1
|
Wang X, Liu J, Azoitei A, Eiseler T, Meessen S, Jiang W, Zheng X, Makori AW, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Zengerling F, Wezel F, Bolenz C, Günes C. Loss of ORP3 induces aneuploidy and promotes bladder cancer cell invasion through deregulated microtubule and actin dynamics. Cell Mol Life Sci 2023; 80:299. [PMID: 37740130 PMCID: PMC10516806 DOI: 10.1007/s00018-023-04959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
We have recently shown that loss of ORP3 leads to aneuploidy induction and promotes tumor formation. However, the specific mechanisms by which ORP3 contributes to ploidy-control and cancer initiation and progression is still unknown. Here, we report that ORP3 is highly expressed in ureter and bladder epithelium while its expression is downregulated in invasive bladder cancer cell lines and during tumor progression, both in human and in mouse bladder cancer. Moreover, we observed an increase in the incidence of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced invasive bladder carcinoma in the tissue-specific Orp3 knockout mice. Experimental data demonstrate that ORP3 protein interacts with γ-tubulin at the centrosomes and with components of actin cytoskeleton. Altering the expression of ORP3 induces aneuploidy and genomic instability in telomerase-immortalized urothelial cells with a stable karyotype and influences the migration and invasive capacity of bladder cancer cell lines. These findings demonstrate a crucial role of ORP3 in ploidy-control and indicate that ORP3 is a bona fide tumor suppressor protein. Of note, the presented data indicate that ORP3 affects both cell invasion and migration as well as genome stability through interactions with cytoskeletal components, providing a molecular link between aneuploidy and cell invasion and migration, two crucial characteristics of metastatic cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital, Ulm, Germany
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Arika W Makori
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Sun J, Zhang M, Qi X, Doyle C, Zheng H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat Commun 2020; 11:5510. [PMID: 33139737 PMCID: PMC7606470 DOI: 10.1038/s41467-020-19343-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Mi Zhang
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Department of Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Caitlin Doyle
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
3
|
KIF3C Promotes Proliferation, Migration, and Invasion of Glioma Cells by Activating the PI3K/AKT Pathway and Inducing EMT. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6349312. [PMID: 33150178 PMCID: PMC7603552 DOI: 10.1155/2020/6349312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Kinesin superfamily protein 3C (KIF3C), a motor protein of the kinesin superfamily, is expressed in the central nervous system (CNS). Recently, several studies have suggested that KIF3C may act as a potential therapeutic target in solid tumors. However, the exact function and possible mechanism of the motor protein KIF3C in glioma remain unclear. In this study, a variety of tests including CCK-8, migration, invasion, and flow cytometry assays, and western blot were conducted to explore the role of KIF3C in glioma cell lines (U87 and U251). We found that overexpression of KIF3C in glioma cell lines promoted cell proliferation, migration, and invasion and suppressed apoptosis, while silencing of KIF3C reversed these effects. Ectopic KIF3C also increased the expression of N-cadherin, vimentin, snail, and slug to promote the epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of KIF3C increased the levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT). These responses were reversed by KIF3C downregulation or AKT inhibition. Our results indicate that KIF3C promotes proliferation, migration, and invasion and inhibits apoptosis in glioma cells, possibly by activating the PI3K/AKT pathway in vitro. KIF3C might act as a potential biomarker or therapeutic target for further basic research or clinical management of glioma.
Collapse
|
4
|
Weeber F, Becher A, Seibold T, Seufferlein T, Eiseler T. Concerted regulation of actin polymerization during constitutive secretion by cortactin and PKD2. J Cell Sci 2019; 132:jcs.232355. [PMID: 31727638 DOI: 10.1242/jcs.232355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Constitutive secretion from the trans-Golgi-network (TGN) is facilitated by a concerted regulation of vesicle biogenesis and fission processes. The protein kinase D family (PKD) has been previously described to enhance vesicle fission by modifying the lipid environment. PKD also phosphorylates the actin regulatory protein cortactin at S298 to impair synergistic actin polymerization. We here report additional functions for PKD2 (also known as PRKD2) and cortactin in the regulation of actin polymerization during the fission of transport carriers from the TGN. Phosphorylation of cortactin at S298 impairs the interaction between WIP (also known as WIPF1) and cortactin. WIP stabilizes the autoinhibited conformation of N-WASP (also known as WASL). This leads to an inhibition of synergistic Arp2/3-complex-dependent actin polymerization at the TGN. PKD2 activity at the TGN is controlled by active CDC42-GTP which directly activates N-WASP, inhibits PKD2 and shifts the balance to non-S298-phosphorylated cortactin, which can in turn sequester WIP from N-WASP. Consequently, synergistic actin polymerization at the TGN and constitutive secretion are enhanced.
Collapse
Affiliation(s)
- Florian Weeber
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Alexander Becher
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Tanja Seibold
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| |
Collapse
|
5
|
Gelfman S, Dugger S, de Araujo Martins Moreno C, Ren Z, Wolock CJ, Shneider NA, Phatnani H, Cirulli ET, Lasseigne BN, Harris T, Maniatis T, Rouleau GA, Brown RH, Gitler AD, Myers RM, Petrovski S, Allen A, Goldstein DB, Harms MB. A new approach for rare variation collapsing on functional protein domains implicates specific genic regions in ALS. Genome Res 2019; 29:809-818. [PMID: 30940688 PMCID: PMC6499321 DOI: 10.1101/gr.243592.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collapsing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains. The application of these two collapsing methods to 3093 ALS cases and 8186 controls of European ancestry, and also 3239 cases and 11,808 controls of diversified populations, pinpoints risk regions of ALS genes, including SOD1, NEK1, TARDBP, and FUS. While not clearly implicating novel ALS genes, the new analyses not only pinpoint risk regions in known genes but also highlight candidate genes as well.
Collapse
Affiliation(s)
- Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Sarah Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | | | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Charles J Wolock
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Neil A Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, USA.,Motor Neuron Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hemali Phatnani
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, USA.,New York Genome Center, New York, New York 10013, USA
| | | | | | - Tim Harris
- SV Health Investors, Boston, Massachusetts 02108, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4 Canada
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Slavé Petrovski
- Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne VIC 3050, Australia
| | - Andrew Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, 10032, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, USA.,Motor Neuron Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|