1
|
Gui L, Zhong Q, Yang J, Sun J, Lu J, Picton HM, Li C. Acquisition of 2C-like totipotency through defined maternal-effect factors. Stem Cells 2024; 42:581-592. [PMID: 38655883 DOI: 10.1093/stmcls/sxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Fully grown oocytes have the natural ability to transform 2 terminally differentiated gametes into a totipotent zygote representing the acquisition of totipotency. This process wholly depends on maternal-effect factors (MFs). MFs stored in the eggs are therefore likely to be able to induce cellular reprogramming to a totipotency state. Here we report the generation of totipotent-like stem cells from mESCs using 4MFs Hsf1, Zar1, Padi6, and Npm2, designated as MFiTLSCs. MFiTLSCs exhibited a unique and inherent capability to differentiate into embryonic and extraembryonic derivatives. Transcriptomic analysis revealed that MFiTLSCs are enriched with 2-cell-specific genes that appear to synergistically induce a transcriptional repressive state, in that parental genomes are remodeled to a poised transcriptional repression state while totipotency is established following fertilization. This method to derive MFiTLSCs could help advance the understanding of fate determinations of totipotent stem cells in a physiological context and establish a foundation for the development of oocyte biology-based reprogramming technology.
Collapse
Affiliation(s)
- Liming Gui
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Qin Zhong
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jue Yang
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jiajia Sun
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
| | - Jianping Lu
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Changzhong Li
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
| |
Collapse
|
2
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers D, Liu Q, Liu X, Boothby M, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529548. [PMID: 36865260 PMCID: PMC9980137 DOI: 10.1101/2023.02.22.529548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. Methods To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven Braf V600E /Pten -/- /Cxcr2 -/- and NRas Q61R /INK4a -/- /Cxcr2 -/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in Braf V600E /Pten -/- and NRas Q61R /INK4a -/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). Results Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1 , a key tumor suppressive transcription factor, was the only gene significantly induced with a log 2 fold-change greater than 2 in these three different melanoma models. Conclusions Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
|
3
|
Xu GF, Gong CC, Lyu H, Deng HM, Zheng SC. Dynamic transcriptome analysis of Bombyx mori embryonic development. INSECT SCIENCE 2022; 29:344-362. [PMID: 34388292 DOI: 10.1111/1744-7917.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori has been extensively studied but the gene expression control of its embryonic development is unclear. In this study, we performed transcriptome profiling of six stages of B. mori embryonic development using RNA sequencing (RNA-seq). A total of 12 894 transcripts were obtained from the embryos. Of these, 12 456 transcripts were shared among the six stages, namely, fertilized egg, blastoderm, germ-band, organogenesis, reversal period, and youth period stages. There were 111, 48, 41, 54, 77, and 107 transcripts specifically expressed during the six stages, respectively. By analyzing weighted gene correlation networks and differently expressed genes, we found that during embryonic development, many genes related to DNA replication, transcription, protein synthesis, and epigenetic modifications were upregulated in the early embryos. Genes of cuticle proteins, chitin synthesis-related proteins, and neuropeptides were more abundant in the late embryos. Although pathways of juvenile hormone and the ecdysteroid 20-hydroxyecdysone, and transcription factors were expressed throughout the embryonic development stages, more regulatory pathways were highly expressed around the organogenesis stage, suggesting more gene expression for organogenesis. The results of RNA-seq were confirmed by quantitative real-time polymerase chain reaction of 16 genes of different pathways. Nucleic acid methylation and seven sites in histone H3 modifications were confirmed by dot blot and western blot. This study increases the understanding of the molecular mechanisms of the embryonic developmental process and information on the regulation of B. mori development.
Collapse
Affiliation(s)
- Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng-Cheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hui-Min Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
4
|
You Y, Cui Y, Li Y, Zhang M, Wang X, Ji J, Zhang X, Zhou M, Zhang Z, Ye SD, Wang X. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun 2021; 552:142-149. [PMID: 33744762 DOI: 10.1016/j.bbrc.2021.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
Fully understanding the regulatory network under the pluripotency of embryonic stem cells (ESC) is a prerequisite for their safe application. Here, we addressed the characteristics of metastasis-associated (MTA) family members in human ESCs and found that knockdown of the expression of MTA2 and MTA3, but not MTA1, would induce differentiation. High-throughput sequence and quantitative real-time PCR showed that the decreased MTA2 or MTA3 gene transcript mainly led to the emergence of mesendoderm associated markers. Finally, based on the chemical small molecule library screening, we observed that addition of ID8, a specific inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), was able to impair the differentiation phenotype induced by MTA2 and MTA3 reduction. Functional assay showed that ID8 could mediate differentiation caused by MTA2 or MTA3 knockdown mainly through inhibition of DYRK4 activity. Therefore, our finding provides the evidence that the functions of MTA family genes in human ESCs are different. Revealing the function of MTA in ESCs with different pluripotency states will help us better understand and apply stem cells.
Collapse
Affiliation(s)
- Yu You
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Yandi Cui
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Yuting Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Meng Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Xin Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Xinbao Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Min Zhou
- Anhui Provincial Hospital, First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China
| | - Zhonglin Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| | - Xiaoxiao Wang
- Anhui Provincial Hospital, First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
5
|
Prasad MS, Charney RM, Patel LJ, García-Castro MI. Distinct molecular profile and restricted stem cell potential defines the prospective human cranial neural crest from embryonic stem cell state. Stem Cell Res 2020; 49:102086. [PMID: 33370869 PMCID: PMC7932500 DOI: 10.1016/j.scr.2020.102086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/14/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Neural crest cells are an embryonic multipotent stem cell population. Recent studies in model organisms have suggested that neural crest cells are specified earlier than previously thought, at blastula stages. However, the molecular dynamics of early neural crest specification, and functional changes from pluripotent precursors to early specified NC, remain to be elucidated. In this report, we utilized a robust human model of cranial neural crest formation to address the distinct molecular character of the earliest stages of neural crest specification and assess the functional differences from its embryonic stem cell precursor. Our human neural crest model reveals a rapid change in the epigenetic state of neural crest and pluripotency genes, accompanied by changes in gene expression upon Wnt-based induction from embryonic stem cells. These changes in gene expression are directly regulated by the transcriptional activity of β-catenin. Furthermore, prospective cranial neural crest cells are characterized by restricted stem cell potential compared to embryonic stem cells. Our results suggest that human neural crest induced by Wnt/β-catenin signaling from human embryonic stem cells rapidly acquire a prospective neural crest cell state defined by a unique molecular signature and endowed with limited potential compared to pluripotent stem cells.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA.
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA
| | - Lipsa J Patel
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA.
| |
Collapse
|
6
|
Heo J, Noh B, Lee S, Lee H, Kim Y, Lim J, Ju H, Yu HY, Ryu C, Lee PCW, Jeong H, Oh Y, Kim K, Kim S, Son J, Hong B, Kim JS, Cho YM, Shin D. Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med 2020; 12:e10880. [PMID: 31709755 PMCID: PMC6949511 DOI: 10.15252/emmm.201910880] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molecular programs involved in embryogenesis are frequently upregulated in oncogenic dedifferentiation and metastasis. However, their precise roles and regulatory mechanisms remain elusive. Here, we showed that CDK1 phosphorylation of TFCP2L1, a pluripotency-associated transcription factor, orchestrated pluripotency and cell-cycling in embryonic stem cells (ESCs) and was aberrantly activated in aggressive bladder cancers (BCs). In murine ESCs, the protein interactome and transcription targets of Tfcp2l1 indicated its involvement in cell cycle regulation. Tfcp2l1 was phosphorylated at Thr177 by Cdk1, which affected ESC cell cycle progression, pluripotency, and differentiation. The CDK1-TFCP2L1 pathway was activated in human BC cells, stimulating their proliferation, self-renewal, and invasion. Lack of TFCP2L1 phosphorylation impaired the tumorigenic potency of BC cells in a xenograft model. In patients with BC, high co-expression of TFCP2L1 and CDK1 was associated with unfavorable clinical characteristics including tumor grade, lymphovascular and muscularis propria invasion, and distant metastasis and was an independent prognostic factor for cancer-specific survival. These findings demonstrate the molecular and clinical significance of CDK1-mediated TFCP2L1 phosphorylation in stem cell pluripotency and in the tumorigenic stemness features associated with BC progression.
Collapse
Affiliation(s)
- Jinbeom Heo
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Byeong‐Joo Noh
- Department of PathologyGangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungKorea
| | - Seungun Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hye‐Yeon Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - YongHwan Kim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Jisun Lim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hyein Ju
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hwan Yeul Yu
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Chae‐Min Ryu
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Peter CW Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hwangkyo Jeong
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yumi Oh
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Kyunggon Kim
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Sang‐Yeob Kim
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Jaekyoung Son
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Bumsik Hong
- Department of UrologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Jong Soo Kim
- Department of Stem Cell BiologySchool of MedicineKonkuk UniversitySeoulKorea
| | - Yong Mee Cho
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Dong‐Myung Shin
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
7
|
Vail DJ, Somoza RA, Caplan AI, Khalil AM. Transcriptome dynamics of long noncoding RNAs and transcription factors demarcate human neonatal, adult, and human mesenchymal stem cell-derived engineered cartilage. J Tissue Eng Regen Med 2019; 14:29-44. [PMID: 31503387 DOI: 10.1002/term.2961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
Abstract
The engineering of a native-like articular cartilage (AC) is a long-standing objective that could serve the clinical needs of millions of patients suffering from osteoarthritis and cartilage injury. An incomplete understanding of the developmental stages of AC has contributed to limited success in this endeavor. Using next generation RNA sequencing, we have transcriptionally characterized two critical stages of AC development in humans-that is, immature neonatal and mature adult, as well as tissue-engineered cartilage derived from culture expanded human mesenchymal stem cells. We identified key transcription factors (TFs) and long noncoding RNAs (lncRNAs) as candidate drivers of the distinct phenotypes of these tissues. AGTR2, SCGB3A1, TFCP2L1, RORC, and TBX4 stand out as key TFs, whose expression may be capable of reprogramming engineered cartilage into a more expandable and neonatal-like cartilage primed for maturation into biomechanically competent cartilage. We also identified that the transcriptional profiles of many annotated but poorly studied lncRNAs were dramatically different between these cartilages, indicating that lncRNAs may also be playing significant roles in cartilage biology. Key neonatal-specific lncRNAs identified include AC092818.1, AC099560.1, and KC877982. Collectively, our results suggest that tissue-engineered cartilage can be optimized for future clinical applications by the specific expression of TFs and lncRNAs.
Collapse
Affiliation(s)
- Daniel J Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Rodrigo A Somoza
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Wang X, Wang X, Zhang S, Sun H, Li S, Ding H, You Y, Zhang X, Ye SD. The transcription factor TFCP2L1 induces expression of distinct target genes and promotes self-renewal of mouse and human embryonic stem cells. J Biol Chem 2019; 294:6007-6016. [PMID: 30782842 DOI: 10.1074/jbc.ra118.006341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
TFCP2L1 (transcription factor CP2-like 1) is a transcriptional regulator critical for maintaining mouse and human embryonic stem cell (ESC) pluripotency. However, the direct TFCP2L1 target genes are uncharacterized. Here, using gene overexpression, immunoblotting, quantitative real-time PCR, ChIP, and reporter gene assays, we show that TFCP2L1 primarily induces estrogen-related receptor β (Esrrb) expression that supports mouse ESC identity and also selectively enhances Kruppel-like factor 4 (Klf4) expression and thereby promotes human ESC self-renewal. Specifically, we found that in mouse ESCs, TFCP2L1 binds directly to the Esrrb gene promoter and regulates its transcription. Esrrb knockdown impaired Tfcp2l1's ability to induce interleukin 6 family cytokine (leukemia inhibitory factor)-independent ESC self-renewal and to reprogram epiblast stem cells to naïve pluripotency. Conversely, Esrrb overexpression blocked differentiation induced by Tfcp2l1 down-regulation. Moreover, we identified Klf4 as a direct TFCP2L1 target in human ESCs, bypassing the requirement for activin A and basic fibroblast growth factor in short-term human ESC self-renewal. Enforced Klf4 expression recapitulated the self-renewal-promoting effect of Tfcp2l1, whereas Klf4 knockdown eliminated these effects and caused loss of colony-forming capability. These findings indicate that TFCP2L1 functions differently in naïve and primed pluripotency, insights that may help elucidate the different states of pluripotency.
Collapse
Affiliation(s)
- Xiaohu Wang
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Xiaoxiao Wang
- the Department of Anesthesiology, Anhui Provincial Hospital, First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Shuyuan Zhang
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Hongwei Sun
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Sijia Li
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Huiwen Ding
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Yu You
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601; the Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuewu Zhang
- the Department of Hematology, Institute of Hematology, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Shou-Dong Ye
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601; the Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
9
|
Zhang Y, Ding H, Wang X, Ye SD. Modulation of STAT3 phosphorylation by PTPN2 inhibits naïve pluripotency of embryonic stem cells. FEBS Lett 2018; 592:2227-2237. [PMID: 29797458 DOI: 10.1002/1873-3468.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 01/18/2023]
Abstract
STAT3 phosphorylation at tyrosine 705 (STAT3pY705 ), triggered by the addition of the leukemia inhibitory factor (LIF), can maintain mouse embryonic stem cell (mESC) self-renewal and reprogram mouse epiblast stem cells (EpiSCs) to enter a naïve pluripotent state. The activation of STAT3pY705 occurs mainly through Janus kinases. However, it remains unclear how STAT3pY705 levels are decreased in mESCs. Our study shows that upregulation of the protein tyrosine phosphatase (PTPN2) inhibits STAT3 activity by reducing its phosphorylation level and promotes mESC differentiation, whereas PTPN2 knockout by CRISPR/CAS9 delays mESC differentiation. Consistently, PTPN2 knockdown facilitates the generation of mESC-like colonies in STAT3-overexpressing EpiSCs. PTPN2-mediated STAT3 activity, thus, contributes to the exit of ESCs from the pluripotent ground state. These findings expand the current understanding of the regulatory network of naïve pluripotency.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| | - Huiwen Ding
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| | - Xiaohu Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
10
|
Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T. TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 2018; 420:72-79. [PMID: 29410248 DOI: 10.1016/j.canlet.2018.01.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
The TFCP2/Grainyhead family of transcription factors is divided into two distinct subfamilies, one of which includes the Grainyhead-like 1-3 (GRHL1-3) proteins and the other consists of TFCP2 (synonyms: CP2, LSF, LBP-1c), TFCP2L1 (synonyms: CRTR-1, LBP-9) and UBP1 (synonyms: LBP-1a, NF2d9). Transcription factors from the TFCP2/TFCP2L1/UBP1 subfamily are involved in various aspects of cancer development. TFCP2 is a pro-oncogenic factor in hepatocellular carcinoma, pancreatic cancer and breast cancer, may be important in cervical carcinogenesis and in colorectal cancer. TFCP2 can also act as a tumor suppressor, for example, it inhibits melanoma growth. Furthermore, TFCP2 is involved in epithelial-mesenchymal transition and enhances angiogenesis. TFCP2L1 maintains pluripotency and self-renewal of embryonic stem cells and was implicated in a wide variety of cancers, including clear cell renal cell carcinoma, breast cancer and thyroid cancer. Here we present a systematic review of current knowledge of this protein subfamily in the context of cancer. We also discuss potential challenges in investigating this family of transcription factors. These challenges include redundancies between these factors as well as their interactions with each other and their ability to modulate each other's activity.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna I Grabowska
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|