, TASK3 and TRESK in normal versus cancerous tissue. We also examined the expression of β-tubulin III (β-tub3), a marker associated with resistance to taxane-based chemotherapy and poor patient prognosis, and its correlation with the K2Ps. Finally, we studied the expression of TASK1, TASK3 and TRESK in human samples of SCC of oral origin. RESULTS We found that TASK3 was significantly up-regulated whereas TASK1 and TRESK were both significantly down-regulated in advanced, poorly differentiated OSCC. Both, rat and human SCC showed a significant increase in the expression of β-tub3. Interestingly, the expression of the latter correlated positively and significantly with TASK3 and TRESK but not TASK1 in rat OSCC. Our initial results showed a similar pattern of up and down regulation and correlation with β-tub3 for these three K2Ps in human SCC. CONCLUSIONS The changes in expression and the co-localization with a marker of resistance to taxanes like β-tub3 turn TASK1, TASK3 and TRESK into potentially new prognostic tools and possibly new therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Walther D Zavala
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Mabel R Foscolo
- Instituto de Histología y Embriología de Mendoza "Dr. M. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Patricia E Kunda
- Centro Investigación Medicina Traslacional "Severo Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina.
| | - Juan C Cavicchia
- Instituto de Histología y Embriología de Mendoza "Dr. M. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Cristian G Acosta
- Instituto de Histología y Embriología de Mendoza "Dr. M. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
19
|
Vu LD, Zhu T, Verstraeten I, van de Cotte B, Gevaert K, De Smet I. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4609-4624. [PMID: 29939309 PMCID: PMC6117581 DOI: 10.1093/jxb/ery204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity.
Collapse
Affiliation(s)
- Lam Dai Vu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Inge Verstraeten
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte van de Cotte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
20
|
Takami M, Katayama K, Noguchi K, Sugimoto Y. Protein kinase C alpha-mediated phosphorylation of PIM-1L promotes the survival and proliferation of acute myeloid leukemia cells. Biochem Biophys Res Commun 2018; 503:1364-1371. [PMID: 30017192 DOI: 10.1016/j.bbrc.2018.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/27/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) is a constitutively active mutant of FLT3 and causes 20%-30% of acute myeloid leukemia (AML) cases. FLT3-ITD upregulates the proviral integration site for Moloney murine leukemia virus 1 (PIM-1) expression and promotes the proliferation of AML cells. In this study, we investigated the role of protein kinase C (PKC)-mediated phosphorylation on the expression and function of PIM-1L. Drug screening in leukemia cell lines revealed that sotrastaurin (a PKC inhibitor) suppressed the proliferation of the FLT3-ITD-positive AML cell line MV4-11 but not of K562, HL60, or KG-1a cells, similar to SGI-1776 (a PIM-1/FLT3 inhibitor) and quizartinib (an FLT3 inhibitor). Sotrastaurin decreased the expression of pro-survival protein myeloid cell leukemia (MCL-1) and the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), both of which are downstream effectors of PIM-1. PKCα directly phosphorylated Ser65 of PIM-1L, which is a long isoform of PIM-1. The PKCα-mediated phosphorylation stabilized PIM-1L. The phosphorylation-mimicked mutant, PIM-1L-S65D, was more stable and showed higher kinase activity than PIM-1L-S65A. Expression of PIM-1L-wildtype or -S65D reduced sotrastaurin-mediated apoptosis and growth inhibition in MV4-11 transfectants. These results suggest that PKCα directly upregulates PIM-1L, resulting in promotion of the survival and proliferation of AML cells.
Collapse
Affiliation(s)
- Mayu Takami
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Kohji Noguchi
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
21
|
Cai N, Lou L, Al-Saadi N, Tetteh S, Runnels LW. The kinase activity of the channel-kinase protein TRPM7 regulates stability and localization of the TRPM7 channel in polarized epithelial cells. J Biol Chem 2018; 293:11491-11504. [PMID: 29866880 DOI: 10.1074/jbc.ra118.001925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/25/2018] [Indexed: 12/13/2022] Open
Abstract
The channel-kinase transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein with ion channel and kinase domains. The kinase activity of TRPM7 has been linked to the regulation of a broad range of cellular activities, but little is understood as to how the channel itself is regulated by its own kinase activity. Here, using several mammalian cell lines expressing WT TRPM7 or kinase-inactive variants, we discovered that compared with the cells expressing WT TRPM7, cells in which TRPM7's kinase activity was inactivated had faster degradation, elevated ubiquitination, and increased intracellular retention of the channel. Mutational analysis of TRPM7 autophosphorylation sites further revealed a role for Ser-1360 of TRPM7 as a key residue mediating both TRPM7 stability and intracellular trafficking. Additional trafficking roles were uncovered for Ser-1403 and Ser-1567, whose phosphorylation by TRPM7's kinase activity mediated the interaction of the channel with the signaling protein 14-3-3θ. In summary, our results point to a critical role for TRPM7's kinase activity in regulating proteasome-mediated turnover of the TRPM7 channel and controlling its cellular localization in polarized epithelial cells. Overall, these findings improve our understanding of the significance of TRPM7's kinase activity for functional regulation of its channel activity.
Collapse
Affiliation(s)
- Na Cai
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Liping Lou
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Namariq Al-Saadi
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854; University of Misan, Amarah 62001, Iraq
| | - Sandra Tetteh
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Loren W Runnels
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
22
|
van Kleeff PJM, Gao J, Mol S, Zwart N, Zhang H, Li KW, de Boer AH. The Arabidopsis GORK K +-channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:219-231. [PMID: 29475088 DOI: 10.1016/j.plaphy.2018.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 05/23/2023]
Abstract
Potassium (K+) is a vital ion for many processes in the plant and fine-tuned ion channels control the K+-fluxes across the plasma membrane. GORK is an outward-rectifying K+-channel with important functions in stomatal closure and in root K+-homeostasis. In this study, post-translational modification of the Arabidopsis GORK ion channel and its regulation by 14-3-3 proteins was investigated. To investigate the possible interaction between GORK and 14-3-3s an in vivo pull-down from an Arabidopsis protein extract with recombinant GORK C-terminus (GORK-C) indeed identified endogenous 14-3-3s (LAMBDA, CHI, NU) as binding partners in a phosphorylation dependent manner. However, a direct interaction between 14-3-3's and GORK-C could not be demonstrated. Since the pull-down of 14-3-3s was phosphorylation dependent, we determined GORK-C as substrate for CPK21 phosphorylation and identified three CPK21 phospho-sites in the GORK protein (T344, S518 and S649). Moreover, interaction of 14-3-3 to CPK21 strongly stimulates its kinase activity; an effect that can result in increased GORK phosphorylation and change in activity. Using the non-invasive vibrating probe technique, we measured the predominantly GORK mediated salt induced K+-efflux from wild-type, gork, cpk21, aha2 and 14-3-3 mutant roots. The mutants cpk21 and aha2 did not show statistical significant differences compared to WT. However, two (out of six) 14-3-3 isoforms, CHI and PHI, have a clear function in the salt induced K+-efflux. In conclusion, our results show that GORK can be phosphorylated by CPK21 and suggest that 14-3-3 proteins control GORK activity through binding with and activation of CPK21.
Collapse
Affiliation(s)
- P J M van Kleeff
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - J Gao
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - S Mol
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - N Zwart
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - H Zhang
- Netherlands Proteomics Centre, Utrecht University - H.R. Kruyt gebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - K W Li
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus, Amsterdam, The Netherlands.
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Inamdar SM, Lankford CK, Laird JG, Novbatova G, Tatro N, Whitmore SS, Scheetz TE, Baker SA. Analysis of 14-3-3 isoforms expressed in photoreceptors. Exp Eye Res 2018; 170:108-116. [PMID: 29486162 DOI: 10.1016/j.exer.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 11/18/2022]
Abstract
The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (β, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gulnara Novbatova
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Tatro
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - S Scott Whitmore
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Direct interaction with 14-3-3γ promotes surface expression of Best1 channel in astrocyte. Mol Brain 2017; 10:51. [PMID: 29121962 PMCID: PMC5679146 DOI: 10.1186/s13041-017-0331-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/28/2017] [Indexed: 01/01/2023] Open
Abstract
Background Bestrophin-1 (Best1) is a calcium-activated anion channel (CAAC) that is expressed broadly in mammalian tissues including the brain. We have previously reported that Best1 is expressed in hippocampal astrocytes at the distal peri-synaptic regions, called microdomains, right next to synaptic junctions, and that it disappears from the microdomains in Alzheimer’s disease mouse model. Although Best1 appears to be dynamically regulated, the mechanism of its regulation and modulation is poorly understood. It has been reported that a regulatory protein, 14-3-3 affects the surface expression of numerous membrane proteins in mammalian cells. Methods The protein-protein interaction between Best1 and 14-3-3γ was confirmed by yeast-two hybrid assay and BiFC method. The effect of 14-3-3γ on Best1-mediated current was measured by whole-cell patch clamp technique. Results We identified 14-3-3γ as novel binding partner of Best1 in astrocytes: among 7 isoforms of 14-3-3 protein, only 14-3-3γ was found to bind specifically. We determined a binding domain on the C-terminus of Best1 which is critical for an interaction with 14-3-3γ. We also revealed that interaction between Best1 and 14-3-3γ was mediated by phosphorylation of S358 in the C-terminus of Best1. We confirmed that surface expression of Best1 and Best1-mediated whole-cell current were significantly decreased after a gene-silencingof 14-3-3γ without a significant change in total Best1 expression in cultured astrocytes. Furthermore, we discovered that 14-3-3γ-shRNA reduced Best1-mediated glutamate release from hippocampal astrocyte by recording a PAR1 receptor-induced NMDA receptor-mediated current from CA1 pyramidal neurons in hippocampal slices injected with adenovirus carrying 14-3-3γ-shRNA. Finally, through a structural modeling, we found critical amino acid residues containing S358 of Best1 exhibiting binding affinities to 14-3-3γ. Conclusions 14-3-3γ promotes surface expression of Best1 channel in astrocytes through direct interaction.
Collapse
|
26
|
Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirják G, Enyedi P, Mathie A. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 2017; 50:50/5/1700754. [PMID: 29122916 DOI: 10.1183/13993003.00754-2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
TWIK-related acid-sensitive potassium channel 1 (TASK-1 encoded by KCNK3) belongs to the family of two-pore domain potassium channels. This gene subfamily is constitutively active at physiological resting membrane potentials in excitable cells, including smooth muscle cells, and has been particularly linked to the human pulmonary circulation. TASK-1 channels are sensitive to a wide array of physiological and pharmacological mediators that affect their activity such as unsaturated fatty acids, extracellular pH, hypoxia, anaesthetics and intracellular signalling pathways. Recent studies show that modulation of TASK-1 channels, either directly or indirectly by targeting their regulatory mechanisms, has the potential to control pulmonary arterial tone in humans. Furthermore, mutations in KCNK3 have been identified as a rare cause of both familial and idiopathic pulmonary arterial hypertension. This review summarises our current state of knowledge of the functional role of TASK-1 channels in the pulmonary circulation in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria .,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| | - Bence M Nagy
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Gábor Czirják
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| |
Collapse
|
27
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
28
|
Rashkov P, Barrett IP, Beardmore RE, Bendtsen C, Gudelj I. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle. PLoS Comput Biol 2016; 12:e1005216. [PMID: 27898662 PMCID: PMC5127489 DOI: 10.1371/journal.pcbi.1005216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 01/07/2023] Open
Abstract
Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis. Hormesis is a highly controversial and poorly understood phenomenon. It describes the idea that an inhibitor molecule, like an anti-cancer or anti-microbial drug, can inadvertently stimulate cell growth instead of suppressing it. This can have a profound effect on human health leading to failures in clinical treatments. Therefore, getting at the mechanistic basis of hormesis is critical for drug development and clinical practice, however molecular mechanisms underpinning hormesis remain poorly understood. In this paper we use a mathematical model to propose a simple and yet general mechanism that could explain why we find hormesis so widely in living systems. In particular, we discover that hormesis is present within a fundamental structure that forms a basic building block of many intracellular signalling pathways found in diverse processes including control of cell reproduction and programmed cell death. The benefits of our study are two-fold. Having simple molecular understanding of the causes of hormetic responses can greatly improve the design of new drug compounds that avoid such responses. Moreover, due to the fundamental nature of the newly proposed mechanism, our findings have a potential broad applicability to both anti-cancer and anti-microbial drugs.
Collapse
Affiliation(s)
- Peter Rashkov
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian P. Barrett
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| | | | - Claus Bendtsen
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
- * E-mail: (CB); (IG)
| | - Ivana Gudelj
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail: (CB); (IG)
| |
Collapse
|
29
|
Fernández-Orth J, Ehling P, Ruck T, Pankratz S, Hofmann MS, Landgraf P, Dieterich DC, Smalla KH, Kähne T, Seebohm G, Budde T, Wiendl H, Bittner S, Meuth SG. 14-3-3 Proteins regulate K 2P 5.1 surface expression on T lymphocytes. Traffic 2016; 18:29-43. [PMID: 27743426 DOI: 10.1111/tra.12455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023]
Abstract
K2P 5.1 channels (also called TASK-2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P 5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P 5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P 5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P 5.1 channels. We show that a non-classical 14-3-3 consensus motif (R-X-X-pT/S-x) at the channel's C-terminus allows the binding between K2P 5.1 and 14-3-3. The mutant K2P 5.1/S266A diminishes the protein-protein interaction and reduces the amplitude of membrane currents. Application of a non-peptidic 14-3-3 inhibitor (BV02) significantly reduces the number of wild-type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T-cell effector functions. Taken together, we demonstrate that 14-3-3 interacts with K2P 5.1 and plays an important role in channel trafficking.
Collapse
Affiliation(s)
| | - Petra Ehling
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Susann Pankratz
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Peter Landgraf
- Neural Plasticity and Communication, Institute for Pharmacology and Toxicology, Otto von-Guericke-University, Magdeburg, Germany
| | - Daniela C Dieterich
- Neural Plasticity and Communication, Institute for Pharmacology and Toxicology, Otto von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von-Guericke-University, Magdeburg, Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Thomas Budde
- Institute for Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
30
|
Surface expression of the Anoctamin-1 (ANO1) channel is suppressed by protein-protein interactions with β-COP. Biochem Biophys Res Commun 2016; 475:216-22. [PMID: 27207835 DOI: 10.1016/j.bbrc.2016.05.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 11/23/2022]
Abstract
Anoctamin-1 (ANO1) is a Ca(2+)-activated chloride channel (CaCC) that plays important physiological roles in normal and cancerous tissues. However, the plasma membrane trafficking mechanisms of ANO1 remain poorly characterized. In yeast two-hybrid screening experiments, we observed direct interactions of ANO1 with β-COP, which is a subunit of Coat Protein Complex I (COPI). This interaction was then confirmed using several in vitro and in vivo binding assays. Moreover, the cotransfection of β-COP with ANO1 into HEK293T cells led to decreased the surface expression and the channel activity of ANO1. Accordingly, endogenous ANO1 was associated with β-COP in U251 glioblastoma cells, and silencing of β-COP enhanced surface expression and whole-cell currents of ANO1 in these cells. Taken together, these data suggest that β-COP negatively regulates ANO1 surface expression.
Collapse
|