1
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Schörghofer D, Vock L, Mirea MA, Eckel O, Gschwendtner A, Neesen J, Richtig E, Hengstschläger M, Mikula M. Late stage melanoma is hallmarked by low NLGN4X expression leading to HIF1A accumulation. Br J Cancer 2024; 131:468-480. [PMID: 38902533 PMCID: PMC11300789 DOI: 10.1038/s41416-024-02758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Despite ongoing research and recent advances in therapy, metastatic melanoma remains one of the cancers with the worst prognosis. Here we studied the postsynaptic cell adhesion molecule Neuroligin 4X (NLGN4X) and investigated its role in melanoma progression. METHODS We analysed histologic samples to assess the expression and predictive value of NLGN4X in human melanoma. The oncogenic role of NLGN4X was determined by loss or gain-of-function experiments in vitro as well as by analysis of tumorspheres, which were grafted to human skin organoids derived from pluripotent stem cells. Whole genome expression analysis and validation experiments were performed to clarify the molecular mechanism. RESULTS We identified that suppression of NLGN4X down regulated the prefoldin member Von Hippel-Lindau binding protein 1 (VBP1). Moreover, loss of VBP1 was sufficient for accumulation of HIF1A and HIF1A signalling was further shown to be essential for the acquisition of migratory properties in melanoma. We re-established NLGN4X expression in late stage melanoma lines and observed decreased tumour growth after transplantation to human skin organoids generated from pluripotent stem cells. In line, we showed that high amounts of NLGN4X and its target VBP1 in human patient samples had a beneficial prognostic effect on patient survival. CONCLUSION In view of these findings, we propose that decreased amounts of NLGN4X are indicative of a metastatic melanoma phenotype and that loss of NLGN4X provides a novel mechanism for HIF induction.
Collapse
Affiliation(s)
- David Schörghofer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Laurenz Vock
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Madalina A Mirea
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Oliver Eckel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Anna Gschwendtner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Mario Mikula
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
4
|
Chesnel F, Couturier A, Alusse A, Gagné JP, Poirier GG, Jean D, Boisvert FM, Hascoet P, Paillard L, Arlot-Bonnemains Y, Le Goff X. The prefoldin complex stabilizes the von Hippel-Lindau protein against aggregation and degradation. PLoS Genet 2020; 16:e1009183. [PMID: 33137104 PMCID: PMC7660911 DOI: 10.1371/journal.pgen.1009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of von Hippel-Lindau protein pVHL function promotes VHL diseases, including sporadic and inherited clear cell Renal Cell Carcinoma (ccRCC). Mechanisms controlling pVHL function and regulation, including folding and stability, remain elusive. Here, we have identified the conserved cochaperone prefoldin complex in a screen for pVHL interactors. The prefoldin complex delivers non-native proteins to the chaperonin T-complex-protein-1-ring (TRiC) or Cytosolic Chaperonin containing TCP-1 (CCT) to assist folding of newly synthesized polypeptides. The pVHL-prefoldin interaction was confirmed in human cells and prefoldin knock-down reduced pVHL expression levels. Furthermore, when pVHL was expressed in Schizosaccharomyces pombe, all prefoldin mutants promoted its aggregation. We mapped the interaction of prefoldin with pVHL at the exon2-exon3 junction encoded region. Low levels of the PFDN3 prefoldin subunit were associated with poor survival in ccRCC patients harboring VHL mutations. Our results link the prefoldin complex with pVHL folding and this may impact VHL diseases progression.
Collapse
Affiliation(s)
- Franck Chesnel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Anne Couturier
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Adrien Alusse
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology; Université Laval, Québec City, Québec, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec, Canada
| | - Guy G. Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology; Université Laval, Québec City, Québec, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec, Canada
| | - Dominique Jean
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Pauline Hascoet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
| | - Yannick Arlot-Bonnemains
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
- * E-mail: (YA-B); (XLG)
| | - Xavier Le Goff
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, France
- * E-mail: (YA-B); (XLG)
| |
Collapse
|
5
|
Clausen L, Stein A, Grønbæk-Thygesen M, Nygaard L, Søltoft CL, Nielsen SV, Lisby M, Ravid T, Lindorff-Larsen K, Hartmann-Petersen R. Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genet 2020; 16:e1009187. [PMID: 33137092 PMCID: PMC7660926 DOI: 10.1371/journal.pgen.1009187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/12/2020] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Nygaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie L. Søltoft
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V. Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Mo SJ, Zhao HC, Tian YZ, Zhao HL. The Role of Prefoldin and Its Subunits in Tumors and Their Application Prospects in Nanomedicine. Cancer Manag Res 2020; 12:8847-8856. [PMID: 33061580 PMCID: PMC7520118 DOI: 10.2147/cmar.s270237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Prefoldin (PFDN) is a hexameric chaperone complex that is widely found in eukaryotes and archaea and consists of six different subunits (PFDN1-6). Its main function is to transfer actin and tubulin monomers to the eukaryotic cell cytoplasmic chaperone protein (c-CPN) specific binding during the assembly of the cytoskeleton, to stabilize the newly synthesized peptides so that they can be folded correctly. The current study found that each subunit of PFDN has different functions, which are closely related to the occurrence, development and prognosis of tumors. However, the best characteristics of each subunit have not been fully affirmed. The connection between research and tumors can change the understanding of PFDN and further extend its potential prognostic role and structural function to cancer research and clinical practice. This article mainly reviews the role of canonical PFDN and its subunits in tumors and other diseases, and discusses the potential prospects of the unique structure and function of PFDN in nanomedicine.
Collapse
Affiliation(s)
- Shao-Jian Mo
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Hai-Chao Zhao
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Yan-Zhang Tian
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| | - Hao-Liang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| |
Collapse
|
7
|
Nademi S, Lu C, Dickhout JG. Enhanced Myogenic Constriction in the SHR Preglomerular Vessels Is Mediated by Thromboxane A2 Synthesis. Front Physiol 2020; 11:853. [PMID: 32792980 PMCID: PMC7387709 DOI: 10.3389/fphys.2020.00853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background Spontaneously Hypertensive Rats (SHR) have chronically elevated blood pressures at 30 weeks of age (systolic: 191.0 ± 1.0, diastolic: 128.8 ± 0.9). However, despite this chronic malignant hypertension, SHR kidneys remain relatively free of pathology due to having an augmented myogenic constriction (MC). We hypothesized that the enhanced MC in the SHR preglomerular vessels was due to increased prostaglandin and decreased nitric oxide (NO) synthesis, providing renal protection. Methods SHR and Wistar Kyoto (WKY) arcuate and mesenteric arteries were treated with indomethacin (prostaglandin synthesis inhibitor), N omega-nitro-L-arginine (L-NNA, NO synthase inhibitor), and nifedipine (L-type calcium channel blocker); and MC was measured in these vessels. The role of endothelium in MC was examined by removing endothelium from WKY and SHR preglomerular and mesenteric arteries using human hair, and measuring MC. We also studied the source of prostaglandin in the SHR by treating endothelium-removed arcuate arteries with indomethacin and furegrelate (thromboxane synthase inhibitor). Results MC was enhanced in the SHR preglomerular vessels but not the mesenteric arteries. Indomethacin and LNNA removed the enhanced MC in the SHR. Nifedipine also inhibited MC in both WKY and SHR arcuate and mesenteric arteries. Removing endothelium did not change MC in either arcuate or mesenteric arteries of WKY and SHR rats; and did not remove the augmented MC in the SHR arcuate arteries. Indomethacin and furegrelate decreased MC in endothelium-removed SHR arcuate arteries and obliterated the enhanced MC in the SHR. Conclusion The enhanced MC in the SHR arcuate arteries was due to thromboxane A2 synthesis from the tunica media and/or adventitia layers. MC was not dependent on endothelium, but was dependent on L-type calcium channels. Nevertheless, SHR arcuate arteries displayed differential intracellular calcium signaling compared to the WKYs.
Collapse
Affiliation(s)
- Samera Nademi
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Chao Lu
- St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Jeffrey G Dickhout
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON, Canada.,St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
8
|
Lin S, Zhu B, Huang G, Zeng Q, Wang C. Microvesicles derived from human bone marrow mesenchymal stem cells promote U2OS cell growth under hypoxia: the role of PI3K/AKT and HIF-1α. Hum Cell 2018; 32:64-74. [PMID: 30506278 DOI: 10.1007/s13577-018-0224-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/18/2018] [Indexed: 02/05/2023]
Abstract
Studies have demonstrated that mesenchymal stem cells (MSCs) can promote tumor growth, and MSC microvesicles (MVs) are very important in the tumor microenvironment and information transfer between cells during tumorigenesis and development. However, the potential effects and mechanisms of MSC-MVs on tumor growth are still controversial. Here in this study, we investigated the roles and effects of human bone marrow MSC-MVs (hBMSC-MVs) on human osteosarcoma (U2OS) cell growth under hypoxia in vitro and in vivo. BMSC-MVs were harvested and purified by ultracentrifugation. U2OS cells were treated with different concentrations of hBMSC-MVs under hypoxia. Cell viability and migration was measured by MTT test, transwell invasion assay and scratch migration assay. The expression of the signaling molecules of AKT, VEGF, GLUT1 and Bax, cleaved-caspase3 in U2OS cells cultured with MVs under hypoxia was determined by western blot. U2OS/siHIF-1α or U2OS/NC cells mixed with/without MVs were subcutaneously injected into nude mice; the tumor size and weight were detected. We found that hBMSC-MVs promoted U2OS cell proliferation and migration under hypoxia in vitro, and that was partially associated with the PI3K/AKT and HIF-1α pathways. MVs co-injected with U2OS cells promoted tumor growth in a mouse xenograft model. siHIF-1α transfection reversed these changes to some extent. The function of hBMSC-MVs on U2OS cell progression and tumor growth was associated with PI3K/AKT and HIF-1α pathway under hypoxia. These findings support a new mechanism suggesting the contribution of MSC-MVs to tumor growth.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo Zhu
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Kampmeyer C, Karakostova A, Schenstrøm SM, Abildgaard AB, Lauridsen AM, Jourdain I, Hartmann-Petersen R. The exocyst subunit Sec3 is regulated by a protein quality control pathway. J Biol Chem 2017; 292:15240-15253. [PMID: 28765280 DOI: 10.1074/jbc.m117.789867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/19/2017] [Indexed: 02/03/2023] Open
Abstract
Exocytosis involves fusion of secretory vesicles with the plasma membrane, thereby delivering membrane proteins to the cell surface and releasing material into the extracellular space. The tethering of the secretory vesicles before membrane fusion is mediated by the exocyst, an essential phylogenetically conserved octameric protein complex. Exocyst biogenesis is regulated by several processes, but the mechanisms by which the exocyst is degraded are unknown. Here, to unravel the components of the exocyst degradation pathway, we screened for extragenic suppressors of a temperature-sensitive fission yeast strain mutated in the exocyst subunit Sec3 (sec3-913). One of the suppressing DNAs encoded a truncated dominant-negative variant of the 26S proteasome subunit, Rpt2, indicating that exocyst degradation is controlled by the ubiquitin-proteasome system. The temperature-dependent growth defect of the sec3-913 strain was gene dosage-dependent and suppressed by blocking the proteasome, Hsp70-type molecular chaperones, the Pib1 E3 ubiquitin-protein ligase, and the deubiquitylating enzyme Ubp3. Moreover, defects in cell septation, exocytosis, and endocytosis in sec3 mutant strains were similarly alleviated by mutation of components in this pathway. We also found that, particularly under stress conditions, wild-type Sec3 degradation is regulated by Pib1 and the 26S proteasome. In conclusion, our results suggest that a cytosolic protein quality control pathway monitors folding and proteasome-dependent turnover of an exocyst subunit and, thereby, controls exocytosis in fission yeast.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Antonina Karakostova
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Signe M Schenstrøm
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Amanda B Abildgaard
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Anne-Marie Lauridsen
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Isabelle Jourdain
- the College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Rasmus Hartmann-Petersen
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| |
Collapse
|
10
|
Poulsen EG, Kampmeyer C, Kriegenburg F, Johansen JV, Hofmann K, Holmberg C, Hartmann-Petersen R. UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1. Cell Stress Chaperones 2017; 22:143-154. [PMID: 27966061 PMCID: PMC5225068 DOI: 10.1007/s12192-016-0751-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
As a result of exposure to stress conditions, mutations, or defects during synthesis, cellular proteins are prone to misfold. To cope with such partially denatured proteins, cells mount a regulated transcriptional response involving the Hsf1 transcription factor, which drives the synthesis of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2, binds Bag101 and Bag102 and key residues in the Hsp70 ATPase domains, required for interaction with Bag101 and Bag102, were identified. In humans, BAG-1 overexpression is typically observed in cancers. Overexpression of bag101 and bag102 in fission yeast leads to a strong growth defect caused by triggering Hsp70 to release and activate the Hsf1 transcription factor. Accordingly, the bag101-linked growth defect is alleviated in strains containing a reduced amount of Hsf1 but aggravated in hsp70 deletion strains. In conclusion, we propose that the fission yeast UBL/BAG proteins release Hsf1 from Hsp70, leading to constitutive Hsf1 activation and growth defects.
Collapse
Affiliation(s)
- Esben G Poulsen
- The Linderstrøm-Land Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Caroline Kampmeyer
- The Linderstrøm-Land Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Franziska Kriegenburg
- The Linderstrøm-Land Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Jens V Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Christian Holmberg
- The Linderstrøm-Land Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Land Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|