1
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Sequeira AN, O’Keefe IP, Katju V, Bergthorsson U. Friend turned foe: selfish behavior of a spontaneously arising mitochondrial deletion in an experimentally evolved Caenorhabditis elegans population. G3 (BETHESDA, MD.) 2024; 14:jkae018. [PMID: 38261394 PMCID: PMC11090458 DOI: 10.1093/g3journal/jkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Selfish mitochondrial DNA (mtDNA) mutations are variants that can proliferate within cells and enjoy a replication or transmission bias without fitness benefits for the host. mtDNA deletions in Caenorhabditis elegans can reach high heteroplasmic frequencies despite significantly reducing fitness, illustrating how new mtDNA variants can give rise to genetic conflict between different levels of selection and between the nuclear and mitochondrial genomes. During a mutation accumulation experiment in C. elegans, a 1,034-bp deletion originated spontaneously and reached an 81.7% frequency within an experimental evolution line. This heteroplasmic mtDNA deletion, designated as meuDf1, eliminated portions of 2 protein-coding genes (coxIII and nd4) and tRNA-thr in entirety. mtDNA copy number in meuDf1 heteroplasmic individuals was 35% higher than in individuals with wild-type mitochondria. After backcrossing into a common genetic background, the meuDf1 mitotype was associated with reduction in several fitness traits and independent competition experiments found a 40% reduction in composite fitness. Experiments that relaxed individual selection by single individual bottlenecks demonstrated that the deletion-bearing mtDNA possessed a strong transmission bias, thereby qualifying it as a novel selfish mitotype.
Collapse
Affiliation(s)
- Abigail N Sequeira
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Ian P O’Keefe
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biochemistry and Molecular Biology, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
3
|
Abeliovich H. Mitophagy in yeast: known unknowns and unknown unknowns. Biochem J 2023; 480:1639-1657. [PMID: 37850532 PMCID: PMC10586778 DOI: 10.1042/bcj20230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Mitophagy, the autophagic breakdown of mitochondria, is observed in eukaryotic cells under various different physiological circumstances. These can be broadly categorized into two types: mitophagy related to quality control events and mitophagy induced during developmental transitions. Quality control mitophagy involves the lysosomal or vacuolar degradation of malfunctioning or superfluous mitochondria within lysosomes or vacuoles, and this is thought to serve as a vital maintenance function in respiring eukaryotic cells. It plays a crucial role in maintaining physiological balance, and its disruption has been associated with the progression of late-onset diseases. Developmentally induced mitophagy has been reported in the differentiation of metazoan tissues which undergo metabolic shifts upon developmental transitions, such as in the differentiation of red blood cells and muscle cells. Although the mechanistic studies of mitophagy in mammalian cells were initiated after the initial mechanistic findings in Saccharomyces cerevisiae, our current understanding of the physiological role of mitophagy in yeast remains more limited, despite the presence of better-defined assays and tools. In this review, I present my perspective on our present knowledge of mitophagy in yeast, focusing on physiological and mechanistic aspects. I aim to focus on areas where our understanding is still incomplete, such as the role of mitochondrial dynamics and the phenomenon of protein-level selectivity.
Collapse
Affiliation(s)
- Hagai Abeliovich
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, 1 Hankin St, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Nunn CJ, Klyshko E, Goyal S. petiteFinder: an automated computer vision tool to compute Petite colony frequencies in baker's yeast. BMC Bioinformatics 2023; 24:50. [PMID: 36793007 PMCID: PMC9930278 DOI: 10.1186/s12859-023-05168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Mitochondrial respiration is central to cellular and organismal health in eukaryotes. In baker's yeast, however, respiration is dispensable under fermentation conditions. Because yeast are tolerant of this mitochondrial dysfunction, yeast are widely used by biologists as a model organism to ask a variety of questions about the integrity of mitochondrial respiration. Fortunately, baker's yeast also display a visually identifiable Petite colony phenotype that indicates when cells are incapable of respiration. Petite colonies are smaller than their Grande (wild-type) counterparts, and their frequency can be used to infer the integrity of mitochondrial respiration in populations of cells. Unfortunately, the computation of Petite colony frequencies currently relies on laborious manual colony counting methods which limit both experimental throughput and reproducibility. RESULTS To address these problems, we introduce a deep learning enabled tool, petiteFinder, that increases the throughput of the Petite frequency assay. This automated computer vision tool detects Grande and Petite colonies and computes Petite colony frequencies from scanned images of Petri dishes. It achieves accuracy comparable to human annotation but at up to 100 times the speed and outperforms semi-supervised Grande/Petite colony classification approaches. Combined with the detailed experimental protocols we provide, we believe this study can serve as a foundation to standardize this assay. Finally, we comment on how Petite colony detection as a computer vision problem highlights ongoing difficulties with small object detection in existing object detection architectures. CONCLUSION Colony detection with petiteFinder results in high accuracy Petite and Grande detection in images in a completely automated fashion. It addresses issues in scalability and reproducibility of the Petite colony assay which currently relies on manual colony counting. By constructing this tool and providing details of experimental conditions, we hope this study will enable larger-scale experiments that rely on Petite colony frequencies to infer mitochondrial function in yeast.
Collapse
Affiliation(s)
- Christopher J. Nunn
- grid.17063.330000 0001 2157 2938Department of Physics, University of Toronto, Toronto, ON M5S 2W9 Canada
| | - Eugene Klyshko
- grid.17063.330000 0001 2157 2938Department of Physics, University of Toronto, Toronto, ON M5S 2W9 Canada ,grid.17063.330000 0001 2157 2938Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Sidhartha Goyal
- grid.17063.330000 0001 2157 2938Department of Physics, University of Toronto, Toronto, ON M5S 2W9 Canada ,grid.17063.330000 0001 2157 2938IBBME, University of Toronto, Toronto, ON M5S 3G9 Canada
| |
Collapse
|
5
|
Bhatia-Kissova I, Camougrand N. Mitophagy in Yeast: Decades of Research. Cells 2021; 10:3541. [PMID: 34944049 PMCID: PMC8700663 DOI: 10.3390/cells10123541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, is one of the most important mechanisms of mitochondrial quality control, and its proper functioning is essential for cellular homeostasis. In this review, we describe the most important milestones achieved during almost 2 decades of research on yeasts, which shed light on the molecular mechanisms, regulation, and role of the Atg32 receptor in this process. We analyze the role of ROS in mitophagy and discuss the physiological roles of mitophagy in unicellular organisms, such as yeast; these roles are very different from those in mammals. Additionally, we discuss some of the different tools available for studying mitophagy.
Collapse
Affiliation(s)
- Ingrid Bhatia-Kissova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia;
| | - Nadine Camougrand
- CNRS, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
6
|
Corbi D, Amon A. Decreasing mitochondrial RNA polymerase activity reverses biased inheritance of hypersuppressive mtDNA. PLoS Genet 2021; 17:e1009808. [PMID: 34665800 PMCID: PMC8555793 DOI: 10.1371/journal.pgen.1009808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/29/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Faithful inheritance of mitochondrial DNA (mtDNA) is crucial for cellular respiration/oxidative phosphorylation and mitochondrial membrane potential. However, how mtDNA is transmitted to progeny is not fully understood. We utilized hypersuppressive mtDNA, a class of respiratory deficient Saccharomyces cerevisiae mtDNA that is preferentially inherited over wild-type mtDNA (rho+), to uncover the factors governing mtDNA inheritance. We found that some regions of rho+ mtDNA persisted while others were lost after a specific hypersuppressive takeover indicating that hypersuppressive preferential inheritance may partially be due to active destruction of rho+ mtDNA. From a multicopy suppression screen, we found that overexpression of putative mitochondrial RNA exonuclease PET127 reduced biased inheritance of a subset of hypersuppressive genomes. This suppression required PET127 binding to the mitochondrial RNA polymerase RPO41 but not PET127 exonuclease activity. A temperature-sensitive allele of RPO41 improved rho+ mtDNA inheritance over a specific hypersuppressive mtDNA at semi-permissive temperatures revealing a previously unknown role for rho+ transcription in promoting hypersuppressive mtDNA inheritance.
Collapse
Affiliation(s)
- Daniel Corbi
- David H. Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Huang YJ, Klionsky DJ. Yeast mitophagy: Unanswered questions. Biochim Biophys Acta Gen Subj 2021; 1865:129932. [PMID: 34022298 PMCID: PMC8205991 DOI: 10.1016/j.bbagen.2021.129932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023]
Abstract
Superfluous and damaged mitochondria need to be efficiently repaired or removed. Mitophagy is a selective type of autophagy that can engulf a portion of mitochondria within a double-membrane structure, called a mitophagosome, and deliver it to the vacuole for degradation. Mitophagy has significant physiological functions from yeast to human, and recent advances in yeast mitophagy shed light on the molecular mechanisms of mitophagy, especially the regulation of mitophagy induction. This review summarizes our current knowledge about yeast mitophagy and considers several unsolved questions, with a particular focus on Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yuxiang J Huang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J 2021; 40:e104705. [PMID: 33438778 PMCID: PMC7849173 DOI: 10.15252/embj.2020104705] [Citation(s) in RCA: 633] [Impact Index Per Article: 211.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy-mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady-state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Koji Yamano
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Miyuki Sato
- Laboratory of Molecular Membrane BiologyInstitute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Noriyuki Matsuda
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Koji Okamoto
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
10
|
Sokolov SS, Severin FF. Manipulating Cellular Energetics to Slow Aging of Tissues and Organs. BIOCHEMISTRY (MOSCOW) 2020; 85:651-659. [PMID: 32586228 DOI: 10.1134/s0006297920060024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Up to now numerous studies in the field of gerontology have been published. Nevertheless, a well-known food restriction remains the most reliable and efficient way of lifespan extension. Physical activity is also a well-documented anti-aging intervention being especially efficient in slowing down the age-associated decline of skeletal muscle mass. In this review we focus on the molecular mechanisms of the effect of physical exercise on muscle tissues. We also discuss the possibilities of pharmacological extension of this effect to the rest of the tissues. During the exercise, the level of ATP decreases triggering activation of AMP-dependent protein kinase (AMPK). This kinase stimulates antioxidant potential of the cells and their mitochondrial respiratory capacity. The exercise also induces mild oxidative stress, which, in turn, mediates the stimulation via hormetic response. Furthermore, during the exercise cells generate activators of mammalian target of rapamycin (mTOR). The intracellular ATP level increases during the rest periods between exercises thus promoting mTOR activation. Therefore, regular exercise intermittently activates anti-oxidant defenses and mitochondrial biogenesis (via AMPK and the hormetic response) of the muscle tissue, as well as its proliferative potential (via mTOR), which, in turn, impedes the age-dependent muscle atrophy. Thus, the intermittent treatment with activators of (i) AMPK combined with the inducers of hormetic response and of (ii) mTOR might partly mimic the effects of physical exercise. Importantly, pharmacological activation of AMPK takes place in the absence of ATP level decrease. The use of uncouplers of respiration and oxidative phosphorylation at the phase of AMPK activation could also prevent negative consequences of the cellular hyper-energization. It is believed that the decline of both antioxidant and proliferative potentials of the cells causes the age-dependent decline of multiple tissues, rather than only the muscular one. We argue that the approach above is applicable for the majority of tissues in an organism.
Collapse
Affiliation(s)
- S S Sokolov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - F F Severin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Szabó A, Antunovics Z, Karanyicz E, Sipiczki M. Diversity and Postzygotic Evolution of the Mitochondrial Genome in Hybrids of Saccharomyces Species Isolated by Double Sterility Barrier. Front Microbiol 2020; 11:838. [PMID: 32457720 PMCID: PMC7221252 DOI: 10.3389/fmicb.2020.00838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Eukaryotic species are reproductively isolated by sterility barriers that prevent interspecies fertilization (prezygotic sterility barrier) or the fertilization results in infertile offspring (postzygotic sterility barrier). The Saccharomyces species are isolated by postzygotic sterility barriers. Their allodiploid hybrids form no viable gametes (ascospores) and the viable ascospores of the allotetraploids cannot fertilize (conjugate). Our previous work revealed that this mechanism of reproductive isolation differs from those operating in plants and animals and we designated it double sterility barrier (the failure of homeologous chromosomes to pair and the repression of mating by mating-type heterozygosity). Other studies implicated nucleo-mitochondrial incompatibilities in the sterility of the Saccharomyces hybrids, a mechanism assumed to play a central role in the reproductive isolation of animal species. In this project the mitochondrial genomes of 50 cevarum (S. cerevisiae × S. uvarum) hybrids were analyzed. 62% had S. cerevisiae mitotypes, 4% had S. uvarum mitotypes, and 34% had recombinant mitotypes. All but one hybrid formed viable spores indicating that they had genomes larger than allodiploid. Most of these spores were sterile (no sporulation in the clone of vegetative descendants; a feature characteristic of allodiploids). But regardless of their mitotypes, most hybrids could also form fertile alloaneuploid spore clones at low frequencies upon the loss of the MAT-carrying chromosome of the S. uvarum subgenome during meiosis. Hence, the cevarum alloploid nuclear genome is compatible with both parental mitochondrial genomes as well as with their recombinants, and the sterility of the hybrids is maintained by the double sterility barrier (determined in the nuclear genome) rather than by nucleo-mitochondrial incompatibilities. During allotetraploid sporulation both the nuclear and the mitochondrial genomes of the hybrids could segregate but no correlation was observed between the sterility or the fertility of the spore clones and their mitotypes. Nucleo-mitochondrial incompatibility was manifested as respiration deficiency in certain meiotic segregants. As respiration is required for meiosis-sporulation but not for fertilization (conjugation), these segregants were deficient only in sporulation. Thus, the nucleo-mitochondrial incompatibility affects the sexual processes only indirectly through the inactivation of respiration and causes only partial sterility in certain segregant spore clones.
Collapse
Affiliation(s)
| | | | | | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Evolving mtDNA populations within cells. Biochem Soc Trans 2020; 47:1367-1382. [PMID: 31484687 PMCID: PMC6824680 DOI: 10.1042/bst20190238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA molecules exist in most eukaryotic cells, subject to replication, degradation, mutation, and other population processes. These processes affect the genetic makeup of cellular mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant mtDNA load over time. As mtDNA mutant load has nonlinear effects on cell functionality, and cell functionality has nonlinear effects on tissue performance, these statistics of cellular mtDNA populations play vital roles in health, disease, and inheritance. This mini review will describe some of the better-known ways in which these populations change over time in different organisms, highlighting the importance of quantitatively understanding both mutant load mean and variance. Due to length constraints, we cannot attempt to be comprehensive but hope to provide useful links to some of the many excellent studies on these topics.
Collapse
|
13
|
Galkina KV, Zyrina AN, Golyshev SA, Kashko ND, Markova OV, Sokolov SS, Severin FF, Knorre DA. Mitochondrial dynamics in yeast with repressed adenine nucleotide translocator AAC2. Eur J Cell Biol 2020; 99:151071. [PMID: 32057484 DOI: 10.1016/j.ejcb.2020.151071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.
Collapse
Affiliation(s)
- Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Anna N Zyrina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Nataliia D Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Olga V Markova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Knorre DA. Intracellular quality control of mitochondrial DNA: evidence and limitations. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190176. [PMID: 31787047 DOI: 10.1098/rstb.2019.0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells can harbour mitochondria with markedly different transmembrane potentials. Intracellular mitochondrial quality-control mechanisms (e.g. mitophagy) rely on this intracellular variation to distinguish functional and damaged (depolarized) mitochondria. Given that intracellular mitochondrial DNA (mtDNA) genetic variation can induce mitochondrial heterogeneity, mitophagy could remove deleterious mtDNA variants in cells. However, the reliance of mitophagy on the mitochondrial transmembrane potential suggests that mtDNAs with deleterious mutations in ATP synthase can evade the control. This evasion is possible because inhibition of ATP synthase can increase the mitochondrial transmembrane potential. Moreover, the linkage of the mtDNA genotype to individual mitochondrial performance is expected to be weak owing to intracellular mitochondrial intercomplementation. Nonetheless, I reason that intracellular mtDNA quality control is possible and crucial at the zygote stage of the life cycle. Indeed, species with biparental mtDNA inheritance or frequent 'leakage' of paternal mtDNA can be vulnerable to invasion of selfish mtDNAs at the stage of gamete fusion. Here, I critically review recent findings on intracellular mtDNA quality control by mitophagy and discuss other mechanisms by which the nuclear genome can affect the competition of mtDNA variants in the cell. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Dmitry A Knorre
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
| |
Collapse
|
15
|
Dubie JJ, Caraway AR, Stout MM, Katju V, Bergthorsson U. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190174. [PMID: 31787044 DOI: 10.1098/rstb.2019.0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the cytochrome b(1) (ctb-1) gene (Δctb-1) encoding the cytochrome b of complex III in Caenorhabditis elegans. Δctb-1 reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in nd5 and tRNA-Asn. The Δctb-1 mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δctb-1 mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δctb-1 exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks (n = 1), the relative intracellular frequency of Δctb-1 increased, which is a hallmark of selfish drive. A positive correlation between Δctb-1 and WT mtDNA copy-number suggests a mechanism that increases total mtDNA per se, and does not discern the Δctb-1 mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δctb-1 mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Joseph James Dubie
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Avery Robert Caraway
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - McKenna Margaret Stout
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| |
Collapse
|
16
|
Srv2 Is a Pro-fission Factor that Modulates Yeast Mitochondrial Morphology and Respiration by Regulating Actin Assembly. iScience 2018; 11:305-317. [PMID: 30639852 PMCID: PMC6327880 DOI: 10.1016/j.isci.2018.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/16/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023] Open
Abstract
Dynamic processes such as fusion, fission, and trafficking are important in the regulation of cellular organelles, with an abundant literature focused on mitochondria. Mitochondrial dynamics not only help shape its network within cells but also are involved in the modulation of respiration and integrity. Disruptions of mitochondrial dynamics are associated with neurodegenerative disorders. Although proteins that directly bind mitochondria to promote membrane fusion/fission have been studied intensively, machineries that regulate dynamic mitochondrial processes remain to be explored. We have identified an interaction between the mitochondrial fission GTPase Dnm1/DRP1 and the actin-regulatory protein Srv2/CAP at mitochondria. Deletion of Srv2 causes elongated-hyperfused mitochondria and reduces the reserved respiration capacity in yeast cells. Our results further demonstrate that the irregular network morphology in Δsrv2 cells derives from disrupted actin assembly at mitochondria. We suggest that Srv2 functions as a pro-fission factor in shaping mitochondrial dynamics and regulating activity through its actin-regulatory effects. Srv2 interacts with fission protein Dnm1 on mitochondria in yeast cells Srv2 deletion causes an irregular, hyperfused-elongated mitochondrial network The irregular network derives from loss of Srv2-mediated actin assembly at mitochondria Srv2 modulates both mitochondrial dynamics and activity
Collapse
|
17
|
Leducq JB, Henault M, Charron G, Nielly-Thibault L, Terrat Y, Fiumera HL, Shapiro BJ, Landry CR. Mitochondrial Recombination and Introgression during Speciation by Hybridization. Mol Biol Evol 2018; 34:1947-1959. [PMID: 28444332 PMCID: PMC7328687 DOI: 10.1093/molbev/msx139] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation.
Collapse
Affiliation(s)
- Jean-Baptiste Leducq
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada.,Département des Sciences Biologiques, Pavillon Marie-Victorin, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Henault
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| | - Lou Nielly-Thibault
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| | - Yves Terrat
- Département des Sciences Biologiques, Pavillon Marie-Victorin, Université de Montréal, Montréal, QC, Canada
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY
| | - B Jesse Shapiro
- Département des Sciences Biologiques, Pavillon Marie-Victorin, Université de Montréal, Montréal, QC, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| |
Collapse
|
18
|
Fukuda T, Kanki T. Mechanisms and Physiological Roles of Mitophagy in Yeast. Mol Cells 2018; 41:35-44. [PMID: 29370687 PMCID: PMC5792711 DOI: 10.14348/molcells.2018.2214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510,
Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510,
Japan
| |
Collapse
|
19
|
Verspohl A, Pignedoli S, Giudici P. The inheritance of mitochondrial DNA in interspecific Saccharomyces hybrids and their properties in winemaking. Yeast 2017; 35:173-187. [PMID: 29048749 DOI: 10.1002/yea.3288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
The inheritance of mitochondrial DNA (mtDNA) in yeast hybrids is heteroplasmic, turning into homoplasmic after few cell cycles. Mitotype restoration is reported to be biparental and random. This study shows that mitotype restoration follows fixed schemata. We created isogenic, interspecific Saccharomyces cerevisiae × Saccharomyces uvarum hybrids through direct mating and analysed their mating frequency and mitotype. The mating frequency increased for most crosses in staggered mating. Mitotyping revealed that breeding lines with the same parental strain of S. cerevisiae and different parental strains of S. uvarum give rise to the same mitotype. According to our results, we postulate that the inheritance of mtDNA is dominated by one parental strain and that the superior mitotype is specific to each breeding line. Technological tests showed typical hybrid heterosis. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexandra Verspohl
- University of Modena and Reggio Emilia, Department of Life Sciences, Via Amedola 2, 42122, Reggio Emilia, Italy
| | - Samuele Pignedoli
- University of Modena and Reggio Emilia, Department of Life Sciences, Via Amedola 2, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- University of Modena and Reggio Emilia, Department of Life Sciences, Via Amedola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
20
|
Azbarova AV, Galkina KV, Sorokin MI, Severin FF, Knorre DA. The contribution of Saccharomyces cerevisiae replicative age to the variations in the levels of Trx2p, Pdr5p, Can1p and Idh isoforms. Sci Rep 2017; 7:13220. [PMID: 29038504 PMCID: PMC5643315 DOI: 10.1038/s41598-017-13576-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
Asymmetrical division can be a reason for microbial populations heterogeneity. In particular, budding yeast daughter cells are more vulnerable to stresses than the mothers. It was suggested that yeast mother cells could also differ from each other depending on their replicative age. To test this, we measured the levels of Idh1-GFP, Idh2-GFP, Trx2-GFP, Pdr5-GFP and Can1-GFP proteins in cells of the few first, most represented, age cohorts. Pdr5p and Can1p were selected because of the pronounced mother-bud asymmetry for these proteins distributions, Trx2p as indicator of oxidative stress. Isocitrate dehydrogenase subunits Idh1p and Idh2p were assessed because their levels are regulated by mitochondria. We found a small negative correlation between yeast replicative age and Idh1-GFP or Idh2-GFP but not Trx2-GFP levels. Mitochondrial network fragmentation was also confirmed as an early event of replicative aging. No significant difference in the membrane proteins levels Pdr5p and Can1p was found. Moreover, the elder mother cells showed lower coefficient of variation for Pdr5p levels compared to the younger ones and the daughters. Our data suggest that the levels of stress-response proteins Pdr5p and Trx2p in the mother cells are stable during the first few cell cycles regardless of their mother-bud asymmetry.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Maxim I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia.,OmicsWay Corp., 340S Lemon Ave, Walnut, CA, 91789, USA
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia.
| |
Collapse
|