1
|
Amargant F, Pujol A, Ferrer-Vaquer A, Durban M, Martínez M, Vassena R, Vernos I. The human sperm basal body is a complex centrosome important for embryo preimplantation development. Mol Hum Reprod 2021; 27:6377343. [PMID: 34581808 PMCID: PMC8561016 DOI: 10.1093/molehr/gaab062] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The mechanism of conversion of the human sperm basal body to a centrosome after fertilization, and its role in supporting human early embryogenesis, has not been directly addressed so far. Using proteomics and immunofluorescence studies, we show here that the human zygote inherits a basal body enriched with centrosomal proteins from the sperm, establishing the first functional centrosome of the new organism. Injection of human sperm tails containing the basal body into human oocytes followed by parthenogenetic activation, showed that the centrosome contributes to the robustness of the early cell divisions, increasing the probability of parthenotes reaching the compaction stage. In the absence of the sperm-derived centrosome, pericentriolar material (PCM) components stored in the oocyte can form de novo structures after genome activation, suggesting a tight PCM expression control in zygotes. Our results reveal that the sperm basal body is a complex organelle which converts to a centrosome after fertilization, ensuring the early steps of embryogenesis and successful compaction. However, more experiments are needed to elucidate the exact molecular mechanisms of centrosome inheritance in humans.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN-Eugin Group, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aïda Pujol
- Centro de Infertilidad y Reproducción Humana (CIRH)-Eugin Group, Barcelona, Spain
| | | | | | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
2
|
Avidor-Reiss T, Fishman EL. It takes two (centrioles) to tango. Reproduction 2019; 157:R33-R51. [PMID: 30496124 PMCID: PMC6494718 DOI: 10.1530/rep-18-0350] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Cells that divide during embryo development require precisely two centrioles during interphase and four centrioles during mitosis. This precise number is maintained by allowing each centriole to nucleate only one centriole per cell cycle (i.e. centriole duplication). Yet, how the first cell of the embryo, the zygote, obtains two centrioles has remained a mystery in most mammals and insects. The mystery arose because the female gamete (oocyte) is thought to have no functional centrioles and the male gamete (spermatozoon) is thought to have only one functional centriole, resulting in a zygote with a single centriole. However, recent studies in fruit flies, beetles and mammals, including humans, suggest an alternative explanation: spermatozoa have a typical centriole and an atypical centriole. The sperm typical centriole has a normal structure but distinct protein composition, whereas the sperm atypical centriole is distinct in both. During fertilization, the atypical centriole is released into the zygote, nucleates a new centriole and participates in spindle pole formation. Thus, the spermatozoa's atypical centriole acts as a second centriole in the zygote. Here, we review centriole biology in general and especially in reproduction, we describe the discovery of the spermatozoon atypical centriole, and we provide an updated model for centriole inherence during sexual reproduction. While we focus on humans and other non-rodent mammals, we also provide a broader evolutionary perspective.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| | - Emily L. Fishman
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| |
Collapse
|
3
|
Amargant F, García D, Barragán M, Vassena R, Vernos I. Functional Analysis of Human Pathological Semen Samples in an Oocyte Cytoplasmic Ex Vivo System. Sci Rep 2018; 8:15348. [PMID: 30337543 PMCID: PMC6194145 DOI: 10.1038/s41598-018-33468-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 11/08/2022] Open
Abstract
Human fertilization and embryo development involve a wide range of critical processes that determine the successful development of a new organism. Although Assisted Reproduction Technologies (ART) may help solve infertility problems associated to severe male factor, the live birth rate is still low. A high proportion of ART failures occurs before implantation. Understanding the causes for these failures has been difficult due to technical and ethical limitations. Diagnostic procedures on human spermatozoa in particular have been limited to morphology and swimming behaviours while other functional requirements during early development have not been addressed due to the lack of suitable assays. Here, we have established a quantitative system based on the use of Xenopus egg extracts and human spermatozoa. This system provides novel possibilities for the functional characterization of human spermatozoa. Using clinical data we show that indeed this approach offers a set of complementary data for the functional evaluation of spermatozoa from patients.
Collapse
Grants
- 2014 DI 065 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 2014 DI 065 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 4363 Ministerio de Ciencia y Tecnología (Ministry of Science and Technology)
- Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- Ministerio de Ciencia y Tecnología (Ministry of Science and Technology)
Collapse
Affiliation(s)
- Farners Amargant
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Clínica EUGIN, Travessera de les Corts 322, Barcelona, 08029, Spain
| | - Désirée García
- Fundació EUGIN, Travessera de les Corts 314, Barcelona, 08029, Spain
| | | | - Rita Vassena
- Clínica EUGIN, Travessera de les Corts 322, Barcelona, 08029, Spain.
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
4
|
Colin A, Singaravelu P, Théry M, Blanchoin L, Gueroui Z. Actin-Network Architecture Regulates Microtubule Dynamics. Curr Biol 2018; 28:2647-2656.e4. [PMID: 30100343 DOI: 10.1016/j.cub.2018.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/13/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
Abstract
Coordination between actin filaments and microtubules is critical to complete important steps during cell division. For instance, cytoplasmic actin filament dynamics play an active role in the off-center positioning of the spindle during metaphase I in mouse oocytes [1-3] or in gathering the chromosomes to ensure proper spindle formation in starfish oocytes [4, 5], whereas cortical actin filaments control spindle rotation and positioning in adherent cells or in mouse oocytes [6-9]. Several molecular effectors have been found to facilitate anchoring between the meiotic spindle and the cortical actin [10-14]. In vitro reconstitutions have provided detailed insights in the biochemical and physical interactions between microtubules and actin filaments [15-20]. Yet how actin meshwork architecture affects microtubule dynamics is still unclear. Here, we reconstituted microtubule aster in the presence of a meshwork of actin filaments using confined actin-intact Xenopus egg extracts. We found that actin filament branching reduces the lengths and growth rates of microtubules and constrains the mobility of microtubule asters. By reconstituting the interaction between dynamic actin filaments and microtubules in a minimal system based on purified proteins, we found that the branching of actin filaments is sufficient to block microtubule growth and trigger microtubule disassembly. In a further exploration of Xenopus egg extracts, we found that dense and static branched actin meshwork perturbs monopolar spindle assembly by constraining the motion of the spindle pole. Interestingly, monopolar spindle assembly was not constrained in conditions supporting dynamic meshwork rearrangements. We propose that branched actin filament meshwork provides physical barriers that limit microtubule growth.
Collapse
Affiliation(s)
- Alexandra Colin
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavithra Singaravelu
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Laurent Blanchoin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France.
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
5
|
Animal Female Meiosis: The Challenges of Eliminating Centrosomes. Cells 2018; 7:cells7070073. [PMID: 29996518 PMCID: PMC6071224 DOI: 10.3390/cells7070073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023] Open
Abstract
Sexual reproduction requires the generation of gametes, which are highly specialised for fertilisation. Female reproductive cells, oocytes, grow up to large sizes when they accumulate energy stocks and store proteins as well as mRNAs to enable rapid cell divisions after fertilisation. At the same time, metazoan oocytes eliminate their centrosomes, i.e., major microtubule-organizing centres (MTOCs), during or right after the long growth phases. Centrosome elimination poses two key questions: first, how can the centrosome be re-established after fertilisation? In general, metazoan oocytes exploit sperm components, i.e., the basal body of the sperm flagellum, as a platform to reinitiate centrosome production. Second, how do most metazoan oocytes manage to build up meiotic spindles without centrosomes? Oocytes have evolved mechanisms to assemble bipolar spindles solely around their chromosomes without the guidance of pre-formed MTOCs. Female animal meiosis involves microtubule nucleation and organisation into bipolar microtubule arrays in regulated self-assembly under the control of the Ran system and nuclear transport receptors. This review summarises our current understanding of the molecular mechanism underlying self-assembly of meiotic spindles, its spatio-temporal regulation, and the key players governing this process in animal oocytes.
Collapse
|
6
|
Cavazza T, Peset I, Vernos I. From meiosis to mitosis – the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus. Development 2016. [DOI: 10.1242/dev.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|