1
|
Masahiro Hirai, Suzuki K, Kassai Y, Konishi Y. 3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility. Neurochem Int 2024; 179:105832. [PMID: 39154836 DOI: 10.1016/j.neuint.2024.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
3-Nitrotyrosine (3-NT), a byproduct of oxidative and nitrosative stress, is implicated in age-related neurodegenerative disorders. Current literature suggests that free 3-NT becomes integrated into the carboxy-terminal domain of α-tubulin via the tyrosination/detyrosination cycle. Independently of this integration, 3-NT has been associated with the cell death of dopaminergic neurons. Given the critical role of tyrosination/detyrosination in governing axonal morphology and function, the substitution of tyrosine with 3-NT in this process may potentially disrupt axonal homeostasis, although this aspect remains underexplored. In this study, we examined the impact of 3-NT on the axons of cerebellar granule neurons, which is used as a model for non-dopaminergic neurons. Our observations revealed axonal shortening, which correlated with the incorporation of 3-NT into α-tubulin. Importantly, this axonal effect was observed prior to the onset of cellular death. Furthermore, 3-NT was found to diminish mitochondrial motility within the axon, leading to a subsequent reduction in mitochondrial membrane potential. The suppression of syntaphilin, a protein responsible for anchoring mitochondria to microtubules, restored the mitochondrial motility and axonal elongation that were inhibited by 3-NT. These findings underscore the inhibitory role of 3-NT in axonal elongation by impeding mitochondrial movement, suggesting its potential involvement in axonal dysfunction within non-dopaminergic neurons.
Collapse
Affiliation(s)
- Masahiro Hirai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Kohei Suzuki
- Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yusuke Kassai
- Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan
| | - Yoshiyuki Konishi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan; Department of Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
2
|
Ikeno T, Konishi Y. Arp2/3 Is Required for Axonal Arbor Terminal Retraction in Cerebellar Granule Neurons. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Tymanskyj SR, Yang BH, Verhey KJ, Ma L. MAP7 regulates axon morphogenesis by recruiting kinesin-1 to microtubules and modulating organelle transport. eLife 2018; 7:36374. [PMID: 30132755 PMCID: PMC6133550 DOI: 10.7554/elife.36374] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal cell morphogenesis depends on proper regulation of microtubule-based transport, but the underlying mechanisms are not well understood. Here, we report our study of MAP7, a unique microtubule-associated protein that interacts with both microtubules and the motor protein kinesin-1. Structure-function analysis in rat embryonic sensory neurons shows that the kinesin-1 interacting domain in MAP7 is required for axon and branch growth but not for branch formation. Also, two unique microtubule binding sites are found in MAP7 that have distinct dissociation kinetics and are both required for branch formation. Furthermore, MAP7 recruits kinesin-1 dynamically to microtubules, leading to alterations in organelle transport behaviors, particularly pause/speed switching. As MAP7 is localized to branch sites, our results suggest a novel mechanism mediated by the dual interactions of MAP7 with microtubules and kinesin-1 in the precise control of microtubule-based transport during axon morphogenesis.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, United States
| | - Benjamin H Yang
- Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, United States
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Le Ma
- Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
4
|
Inami Y, Omura M, Kubota K, Konishi Y. Inhibition of glycogen synthase kinase-3 reduces extension of the axonal leading process by destabilizing microtubules in cerebellar granule neurons. Brain Res 2018; 1690:51-60. [DOI: 10.1016/j.brainres.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 01/20/2023]
|
5
|
Kelliher MT, Yue Y, Ng A, Kamiyama D, Huang B, Verhey KJ, Wildonger J. Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. J Cell Biol 2018; 217:2531-2547. [PMID: 29728423 PMCID: PMC6028532 DOI: 10.1083/jcb.201708096] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarity relies on the axon- or dendrite-specific localization of cargo by molecular motors such as kinesin-1. This study shows how autoinhibition regulates both kinesin-1 activity and localization to keep dendritic Golgi outposts from entering axons. Neuronal polarity relies on the selective localization of cargo to axons or dendrites. The molecular motor kinesin-1 moves cargo into axons but is also active in dendrites. This raises the question of how kinesin-1 activity is regulated to maintain the compartment-specific localization of cargo. Our in vivo structure–function analysis of endogenous Drosophila melanogaster kinesin-1 reveals a novel role for autoinhibition in enabling the dendrite-specific localization of Golgi outposts. Mutations that disrupt kinesin-1 autoinhibition result in the axonal mislocalization of Golgi outposts. Autoinhibition also regulates kinesin-1 localization. Uninhibited kinesin-1 accumulates in axons and is depleted from dendrites, correlating with the change in outpost distribution and dendrite growth defects. Genetic interaction tests show that a balance of kinesin-1 inhibition and dynein activity is necessary to localize Golgi outposts to dendrites and keep them from entering axons. Our data indicate that kinesin-1 activity is precisely regulated by autoinhibition to achieve the selective localization of dendritic cargo.
Collapse
Affiliation(s)
- Michael T Kelliher
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI.,Biochemistry Department, University of Wisconsin-Madison, Madison, WI
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ashley Ng
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI.,Biochemistry Scholars Program, University of Wisconsin-Madison, Madison, WI
| | - Daichi Kamiyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
6
|
Armijo-Weingart L, Gallo G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol Cell Neurosci 2017; 84:36-47. [PMID: 28359843 DOI: 10.1016/j.mcn.2017.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.
| |
Collapse
|
7
|
Ikeno T, Konishi Y. Differential retraction of axonal arbor terminals mediated by microtubule and kinesin motor. Commun Integr Biol 2017. [PMCID: PMC5398204 DOI: 10.1080/19420889.2017.1288771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Tatsuki Ikeno
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshiyuki Konishi
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Department of Materials Science and Biotechnology, Faculty of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|